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Abstract: Liver cancer is one of the most common cancer types worldwide and the fourth leading cause
of cancer-related death. Liver carcinoma is distinguished by a high heterogeneity in pathogenesis,
histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations
are frequent in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA),
which represent the two most common types of liver tumors. Both tumor types are characterized
by telomere shortening and reactivation of telomerase during carcinogenesis. Continuous cell
proliferation, e.g., by oncogenic mutations, can cause extensive telomere shortening in the absence
of sufficient telomerase activity, leading to dysfunctional telomeres and genome instability by
breakage–fusion–bridge cycles, which induce senescence or apoptosis as a tumor suppressor
mechanism. Telomerase reactivation is required to stabilize telomere functionality and for tumor cell
survival, representing a genetic risk factor for the development of liver cirrhosis and liver carcinoma.
Therefore, telomeres and telomerase could be useful targets in hepatocarcinogenesis. Here, we review
similarities and differences between HCC and iCCA in telomere biology.

Keywords: liver cancer; hepatocellular carcinoma; intrahepatic cholangiocarcinoma; telomere
shortening; TERT promoter mutation; telomerase

1. Introduction

Liver cancer is predicted to be the sixth most common tumor disease worldwide and the
fourth leading cause of cancer-related death [1]. Liver cancer presents with a high heterogeneity
in pathogenesis, histopathology and biological behavior. The heterogeneous disease in terms of
etiologies reflects the poor prognosis of patients with liver cancer. The two most common types of liver
cancer are hepatocellular carcinoma (HCC) (75–85% of cases) and intrahepatic cholangiocarcinoma
(iCCA) (10–15% of cases) [1]. Most liver carcinomas are diagnosed at advanced stages despite the
surveillance program of patients with liver cirrhosis to diagnose early liver tumors. To date, therapy
options are limited to the multikinase inhibitors sorafenib and lenvatinib as first-line treatment options
and regorafenib and cabozantinib as second-line treatment options for liver cancer patients [2–4].
A recent clinical trial revealed significantly longer overall and progression-free survival in patients
with unresectable hepatocellular carcinoma, who received atezolizumab, a programmed death ligand
1 (PD-L1) inhibitor, combined with bevacizumab, a monoclonal antibody targeting the vascular
endothelial growth factor (VEGF), in comparison to sorafenib only [5]. These findings point to new
treatment options in patients with unresectable hepatocellular carcinoma and support the development
of new therapy options.

The major risk factors in hepatocarcinogenesis are chronic viral infections with hepatitis B virus
(HBV) and hepatitis C virus (HCV), heavy alcohol consumption, obesity, type 2 diabetes, smoking and
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long-term exposure to aflatoxin B [6]. Most liver tumors arise on the basis of chronic liver diseases
and often result in liver fibrosis and cirrhosis formation, which itself represents a risk factor for tumor
development. In western countries, HCC is mainly related to HCV, high alcohol consumption and
non-alcoholic steatohepatitis (NASH) and connected with cirrhosis formation [7,8], whereas in Asia,
most HCC patients are related to HBV infection; in addition, HCC can also develop in normal liver
without fibrosis/cirrhosis or liver with limited fibrosis formation [9]. Interestingly, in Japan, chronic
HCV infection is more common than HBV, and HCV infection accounts for the majority of HCC [10].
The burden of hepatocellular carcinoma is continuously growing due to increased rates of obesity,
type 2 diabetes and nonalcoholic fatty liver disease (NAFLD), especially in low-risk HCC areas and
thereby replaces viral- and alcohol-related chronic liver diseases [11]. Due to the diversity of risk
factors, a high heterogeneity in liver tumors is reported. The molecular heterogeneity in terms of
various gene mutations in liver cancer requires the identification of molecular targets for designing
individualized therapies. Recent studies have described various sub-classification of HCC and iCCA
tumor types [12–14]. Individual studies underline the importance of specific treatment options based
on the tumor subtypes as a key to achieving a better overall survival of liver cancer patients [15–17].
The identification of dysregulated molecular pathways in premalignant lesions is required for an
early disease detection in hepatocarcinogenesis [18]. A detailed description of molecular targets in the
diversity of liver cancer subtypes would be beneficial for targeted therapies.

Telomere shortening and reactivation of telomerase, two common hallmarks of carcinogenesis,
are described in a broad range of human cancers, including liver cancer [19–21]. Telomere shortening
and reactivation of telomerase, through TERT promoter mutations, for example, represent genetic
risk factors for the development of liver cirrhosis and liver cancer [12,22]. Therefore, disruptions in
telomere biology could be a useful target for the treatment of liver cancer. In the following, we will
present the current knowledge of telomere biology in HCC and iCCA.

2. Telomere Shortening in Liver Cirrhosis and Hepatocellular Carcinoma

Chronic liver disease is associated with chronic liver inflammation, which can lead to cell death
and compensatory cell regeneration. The liver is characterized by a high regenerative reserve [23],
which decreases in the context of chronic liver disease, consequently leading to telomere shortening
and limiting the regenerative reserve of the liver. The frequent appearance of senescent hepatocytes in
liver cirrhosis is the result of the loss of telomeric repeats and the extensive proliferation [21,24–27].
These senescent hepatocytes exhibit markers like p16INK4a and p21WAF1/Cip1 and are positive for
senescence-associated β-galactosidase staining. A disruption of the p53-signaling pathway overcomes
the senescence checkpoint and leads to further cell division of hepatocytes with already-shortened
telomeres until the telomeres become critically short. At this point, the cells enter the crisis checkpoint,
which is characterized by massive cell death [25,27,28].

In the liver, telomerase activity is downregulated during early embryonic development,
and telomerase activity is absent in the adult liver. The healthy liver is a slowly proliferating
organ, and most hepatocytes are in a quiescent stage (only one out of 20,000 cells (0.005%) is in
the cell cycle [29]). Thus, telomerase activity seems not to be essential for hepatocyte function in a
healthy liver. However, telomere shortening occurs in the absence of sufficient telomerase activity in
hepatocytes under conditions of chronic liver diseases or upon injury [21,25]. Importantly, low levels of
telomerase activity were observed under regenerative conditions, indicating the potential physiological
activation of telomerase in adult hepatocytes [30,31]. So far, two distinct mechanisms were made
responsible for telomere shortening upon increased proliferative signals, either due to oncogene
activation (e.g., Ras mutations or c-Myc amplification) or expression of viral oncogenic proteins: (i) in
most of the cases, absence of sufficient telomerase reactivation [32,33] and (ii) in some cases, germline
mutations within the coding region of telomerase, which impair the enzymatic activity of telomerase
in proliferating hepatocytes (see Section 5) [34,35].
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Reactivation of telomerase activity has been shown in more than 80% of HCCs, which suggests that
telomerase activation is a rate-limiting process for liver cancer formation [21,36,37]. The reactivation of
telomerase correlates with the upregulation of both essential components TERT and TERC, respectively.
It has been reported that the re-expression of TERT and activation of telomerase occurs at early
premalignant stages in regenerative nodules and cirrhotic livers [31,38,39]. Importantly, telomerase
activity was detected both in HCC and in iCCA to a similar extent (80–85%) [36,40]. Thus, it is important
to emphasize at this point that the majority of both HCCs and iCCAs are similarly telomerase-positive,
highlighting the necessity of telomerase activity for telomere functionality and tumor progression.

Irrespective of the mechanism, insufficient telomerase activity leads to accelerated telomere
shortening in proliferating liver cells and as a result to genomic instability by breakage–fusion–bridge
cycles (see review by Meena et al. [41]). In cells with intact DNA-damage response (DDR) checkpoints,
telomere shortening leads to senescence/apoptosis and functions as a tumor suppressor mechanism.
On the other hand, in cells lacking functional DDR, telomere shortening promotes genome instability
and tumor formation.

Consequently, telomere shortening is an important risk factor for tumor initiation in liver
carcinogenesis. The risk of tumor formation drastically increases at the cirrhosis stage, which is
characterized by increased hepatocyte senescence, and upon further cell division at the crisis
checkpoint by apoptosis of hepatocytes. Several studies have shown that telomere shortening
is more pronounced in liver carcinoma compared to the surrounding liver tissue (see review by
Satyanarayana et al. [42]). Furthermore, the progressive shortening of telomeres and the inactivation
of cell cycle checkpoints in premalignant lesions led to the identification of a preneoplastic-sequence in
human hepatocarcinogenesis, suggesting that small cell changes (SCC) are more advanced precursor
lesions compared to large cell changes (LCC) [43]. In addition, telomere shortening was more
pronounced in HCCs with a high degree of aneuploidy compared to diploid HCCs [44,45]. In fact,
several studies provide evidence for a role of telomere shortening in the induction of chromosomal
instability and increased risk for tumor formation [46–49]. The importance of telomere shortening and
dysfunctional telomeres in HCC initiation was shown in transgenic mouse models (see Section 3).

3. Mouse Models of Telomere Dysfunction in Hepatocarcinogenesis

To understand the severe situation of dysfunctional telomeres and telomere shortening during
chronic liver disease, transgenic mouse models were used to analyze the functions of telomeres.
To this end, it is important to note that, firstly, there is a substantial difference in the regulation
of telomerase between mouse and human liver. Telomerase activity is detectable in resting mouse
liver but not in resting human liver [30,50–53]. The limiting component, restricting telomerase
activity in human tissues, is the catalytic subunit of the telomerase TERT [54]. Concordantly, there is
a marked difference in TERT mRNA levels in human and mouse livers [52–54]. In fact, in vivo
experimental evidence supports the idea that the species-specific differential regulation is based on
different promoter organization [30,53,55]. Secondly, the average telomere length in laboratory mice is
about five times longer than that of human telomeres, to some extent due to constitutive telomerase
activity in mouse cells [56,57].

The telomerase knockout mouse (Terc−/−) lacking the RNA component of the telomerase
enzyme was used to analyze telomere shortening in liver regeneration, chronic liver disease,
and hepatocarcinogenesis [24,58–60]. Mice are characterized by the existence of longer telomeres
compared to humans [56]. Mice of different backgrounds differ a lot in telomere length [61]. For this
reason, the Terc−/−mouse has to be crossed until the third to the sixth generation, depending on the used
background strain to generate mice with critically short telomere lengths [58,60,62]. In an experimental
model of liver regeneration involving the removal of two-thirds of the liver by partial hepatectomy of G3
Terc−/− and Terc+/+mice, telomere shortening was observed to be a heterogeneous event at the cellular
level, which led to the inhibition of a subpopulation of cells with critically short telomeres to enter
the cell cycle and prevent those cells from participating in liver regeneration [58]. By comparing the
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mean telomere fluorescence intensities measured by FISH analysis, Satyanarayana and colleagues [58]
observed no significant differences in TERC+/+mice between BrdU-positive cells (952.53 ± 144.19) and
BrdU-negative cells (957.44 ± 130.57) but saw a dramatic reduction of the mean telomere fluorescence
intensity of BrdU-negative cells (364.94 ± 116.45) in comparison to BrdU-positive cells (509.65 ± 101.30)
in G3 TERC−/− mice. In a mouse model of experimentally induced acute liver damage in which
Terc−/−mice were subjected to genetic, surgical and chemical impairment of the liver, dysfunctional
telomeres were associated with defective liver regeneration and accelerated formation of liver cirrhosis,
which could be partly rescued by adenoviral delivery of the telomerase RNA [24]. In an approach
comprising three different cancer-prone model systems—(1) treatment with CCl4 (carbon tetrachloride),
(2) treatment with DEN (diethylnitrosamine) and (3) a genetic model (urokinase plasminogen activator
transgenic mice) in Terc−/−mice—it could be shown that telomere dysfunction has a differential impact
on tumor initiation and tumor progression. In all three model systems, dysfunctional telomeres were
associated with higher amounts of tumor initiation and a decline in tumor progression [63]. In mouse
models of chronic liver damage achieved by crossing HBsAg-expressing mice (the mice express the
hepatitis B surface antigen under the liver-specific albumin promoter [64]) with Terc−/−mice, contrary
effects of telomere shortening were shown between the beneficial effect on suppression of tumor
growth and the negative effect on organismal survival [59]. In another mouse model of chronic liver
disease, HBsAg mice were crossed with Terc−/− and Trp53 cKO mice. We generated mice with critically
short telomeres by an intercross of Terc−/− and Terc+/− to generate siblings with loss of telomerase
function in one group and telomerase expression in the other group. This study yielded the evidence
for telomerase to be a critical component in the progression of Trp53-deficient hepatocellular carcinoma
with short telomeres in the setting of chronic liver damage [60]. In addition, it was also shown that
telomerase limits the accumulation of telomere dysfunction and the generation of aneuploidy by the
activation of TRP53-independent checkpoints which suppress carcinogenesis [60]. Increased rates
of chromosomal aberrations could be also shown in a DEN-induced liver cancer mouse model with
dysfunctional telomeres. Telomerase knockout mice (Terc−/−) with chronic telomere dysfunction as
well as a model of transient telomere dysfunction by inducing a dominant-negative variant of the
TRF2 (telomeric repeat-binding factor 2) protein exhibited higher levels of chromosomal aberrations.
In summary, the model of transient telomere dysfunction promotes chromosomal instability and liver
carcinogenesis in telomerase-competent mice [65]. RAP1 (Ras-proximate-1 or Ras-related protein 1),
like TRF2, is a component of the shelterin complex, which caps the telomere end for the protection of
chromosome ends [66]. A recent publication suggested an important role of RAP1 in the protection of
liver damage and liver carcinogenesis. DEN-induced Rap1−/− female mice were more prone to liver
damage and hepatocellular carcinoma [67]. These models reflect the complexity and opposing roles of
dysfunctional telomeres in hepatocarcinogenesis.

4. Telomere Shortening in Cholangiocarcinoma

Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant liver tumor which
arises from the biliary tract and is characterized by a very poor prognosis with rising incidence and
mortality in recent years [68,69]. The main risk factors described for HCC are also reported for iCCA.
Additional risk factors are primary sclerosing cholangitis (PSC), hepatobiliary flukes, biliary duct cysts
and hepatolithiasis [13]. A study by Verma and colleagues analyzed telomere shortening during aging
in normal liver with no history of liver disease. Interestingly, they observed that the cholangiocytes
exhibited the longest telomeres compared to all other analyzed intrahepatic lineages [70]. Similar to
CD4+ and CD8+ lymphocytes, no significant telomere shortening was observed in cholangiocytes
and hepatocytes of individuals without liver disease during aging. The authors only observed an
age-related telomere shortening in Kupffer cells and stellate cells [70]. On the other hand, a consistent
telomere shortening was reported during the development of biliary tract carcinoma, starting early
in carcinogenesis in the inflamed biliary tract, metaplasia, dysplasia and carcinoma [71]. In contrast,
the normal and the inflamed epithelium of the biliary tract showed a uniform telomere length [71].
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Within cholangiocarcinoma, a frequent intratumoral heterogeneity of telomere length is reported [71].
As indicated above, telomere shortening in hepatocytes triggers cellular senescence in the context
of intact DDR checkpoints. Similarly, an investigation of telomere shortening and senescence in the
pathogenesis of primary biliary cirrhosis (PBC) showed telomere shortening. Moreover, DNA damage
accumulation was detectable in biliary epithelial cells in the damaged small bile ducts and bile ductules
in PBC in comparison to normal-looking bile ducts and bile ductules in PBC, chronic viral hepatitis
and normal livers [72]. Of note, the accumulation of DNA damage foci correlated with increased
expression of p16INK4a and p21WAF1/Cip1, which characterize biliary cellular senescence [72].

5. Loss of Function Mutations in Telomerase Components

Germline loss-of-function mutations in the telomerase components were found in a variety of
human diseases, including dyskeratosis congenita, aplastic anemia, familial idiopathic fibrosis and
acute myeloid leukemia [73–80]. These mutations provoked an impaired tissue regeneration due to
telomere dysfunction and stem/progenitor cell exhaustion. Similar mutations were also reported in
a subset of liver cancer samples [34,35]. The authors analyzed TERT and TERC mutations in buccal
mucosa tissue and peripheral blood of patients with liver cirrhosis and compared them with healthy
non-cirrhotic controls. An increased number of telomerase mutations were found in the group with
liver cirrhosis. The study by Calado et al. [34] reported nine patients with a mutation in the TERT
gene and one patient with a mutation in the TERC gene among 134 patients with liver cirrhosis.
Similarly, Hartmann et al. [35] reported mutations in the TERT and TERC genes in 16 out of 521 patients.
The Calado study reported a significantly higher allele frequency for the gene variants in the TERT and
TERC genes in patients with cirrhosis (allele frequency 0.037) compared to controls (0.008; p = 0.0011).
A similar result was shown by the Hartmann study, which stated an increased incidence of telomerase
mutations detected in cirrhosis patients (allele frequency 0.017) compared to non-cirrhotic controls
(0.003, p = 0.0007). The mutations in telomerase components led to decreased telomerase activity in
comparison to wildtype telomerase enzyme activity. Consequently, patients with these mutations
showed shorter telomeres in peripheral white blood cells [34,35]. Rare TERT mutations were also
reported in patients with nonalcoholic fatty liver disease (NAFLD). Here, an enrichment of TERT
mutations could be found in NAFLD-associated HCC [81]. Functional evaluation of these mutations
exposed reduced protein synthesis from some of the mutations compared to the TERT wild-type
protein. It is speculated that these TERT mutations could also impair the DNA-binding function of
TERT. In summary, these results indicate that TERT mutations result in impaired telomerase activity,
accelerated telomere shortening and impaired regeneration in chronic liver disease. These findings are
supported by the above-mentioned studies indicating low/absent telomerase activity in resting liver
and telomerase activation in the regenerating liver [30,31]. Taken together, these studies show that
telomerase activity acts as a protective mechanism in chronic diseases to prevent telomere shortening
during accelerated cell proliferation, whereas TERT mutations result in telomere shortening and may
promote hepatocarcinogenesis by dysfunctional telomeres.

6. Telomerase Reactivation during Hepatocarcinogenesis

It has been proposed for a long time that up to 90% of human tumors can reactivate
telomerase [20,82]. Telomerase reactivation is associated with the alteration of transcriptional regulators
of the TERT promoter in cancer, TERT promoter mutations or rearrangements and DNA copy number
amplifications [30,83–88]. Reactivation of the telomerase enzyme has been shown in more than 80% of
HCCs, which suggests reactivation of telomerase as a rate-limiting process for liver cancer formation.
The reactivation of telomerase correlates with the upregulation of both essential components, TERT and
TERC. It has been reported that the re-expression of TERT and re-activation of telomerase occurs at
early premalignant stages in regenerative nodules and cirrhotic livers [31,38,39]. Telomerase activation
was also reported in iCCA (85%) [40]. Thus, it is important to note at this point that the majority of
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HCCs and iCCAs are telomerase-positive, highlighting the necessity of telomerase activity for telomere
functionality and tumor progression in the two most common liver cancer entities.

6.1. TERT Promoter Mutations

TERT promoter mutations which result in increased TERT expression were first identified in
melanoma and were subsequently reported in other cancers like bladder cancer, glioma, thyroid cancer
and HCC [84,89–91]. In the following, we present data that report on TERT promoter mutations in HCC,
iCCA and tumors with a mixed-differentiation HCC/iCCA (Tables 1–3). These data were achieved by
PubMed literature search, using the keywords “TERT promoter mutations”, “liver carcinoma” and
“biliary tract cancer”. Additionally, the list includes studies that analyzed TERT promoter mutations in
different tumor entities. Due to limited sample sizes in the reported studies, we excluded studies/data
on rare entities, such as fibrolamellar carcinoma (FLC) and cholangiolocellular carcinoma (coCC),
as well as studies/data based on liquid biopsies. In HCCs, TERT promoter mutations were identified
with an overall prevalence of 20–82% as the most frequent somatic genetic alterations (Table 1) [92–117].

Table 1. TERT promoter mutations in hepatocellular carcinoma.

Tumor Type Number of Samples TERT Promoter Mutation
Etiology

Reference
−124 bp −146 bp

HCC * 61 44.2% (27/61)

HCV

Killela et al., 2013 [96]

62.5% (10/16) 0 (0/16)

HBV

26.6% (4/15) 0 (0/15)

ETOH

100% (2/2) 0

cyptogenic liver disease

100% (1/1) 0

unknown

50% (8/16) 0 (0/16)

HCC 70 # 71% (50/70)

HCV

Chianchiano et al., 2018 [97]

87.5% (35/40) 2.5% (1/40)

HBV

0 (0/7) 0 (0/7)

ETOH

16.6% (1/6) 0 (0/6)

HCV/HBV

100% (2/2) 0

unknown

73.3% (11/15) 0 (0/15)

HCC 457 54.2% (248/457)

HCV

Totoki et al., 2014 [98]

62.2% (117/188) 1.6% (3/188)

HBV

28.7% (31/108) 3.7% (4/108)

HCV/HBV

66.6% (8/12) 0 (0/12)

NBNC †

53.6% (80/149) 3.3% (5/149)

HCC 104 65% ‡ (68/104)

HCV

Kawai-Kitahata et al., 2016 [99]

80% (40/50)

HBV

32% (9/28)

ETOH

83% (10/12)

unknown

64% (9/14)
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Table 1. Cont.

Tumor Type Number of Samples TERT Promoter Mutation
Etiology

Reference
−124 bp −146 bp

HCC 160 28.8% § (46/160)

HCV

Lee et al., 2017 [100]

60% (3/5)

HBV

32.7% (19/58)

ETOH

28.5% (6/21)

others

23.6% (18/76)

HCC 105 39% (41/105)

HCV

Lee et al., 2016 [93]

83.3% (5/6)

HBV

29.4% (23/78)

ETOH

37.5% (3/8)

unknown

76.9% (10/13)

HCC 44 34% (15/44)

HBV

Cevik et al., 2015 [101]
13% (3/23) 13% (3/23)

unknown

33.3% (7/21) 9.5% (2/21)

HCC 97 54.6% (53/97)

HCV

Kwa et al., 2020 [102]

71% (22/31)

HBV

36.4% (8/22)

NBNC

52.3% (23/44)

HCC 10 50% (5/10)

HCV

Rudini et al., 2018 [103]

42.9% (3/7) 14.3% (1/7)

ETOH

0 (0/2) 0 (0/2)

unknown

100% (1/1) 0 (0/1)

HCC 67 43.3% (29/67) ESC-NA Lombardo et al., 2020 [104]

HCC 14 21.4% (3/14) ESC-NA Jospeh et al., 2019 [105]

HCC 127 50.4% (64/127)

HCV

Pezzuto et al., 2016 [106]

53.6% (59/110)

HBV

41.7% (5/12)

NBNC

0 (0/5)

HCC 11 81.9% (9/11)
NAFLD

Kim et al., 2016 [107]
100% (9/9) 0 (0/9)

HCC 190 30% (57/190)

HBV

Yuan et al., 2017 [108]
32.7% (50/153)

unknown

18.9% (7/37)

HCC 375 20.3% (76/375)

classical HCC

Pilati et al., 2014 [109]

54% (68/125)

HCC derived from adenomas

56% (5/9)

borderline lesions HCA/HCC

17% (3/18)

classical adenomas

0 (0/223)
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Table 1. Cont.

Tumor Type Number of Samples TERT Promoter Mutation
Etiology

Reference
−124 bp −146 bp

HCC 196 44.4% (87/196)

HCV

The Cancer Genome Atlas
Research Network 2017 [110]

61.3% (19/31) 3.2% (1/31)

HBV

22.5% (9/40) 2.5% (1/40)

HCV/HBV

50% (2/4) 0 (0/4)

NBNC

40.5% (49/121) 5% (6/121)

HCC 88 29.6% (26/88)

low-grade dysplastic nodules

Nault et al., 2014 [117]

6.3% (2/32)

high-grade dysplastic nodules

18.8% (3/16)

early HCC

60.9% (14/23)

progressed HCC

41.2% (7/17)

HCC 276 31% (85/276)
HBV

Yang et al., 2016 [111]
98.8% (84/85) 1.2% (1/85)

non-clear cell
HCC 259 33.2% (86/259) 94.2% (81/86) 5.8% (5/86)

Huang et al., 2017 [112]
clear cell HCC 57 26.3% (15/57) 100% (15/15) 0 (0/15)

HCC 322 64.5% (208/322)
combined etiology

Calderaro et al., 2017 [113]
64.5% (208/322)

HCC 195 29.2% (57/195) 94.7% (54/57) 5.3% (3/57) Chen et al., 2014 [114]

HCC 235 60.4% (142/235)
combined etiology

Schulze et al., 2015 [115]
60.4% (142/235)

HCC 35 ** 31.4% (11/35) 81.8% (9/11) 18.2% (2/11) Huang et al., 2015 [92]

HCC 78 ** 47% (37/78) 100% (37/37) 0 (0/37) Quaas et al., 2014 [95]

HCC 305 ** 58.6% (179/305) 93.8% (168/179) 6.1%
(11/179) Nault et al., 2013 [94]

HCC 162 ** 45% (73/162) NA NA Barthel et al., 2017 [82]

HCC (K19−) 44 *** 59% (26/44) 100% (26/26) 0
Akita et al., 2019 [116]

HCC (K19+) 26 *** 31% (8/26) 100% (8/8) 0

Total 4170 43.9% (1831/4170)

* Only for hepatocellular carcinoma (HCC) patients with known clinical information; NA = data not available;
# tumors from 24 patients; † no hepatitis infection; ‡ 66/68 tumors show mutation at −124 bp, and 2/68 patients
show mutation at −146 bp; § 32/46 tumors show mutation at −124 bp, and 14/46 tumors show mutation at −146 bp;
** etiology was not described; *** etiology was not correlated; HBV: Hepatitis B virus; HCV: Hepatitis C virus;
ETOH: Alcohol; HCV/HBV: Hepatitis c and Hepatitis C virus; ASH: Alcoholic steatohepatitis; NASH: Non-alcoholic
steatohepatitis; PBC: Primary biliary cholangitis; PSC: Primary sclerosing cholangitis; NBNC: No hepatitis virus
infected; ESC-NA: Etiology-specific classification is not available; NAFLD: non-alcoholic fatty liver disease.

However, it should be noted that in 80% of cases which lacked TERT promoter, mutations showed
an enhanced TERT expression. Moreover, telomerase activity was detectable, indicating the existence
of alternative mechanisms of telomerase reactivation during liver carcinogenesis [118]. For example,
it was shown that the insertion of HBV in the TERT promoter region can activate TERT gene expression
and telomerase promoting hepatocarcinogenesis in HBV-related HCC [119,120]. Unlike HBV, HCV is
not able to integrate into the host genome, but HCV can also induce chromosomal instability by
direct effects of its proteins [121]. Interestingly, mutations in the TERT promoter were identified to
be significantly more common in HCV-related HCC tumors compared with tumors without HCV
infection [93]. It is also notable that the TERT promoter mutation frequency is higher in HCV-related
HCC (64%) compared to HBV-related HCC tumors (37%) [98].
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Table 2. TERT promoter mutations in intrahepatic cholangiocarcinoma (iCCA).

Tumor Type Number of Samples TERT Promoter Mutation
Etiology

Reference
−124 bp −146 bp

iCCA 145 0.70% (1/145)

HCV

Nakamura et al., 2015 [125]

0 (0/10) 0 (0/10)

HBV

0 (0/7) 0 (0/7)

NBNC †

0.8% (1/122) 0 (0/122)

unknown

0 (0/6) 0 (0/6)

iCCA 78 5.12% (4/78)

HCV

Fujimoto et al., 2015 [124]

22.2% (2/9)

HBV

9% (1/11)

NBNC †

1.7% (1/58)

iCCA 10 10% (1/10)

HCV

Joseph et al., 2019 [126]

0 (0/5)

HBV

0 (0/2)

NASH

50% (1/2)

PBC

0 (0/1)

CC 4 25% (1/4)
HCV

Pezzuto et al., 2016 [106]
25% (1/4)

iCCA 9 ** 0 (0/9) 0 (0/9) 0 (0/9) Huang et al., 2015 [92]

iCCA 52 ** 0 (0/52) 0 (0/52) 0 (0/52) Quaas et al., 2014 [95]

iCCA 28 ** 0 (0/28) 0 (0/28) 0 (0/28) Killela et al., 2013 [96]

S-iCCA 36 *** 0 (0/36) 0 (0/36) 0 (0/36) Akita et al., 2019 [116]

Total 362 1.9% (7/362)
† No hepatitis infection; ** etiology was not described; *** etiology was not correlated.

The occurrence of TERT promoter mutations in liver carcinogenesis is identified in premalignant
lesions, and the prevalence of mutations gradually increased with the degree of dysplasia, indicating that
TERT promoter mutations are highly associated with the stepwise transformation from premalignant
dysplastic nodules to malignant HCC. TERT promoter mutations were identified in 6% of low-grade
dysplastic nodules, 19% of high-grade dysplastic nodules and 61% of early HCCs. Interestingly,
TERT promoter mutations were not detected in cirrhotic liver [94,117]. TERT promoter mutations are
so far the earliest recurrent genetic events in cirrhotic preneoplastic lesions and belong to the most
frequent alterations in hepatocellular carcinoma [94,122]. These results support the idea that telomerase
reactivation is required for the malignant transformation of liver cells from cirrhosis to cancer.

In HCC, TERT promoter mutations at several positions were described. The two most
frequent mutations occur at positions −124 (G > A) and −146 (G > A) upstream of the ATG
translation start site (Figure 1) [98,106]. Interestingly, the TERT promoter mutation at the
−124 bp hotspot appears more often compared with the TERT promoter mutation at the −146 bp
hotspot [93,94,96–98,100,101,106,108,111,112,114] was shown that the TERT promoter mutations
generate a de novo consensus binding site for the E-twenty-six (ETS) transcription factor family [83,84],
leading to an increase in TERT protein amounts, telomerase activity and telomere length [123]. Recently
a new TERT promoter mutation was found in 7.5% of the analyzed HCCs at the position −297 (C > T)
upstream of the ATG translation start site, which creates an AP2 consensus sequence [104].
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Interestingly, the TERT promoter mutation frequency in HCC differs geographically. By comparing
different studies, Pezzuto et al. [106] reported that TERT promoter mutations seem to be most common
in Europe (56.6%). In Africa, TERT promoter mutations were identified in 53.3% and in Asia in 42.5%
of HCCs. The overall TERT promoter mutation rate in America is around 40% [106].

In contrast to frequent mutations in the TERT promoter region in HCC, TERT promoter mutations
are less frequently analyzed in cholangiocarcinoma [92,95,96,106,116,124–126]. These studies identified
TERT promoter mutations in 31–47% of the HCCs. Nakamura et al. analyzed the largest dataset of
145 iCCAs (named as ICCs in the study). A TERT promoter mutation was detected only in one iCCA
sample. Furthermore, the same study also analyzed a set of 86 extrahepatic cholangiocarcinomas,
with none of them exhibiting a TERT promoter mutation [125].

While no TERT promoter mutation was detected in iCCA samples in the majority of
studies [92,95,96,116], in some studies, performed on lower sample numbers, a low frequency of TERT
promoter mutations were observed in iCCA [106,124,126] (Table 2).

The study by Fujimoto et al. was focused on different subtypes of liver cancer displaying
biliary phenotype (LCB). They described TERT promoter mutations in 5.12% (4/78) of intrahepatic
cholangiocarcinoma and in 53.3% (8/15) of combined hepatocellular cholangiocarcinoma [124].

The high percentage of TERT promoter mutations in HCC/iCCA may reflect the presence of the
HCC part consisting of the TERT promoter mutation or indicate that both tumor types may arise from
the same cell type of origin (Table 3).

In addition, a clear difference between hepatitis-positive LCBs and hepatitis-negative LCBs was
observed (20% vs. 6%) [124]. Taken together, the fact that TERT promoter mutations are detectable
only in a small subset of cholangiocarcinoma indicates that the mechanism of telomerase activation is
evidently different from telomerase activation in many HCCs (Figure 2).
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Table 3. TERT promoter mutations in combined HCC/iCCA.

Tumor Type Number of Samples TERT Promoter Mutation
Etiology

Reference
−124 bp −146 bp

cHCC/CC 15 53.3% (8/15)

HCV

Fujimoto et al., 2015 [124]

83.3% (5/6)

HBV

0 (0/3)

NBNC *

50% (3/6)

combined HCC-CC 20 70% (14/20)

HCV

Joseph et al., 2019 [126]

81.8% (9/11)

HBV

0 (0/1)

HCV/HBV

100% (1/1)

ASH

100% (1/1)

NASH

100% (1/1)

ASH/NASH

0% (0/1)

PSC

100% (1/1)

unknown

33.3% (1/3)

cHC-CC 53 30.2% (16/53)

HCV

Sasaki et al., 2017 [127]

31.8% (7/22)

HBV

44.5% (4/9)

ETOH

40% (2/5)

NAFLD

0 (0/8)

unknown

33.4% (3/9)

HCC-CC 3 0 (0/3)

HCV

Pezzuto et al., 2016 [106]
0 (0/2)

HBV

0 (0/1)

Total 91 41.8% (38/91)

* No hepatitis infection.
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6.2. Amplification and Genomic Rearrangements of TERT

Structural and numerical aberrations in the organization of the genome can lead to TERT promoter
activation and eventually to telomerase reactivation. Frequent amplifications of the TERT gene have
been shown in human cancer cell lines and in human tumors [85,128]. The amplified TERT gene was
found in around 22% of hepatocellular carcinoma and shows a higher incidence in poorly differentiated
hepatocellular carcinoma [129]. Nevertheless, the TERT mRNA level did not correlate with the number
of TERT gene copies, as was also reported in colorectal cancer [129,130]. Focal amplifications of 5p15.33
(TERT) were observed with a reduced overall survival, independently of other clinicopathological
parameters in patients with hepatocellular carcinoma [131]. However, it should be noted that TERT
amplifications do not always lead to increased TERT mRNA levels, which are by themselves not
assignable to increased TERT translation levels.

Structural rearrangements in the TERT gene have been shown in several cancers like neuroblastoma,
renal cell carcinoma, sarcoma and prostate carcinoma, and also in liver carcinoma [82,86,132,133].
A specific event that occurs in hepatocellular carcinoma is integration of viral genomes. Integration of
the Hepatitis B virus into the host genome has been described in hepatocellular carcinoma, frequently
in the TERT promoter region [98,99,120,134–136]. The high frequency of HBV integration within the
TERT promoter region might be a reason for a low rate of TERT promoter mutations in HBV-related
HCC, which is known to induce telomerase transcription [94,119]. This could represent an alternative
mechanism or two different mechanisms of telomerase reactivation.

AAV2 (adeno-associated virus type 2) is the second virus reported to integrate into HCC cell
lines and hepatocellular carcinoma of human patients [137]. The insertion of AAV2 can take place
in the TERT promoter region and thereby lead to overexpression of the TERT gene [137]. The AAV2
genome achieves a liver-specific enhancer-promoter activity in the 3′UTR and binding sites of hepatic
transcription factors, which might be linked to TERT overexpression and telomerase reactivation [138].

6.3. Altered Transcriptional Regulation of TERT Gene Expression

Studies addressing telomerase activation in liver cells mainly focused on TERT gene regulation in
hepatocytes and HCC. The RB/E2F gene regulatory circuit regulates TERT promoter activity during
liver regeneration and cancer [30]. The role of the RB/E2F circuit in TERT regulation is supported by a
recent report showing that the Human Krüppel related 3 (HKR3) is capable of repressing TERT gene
expression in HCC cell lines, resulting in the subsequent activation of CDKN2A (encoding the p16
tumor suppressor factor) and cell cycle inhibition as a tumor suppressor mechanism [139]. In another
study, the RNA-binding fox-1 homolog 3 (RBFOX3) protein cooperates with AP2β to activate TERT
gene expression in HCC cell lines, indicating a role of telomerase activation in promotion of HCC [140].
Concurrently, impaired E2F1 binding to the TERT promoter has been shown to correlate with increased
patient mortality [141].

On the other hand, the bromodomain PHD finger transcription factor (BPTF) seems to regulate
TERT gene expression via nucleosome remodeling in HCC cell lines [142]. BPTF is required for c-MYC
transcriptional activity in carcinogenesis, linking TERT gene activation to c-MYC, which was the first
transcription factor shown to regulate TERT expression by direct promoter binding [143–146]. Of note,
c-MYC amplification correlates with liver cancer progression, mainly HCC, and to a lesser extent,
iCCA [147,148]. In a recent study using a genome-wide shRNA screening strategy in HepG2 cell line,
Chr15orf55 (also known as NUTM1) and Chr7orf43, two regulatory factors with currently unknown
functions, were found to activate TERT gene expression through SP1 or YAP1, respectively [149].
The exact nature of these factors and their role in HCC and iCCA remain yet to be clarified.

6.4. Epigenetic Mechanisms in the Regulation of TERT Gene Expression

There are a number of studies indicating that TERT promoter methylation and histone
acetylation may be involved in the regulation of TERT transcription and hence telomerase activity.
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The mechanism of MAD1-mediated repression involves modification of the chromatin structure by
histone deacetylation [146]. In fact, treatment of telomerase-negative human cell lines with the histone
deacetylase inhibitor TSA (trichostatin A) results in the reactivation of TERT gene expression and
telomerase activity [150], whereas the overexpression of HDAC1 causes the repression of the TERT
gene and telomerase activity [151]. To what extent histone acetylation/deacetylation is involved in
TERT regulation during carcinogenesis remains pending.

The overexpression of DNMTs is thought to be responsible for suppressing the expression of
tumor suppressor proteins by methylating the promoters of their genes, which leads to the early
switching off of these factors. DNMT3B in particular is strongly overexpressed in breast tumors and
correlates with the degree of tumorigenesis [152]. It can therefore also be assumed that the epigenetic
regulation of TERT gene expression takes place indirectly, namely via the promoter methylation of
genes for transcription factors which are responsible for TERT gene expression. A recent report showed
the cooperation between TERT and the transcription factor SP2 to stimulate DNMT3B transcription,
while TERT depletion inhibited DNMT3B expression [153]. Higher levels of TERT and DNMT3B
expression predicted shorter survival in HCC patients based on the TCGA database [153].

On the other hand, the methylation status of the TERT promoter was studied in some detail.
Initial reports regarding the methylation state and the activity of the TERT promoter were contradictorily
unequivocal: while Devereux et al. [154] and Dessain et al. [155] did not observe an impact of promoter
methylation of TERT expression, Guilleret et al. [156] found a correlation between the methylation
state and the activity of the TERT promoter. Moreover, studies on TERT promoter methylation in HCC
revealed contradictory results. Zhang et al. [157] observed that aberrant methylation of TERT promoter
in HCC patients of the Han Chinese population showed a nearly 56-fold increase of TERT expression
from the hypermethylated promoter. In contrast to that study, an analysis of 106 patient tissues (64 with
HCC and 42 without liver disorders) and hepatocarcinoma cell lines revealed that the TERT promoter
was methylated in normal liver but was hypomethylated in most of the hepatocellular carcinomas [158].

Recent studies point out the importance of a comprehensive mapping of the methylation landscape
within the TERT promoter using more advanced technologies, arguing that the methylation analysis
of a small number of CpG sites may not represent the methylation landscape of the whole TERT
promoter [159]. Using a next-generation sequencing technique, the authors performed a comprehensive
methylation analysis and revealed a TERT hypermethylated oncological region (THOR) defining a
433 bp genomic region within the TERT promoter as a cancer-associated epigenetic mechanism of
TERT upregulation. This region encompasses 52 CpG sites and is located upstream of the TERT
promoter mutations (TPMs) [159]. Five CpG sites within THOR accurately presented the average
THOR methylation and were used for a bigger screen of 1352 tumor samples and 80 normal samples.
Of the tumor samples 91.4% exceeded the median THOR methylation level detected in normal samples.
Low THOR methylation levels were detected in thyroid cancers, which was linked to a lower malignant
potential and a better prognosis [159]. Tumors from skin and bone showed low and heterogeneous
methylation levels, which indicates the use of other mechanisms of telomere maintenance like TERT
promoter mutations or the alternative lengthening of telomeres (ALT). In line with these results,
Esopi et al. [160] described hypermethylation in the region upstream of the recurrent C228T and
C250T promoter mutations in immortalized and cancer cell lines (including hepatocarcinoma cell
lines). In contrast, non-malignant primary cells were rather hypomethylated [160]. Interestingly,
the authors could show on an allele level that the hypermethylation of TERT promoter sequences in
cancer cells is associated with TERT repression, while the remaining unmethylated allele marked with
an open chromatin is largely responsible for the TERT expression in cancer cells [160]. In cancers with
TERT promoter mutations, the expressed allele is mutated, while the WT allele is silenced [160,161].
In summary, current data support the assumption that TERT promoter activity can be regulated by
epigenetic mechanisms in a tissue- and cancer-type-specific manner.
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7. Telomere and Telomerase-Based Cancer Therapy

The fact that telomerase is repressed in somatic tissues but active in cancer cells qualifies it as an
ideal target for cancer therapy. On the other hand, impairment of telomere length and/or structure
could be a target for tumor therapy as telomere length in cancer cells is usually shorter than in the
corresponding normal tissue cells. Moreover, due to their high turnover, functional telomeres have to
be rebuilt more often in tumor cells than in normal cells. Thus, deterioration of the intact telomere
structure by compounds may represent an attractive target to cure cancer.

Several telomerase inhibitors have been used in preclinical studies and clinical trials, involving
telomerase inhibitor molecules, such as the antisense oligonucleotide Imetelstat (GRN163L) or
the small-molecule inhibitor BIBR1532, as well as the G-quadruplex stabilizers (BRACO, RHPS4,
Telomestatin). There are also interesting alternative strategies such as telomerase vaccination
(peptide-based: GV1001; mRNA-based: GRNVAC1) to induce anti-tumor responses or tumor cell lysis
through TERT promoter-driven oncolytic adenovirus (Telomelysin (OBP-301)) or TERT promoter-driven
pro-apoptotic protein (e.g., TRAIL) to take advantage of high telomerase activity in cancer cells for
therapy options. For further reading, we refer to a recent excellent article, which discusses this topic in
greater detail [162]. Furthermore, we refer to a recent review article, which summarizes clinical trials
on telomerase-based cancer therapeutics [163].

8. Conclusions

The biology of telomere maintenance plays a major role in the process of cirrhosis formation
as well as in initiation and progression in liver carcinoma. A shortening of telomeres occurs due
to progressive chronic liver diseases and highly correlates with an increased tumor risk. Telomere
shortening occurs in HCC as well as in iCCA. In addition, telomerase reactivation is detectable at
a high frequency in both tumor entities. The mechanisms of telomerase activation seem, at least
in part, to be different between the two liver cancer entities. TERT promoter mutations were more
frequently observed in HCCs compared to iCCAs. The low frequency of TERT promoter mutations
reported in iCCA might be due to a not-detected HCCs part (mixed differentiation) of the analyzed
tumors. This links to the phenomenon that some tumor entities lacking specific mutations in the TERT
promoter region and where other mechanisms leading to telomerase activation exist. As described
above, the TERT promoter region contains binding sites for many transcription factors, i.e., c-MYC,
E2Fs, and others, which contribute to the tissue-specific regulation of TERT gene expression [22].
It would be interesting to explore whether TERT expression is regulated differentially in HCC and
iCCA. The identification of the regulatory mechanisms contributing to telomerase reactivation in HCC
and iCCA could shed light on the differential tumor initiation and progression pathways and may
provide alternative and specific therapy options.

The observation that TERT promoter mutations occur early during liver carcinogenesis highlights
the importance of telomerase activity for tumor cell survival. Two possible scenarios are conceivable
how telomerase contributes to tumorigenesis in liver cancer. On the one side, telomerase reactivation
before entering the crisis checkpoint may stabilize critically short telomeres, providing growth
advantage for cells with oncogenic mutations (Figure 3). In melanoma, a two-step mechanism was
described, which showed that mutations in the TERT promoter region contribute to tumorigenesis [164].
This study showed that TERT promoter mutations are not sufficient to counteract telomere shortening,
but they contribute to tumorigenesis by promoting the immortalization and chromosomal instability
in two phases: (1) extend the cellular life span by healing the shortest telomeres without prevention
of bulk telomere shortening, and (2) the existence of critically short telomeres conducts to genome
instability and thereby, telomerase is further up-regulated to proceed cell proliferation.

On the other side, early reactivation of telomerase may be related to its non-canonical functions.
There is strong experimental evidence indicating that oncogenic mutations or mutations which result
in genome instability induce cellular senescence by inducing telomere replication stress [41,165].
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This mechanism functions to limit continuous proliferation of cells carrying detrimental mutations,
preventing tumorigenesis.

However, telomerase activity can alleviate telomere replication stress by a yet-unidentified
mechanism and promote tumorigenesis [22,88,166,167].
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Whether telomere maintenance or even elongation of telomeres during chronic liver diseases or
an inactivation of the telomerase could be beneficial for the treatment of liver carcinoma remains to be
elucidated in future studies.
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