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Abstract: Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated
with breast cancer development and progression. Here, we report a critical role for CYLD in
maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation
or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that
was dependent on the concomitant activation of the transcription factors Yes-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor
beta (TGFβ)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the
phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell
culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient
mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ
transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD
expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify
CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ
and the TGFβ pathway in mammary epithelial cells, in order to maintain their phenotypic identity
and homeostasis. Consequently, they provide a novel conceptual framework that supports and
explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
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1. Introduction

The epithelial to mesenchymal transition (EMT) has been recognized as an important mechanism
that can promote invasion and metastasis of breast cancer cells (reviewed in [1]). EMT represents a
dedifferentiation process of epithelial cells that can generate developmentally primitive states, which
are associated with aggressive behavior. Indeed, EMT in breast cancer has been associated with the
development of the cancer stem cell state and chemoresistance. Although several signaling pathways
have been implicated in the induction of EMT in breast cancer, the molecular mechanisms that can
trigger the deregulation of these pathways, and induce EMT have not been identified comprehensively.

Inactivating mutations of the CYLD gene or its downregulated expression have been documented
in several types of human tumors [2–12]. The tumor-suppressing function of CYLD is also supported
by the increased oncogenic susceptibility of CYLD-deficient mouse models to proinflammatory and/or
genotoxic stress [13–18]. The human CYLD gene is expressed in most tissues and codes for a 956-amino-acid
deubiquitinating enzyme (CYLD), which selectively hydrolyzes K63- and M1-linked polyubiquitin
chains [2,19]. The deubiquitinating domain of CYLD is located at the carboxyl-terminal region of the protein
and three CAP-Gly domains are found within the CYLD amino terminal region, two of which are capable
of interacting with microtubules and their associated proteins end-binding protein 1 (EB1) and histone
deacetylase 6 (HDAC6) [20]. These interactions have been implicated in the regulation of microtubule
dynamics by CYLD, which affect cell migration and various aspects of the cell cycle [21–23]. CYLD has been
implicated in the regulation of various signaling pathways that affect cell proliferation and survival. Its role
in the signal transduction by tumor necrosis factor receptor 1 (TNFR1) has been studied extensively. CYLD is
capable of inhibiting TNFR1-mediated Nuclear Factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase
(JNK) activation by hydrolyzing K63- and M1-linked polyubiquitin scaffolds that are assembled in response
to receptor activation on various signaling components [24–26]. CYLD also plays an important role in the
promotion of necroptosis by TNFR1 by the deubiquitination of Receptor-interacting serine/threonine-protein
kinase 1(RIPK1), which facilitates the assembly of an active RIPK1-RIPK3 complex [27]. It should be noted
that the effect of CYLD on various signaling processes can be cell-type specific. Therefore, it is important
to assess and characterize its role in different cell types at the molecular level in order to understand its
involvement in mammalian pathophysiology.

Multiple lines of evidence from cell line models and human patient samples have implicated
CYLD in breast cancer suppression [28–35]. Downregulation of CYLD expression can augment the
viability, migratory capacity, and anchorage-independent growth of basal and luminal human breast
cancer cell lines [28–31,33–35]. In addition, CYLD protein downregulation was correlated with poor
prognosis in primary breast cancer patients [35]. Upregulation of NF-kappaB or JNK activities was
observed in specific cases of CYLD-deficient breast cancer cell lines. However, a comprehensive
understanding of the molecular and cellular mechanisms that underly the role of CYLD in mammary
epithelia homeostasis has not been established.

In the present report, we evaluated the phenotypic effects of CYLD inactivation or downregulation
in non-transformed mammary epithelial cells. Our experiments identified a novel role for CYLD
in inhibiting mammary epithelial to mesenchymal transition (EMT) through the coordinated
downregulation of YAP/TAZ and TGFβ signaling pathways.

2. Results

2.1. Downregulation of CYLD in Mammary Epithelial Cells Promotes Mesenchymal Phenotypic Characteristics

The effects of CYLD deficiency and overexpression in breast cancer cell lines have suggested
important tumor suppressive roles [33–35]. To gain insight into the tumor suppressive roles of CYLD
in mammary epithelium, we used CRISPR/Cas9 to generate clones of non-transformed MCF10A cells
that possess different mutations in the CYLD gene, which result in the loss of full-length CYLD protein
(Figure 1a) and reduction of CYLD mRNA expression (Figure 1b) that is likely due to non-sense
mRNA decay (NMD). NMD is a mechanism of mRNA degradation when premature stop codons
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are introduced [36]. As shown in Figure 1c, all three MCF10A clones with protein-truncating CYLD
mutations showed dramatic morphological changes that involved reduced cell–cell contacts and an
elongated shape. Consistent with the morphological changes, it was noted that cells with mutated
CYLD had reduced mRNA expression of the epithelial marker E-cadherin and increased expression of
mesenchymal markers vimentin and N-cadherin compared to control cells (Figure 1b), which together
suggested that CYLD-deficient cells gained mesenchymal traits. The elevated levels of N-cadherin
expression in CYLD-deficient cells were also documented by immunoblotting (Figure S1).

Cancers 2020, 12, 3 of 19 

 

in mammary epithelium, we used CRISPR/Cas9 to generate clones of non-transformed MCF10A cells 
that possess different mutations in the CYLD gene, which result in the loss of full-length CYLD 
protein (Figure 1a) and reduction of CYLD mRNA expression (Figure 1b) that is likely due to non-
sense mRNA decay (NMD). NMD is a mechanism of mRNA degradation when premature stop 
codons are introduced [36]. As shown in Figure 1c, all three MCF10A clones with protein-truncating 
CYLD mutations showed dramatic morphological changes that involved reduced cell–cell contacts 
and an elongated shape. Consistent with the morphological changes, it was noted that cells with 
mutated CYLD had reduced mRNA expression of the epithelial marker E-cadherin and increased 
expression of mesenchymal markers vimentin and N-cadherin compared to control cells (Figure 1b), 
which together suggested that CYLD-deficient cells gained mesenchymal traits. The elevated levels 
of N-cadherin expression in CYLD-deficient cells were also documented by immunoblotting (Figure S1).  

 
Figure 1. Introduction of CYLD-inactivating mutations in MCF10A cells induces EMT-like changes. 
(a) MCF10A cells were infected with lentiviral vectors expressing Cas9 and gRNAs that target the 
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from control (CTL) and CYLD-targeted (B4, C5, and F2) clones were isolated and analyzed by 
immunoblotting for the expression of CYLD and β-actin. The indicated ratios of band intensities are 
shown below the corresponding lane. (b) Genetic inactivation of CYLD leads to reduction of E-
cadherin (Cdh1), Grainyhead Like Transcription Factor 2 (Grhl2), and Ovo Like Zinc Finger 2 (Ovol2), and 
upregulation of Vimentin (Vim) and N-cadherin (Cdh2) mRNA expression levels. Total RNA was 
extracted from the MCF10A clones analyzed in A and used to determine the relative levels of the 
indicated mRNAs by qPCR. The histogram indicates the average values (+/− SE) of relative mRNA 
levels as determined by the ΔΔCT method and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein zeta (YWHAZ) as the endogenous control from at least three independent 
experiments. The statistical analysis of relative mRNA expression pairwise comparisons between the 
control clone and each one of the CYLD-deficient clones was performed by the Student’s t-test 
method. ($, #, ^, §, ⌘: p ≤ 0.05, **, ##, ^^, §§, ⌘⌘: p ≤ 0.01). (c) Representative pictures of the MCF10A 
clones analyzed in (a). 

In order to exclude the possibility that the observed changes were due to clonal or off-target 
CRISPR/Cas9 effects, the expression of CYLD was downregulated by RNA interference in MCF10A 
cells. A substantial fraction of the cells that were transfected with a CYLD-targeting siRNA showed 
striking morphological changes that were manifested as a loss of extensive contacts with neighboring 
cells and the acquisition of an elongated spindle-like shape, similarly to the results obtained with 
CRISPR/Cas9-mediated inactivation of CYLD (Figure S2a). Cells transfected with CYLD-targeting 

Figure 1. Introduction of CYLD-inactivating mutations in MCF10A cells induces EMT-like changes. (a)
MCF10A cells were infected with lentiviral vectors expressing Cas9 and gRNAs that target the GFP gene
(control gene) or exons two, three, or nine of the CYLD gene. Whole cell lysates extracted from control
(CTL) and CYLD-targeted (B4, C5, and F2) clones were isolated and analyzed by immunoblotting
for the expression of CYLD and β-actin. The indicated ratios of band intensities are shown below
the corresponding lane. (b) Genetic inactivation of CYLD leads to reduction of E-cadherin (Cdh1),
Grainyhead Like Transcription Factor 2 (Grhl2), and Ovo Like Zinc Finger 2 (Ovol2), and upregulation of
Vimentin (Vim) and N-cadherin (Cdh2) mRNA expression levels. Total RNA was extracted from the
MCF10A clones analyzed in A and used to determine the relative levels of the indicated mRNAs by
qPCR. The histogram indicates the average values (+/− SE) of relative mRNA levels as determined
by the ∆∆CT method and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
(YWHAZ) as the endogenous control from at least three independent experiments. The statistical
analysis of relative mRNA expression pairwise comparisons between the control clone and each one of
the CYLD-deficient clones was performed by the Student’s t-test method. ($, #, ˆ, §,
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In order to exclude the possibility that the observed changes were due to clonal or off-target
CRISPR/Cas9 effects, the expression of CYLD was downregulated by RNA interference in MCF10A
cells. A substantial fraction of the cells that were transfected with a CYLD-targeting siRNA showed
striking morphological changes that were manifested as a loss of extensive contacts with neighboring
cells and the acquisition of an elongated spindle-like shape, similarly to the results obtained with
CRISPR/Cas9-mediated inactivation of CYLD (Figure S2a). Cells transfected with CYLD-targeting
siRNA also showed reduced expression of the epithelial marker E-cadherin and increased expression
of the mesenchymal markers vimentin and N-cadherin compared to control siRNA-transfected cells
(Figure S2b). Examination of the expression level of transcription factors that are known to mediate the
establishment of a mesenchymal phenotype demonstrated that reduced CYLD expression caused a
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significant increase in the expression of Snail1 and Zinc finger E-box-binding homeobox 2 (ZEB2) (Figure
S2c). Immunofluorescence analysis confirmed the reduction in the levels of E-cadherin protein and the
increase in the levels of vimentin in cells with mesenchymal morphology (Figure S2d). These changes
were not specific to MCF10A cells since similar changes were also observed in MCF7 cells that were
subjected to CYLD downregulation by RNA interference (Figure S3). These findings indicate that
CYLD deficiency in mammary epithelial cells is sufficient to induce morphological and gene expression
changes that are consistent with the acquisition of a mesenchymal phenotype.

2.2. CYLD Deficiency Impairs the Proper Development and Organization of Mammary Spheroids

Culture of MCF10A epithelial cells under the proper conditions in semisolid media gives
rise to mammary spheroids that have the characteristic luminal cavity. In order to determine
whether CYLD deficiency affects the capacity of MCF10A cells to form properly organized spheroids,
control and CYLD-deficient clones of MCF10A cells were cultured in Matrigel-containing media,
as described in the materials and methods. As shown in Figure 2, control MCF10A cells formed
well-rounded spheroids with a distinct luminal area and the proper cortical distribution of E-cadherin.
Strikingly, CYLD-deficient MCF10A cells formed mainly structures of an irregular shape and luminal
structure. In the CYLD-deficient cultures, E-cadherin was localized mainly in the cytoplasm, whereas
cortical E-cadherin was more prominent in control spheroids. Furthermore, a small but statistically
significant increase in the expression level of vimentin was detected in CYLD-deficient spheroids
compared to control ones (Figure 2b and Figure S4). Finally, CYLD-deficient spheroids lacked
keratin-5 expression and had a higher expression of smooth muscle actin (Figure 2c and Figure S4).
These findings are consistent with a critical role for CYLD in the maintenance of the phenotypic
characteristics of mammary epithelial cells when grown in three dimensions.
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presence of Matrigel for 20 days and photographed. (b) Expression pattern of E-cadherin (green) and 
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20 days. The cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Inset images 
represent 200× magnification of the corresponding areas. (c) Expression pattern of keratin-5 (red) and 
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Figure 2. CYLD inactivation compromises the proper development of MCF10A mammospheres. (a)
Control (CTL) and CYLD-deficient MCF10A cells (KO-B4, KO-C5, and KO-F2) were cultured in the
presence of Matrigel for 20 days and photographed. (b) Expression pattern of E-cadherin (green) and
vimentin (red) in control and CYLD-deficient MCF10A clones cultured in the presence of Matrigel for
20 days. The cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Inset images
represent 200×magnification of the corresponding areas. (c) Expression pattern of keratin-5 (red) and
smooth muscle actin (α-SMA, green) in control and CYLD-deficient MCF10A clones cultured in the
presence of Matrigel for 20 days. The cell nuclei were stained with DAPI (blue). Representative data
from one out of two independent experiments are shown.
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2.3. Inactivation of CYLD in Mammary Epithelial Cells Promotes the Development of Stem Cell and
Tumorigenic Characteristics

The EMT of mammary epithelial cells has been recognized as a process that can promote the
appearance of cancer stem cell markers [37]. In order to determine whether the inactivation of CYLD
in MCF10A cells can confer such attributes to these cells, the expression of CD44 and CD24 markers
was evaluated. As shown in Figure 3a, b, CYLD-deficient cells demonstrated a higher expression of
CD44 and a reduced expression of CD24 compared to control cells. These changes were also reflected
in the mRNA levels of CD44 and CD24 (Figure S5). This profile is a characteristic feature of breast
cancer cells with stem-like properties [38,39]. In order to evaluate the invasive properties of control and
CYLD-deficient MCF10A cells, the cells were cultured in the appropriate matrix and photographed at
24, 48, and 72 h. Cells that lacked functional CYLD formed well-defined monolayers invading into the
surrounding extracellular matrix (Figure 3c,d), a phenotype that was not observed in the cultures of
control cells. These findings indicate that loss of functional CYLD in mammary epithelial cells confers
stem-like and invasive properties, which are consistent with the aggressive behavior of CYLD-deficient
human breast cancers.
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Figure 3. CYLD inactivation promotes the development of stem cell and invasive phenotypic
characteristics. (a) Representative flow cytometric detection of CD44 and CD24 in control (MCF10A,
CTL) and CYLD-deficient MCF10A (KO-B4, KO-C5, and KO-F2) cells for the expression of CD44 and
CD24 markers. (b) Relative representation of CD44+/CD24− cells in control (MCF10A, CTL) and
CYLD-deficient MCF10A (KO-B4, KO-C5, and KO-F2) cells. Average values (+/− SE) from three
independent experiments are shown (** p ≤ 0.01). (c) Representative images of a three-dimensional
invasion assay from control (MCF10A, CTL) and CYLD-deficient MCF10A (KO-B4, KO-C5, and KO-F2)
cells at time points of 0, 24, and 48 h. (d) Representation of the average invasion distance of
CYLD-deficient MCF10A (KO-B4, KO-C5, and KO-F2) cells. Average values (+/− SE) from three
independent experiments are shown (** p ≤ 0.01).

2.4. Inactivation of CYLD in Mammary Epithelial Cells Coordinately Activates the TGFβ and YAP/TAZ
Pathways

Signaling induced by the TGFβ growth factor is well-established as an inducer of EMT [40].
We therefore investigated whether CYLD-deficient MCF10A cells exhibited TGFβ pathway
activation characteristics. Interestingly, CYLD-deficient cells showed a significantly increased basal
phosphorylation of SMAD2 and SMAD3, compared to control cells (Figure 4a). The protein levels of
SMAD2 and SMAD3 were unaltered in CYLD-deficient cells, suggesting spontaneous activation of the
TGFβ pathway. In order to determine whether the activation of the TGFβ pathway was essential for
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the EMT changes that were observed in CYLD-deficient cells, MCF10A cells were transfected with a
CYLD-downregulating siRNA in the absence and presence of siRNA targeting SMAD2. As shown
in Figure 4b, the expression of CYLD and SMAD2 mRNAs was successfully downregulated by the
respective siRNAs. As expected, cells with downregulated CYLD expression showed increased
expression of the mesenchymal markers vimentin and N-cadherin and downregulated expression of
the epithelial marker E-cadherin. Interestingly, the concomitant downregulation of SMAD2 prevented
the acquisition of mesenchymal phenotypic characteristics by CYLD-deficient cells. This was evident
in cell morphology (Figure 4c) and in the expression profile of vimentin, N-cadherin, and E-cadherin
(Figure 4b). These findings indicate that the activation of TGFβ-SMAD2 signaling is an essential
mechanism for the mesenchymal transition that is induced by CYLD deficiencies.
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Figure 4. CYLD-regulated mammary EMT depends on the activation of the TGFβ signaling pathway.
(a) Immunoblot analysis of CYLD pSMAD1, pSMAD2, pSMAD3, SMAD2, SMAD3, and β-actin
expression in whole cell extracts from control (CTL) and CYLD-deficient MCF10A cells (KO-B4,
KO-C5, and KO-F2). The indicated ratios of band intensities are shown below the corresponding lane.
(b) Simultaneous CYLD and SMAD2 downregulation inhibits the EMT process that is induced by CYLD
downregulation. MCF10A cells were transfected with CYLD-targeting (siCyld), SMAD2-targeting
(siSmad2), or luciferase-targeting (Ctrl) siRNAs as indicated. After 48 h, total RNA was extracted and
used to determine the relative levels of the indicated vimentin (Vim), E-cadherin (Cdh1), N-cadherin
(Cdh2), CYLD (Cyld), and SMAD2 (Smad2) mRNAs by qPCR. The histogram indicates the average
values (+/− SE) of relative mRNA levels as determined by the ∆∆CT method using YWHAZ as the
endogenous control, from at least three independent experiments. The statistical analysis of the
pairwise comparisons indicated by horizontal lines was performed by the Student’s t-test method.
(*, #: p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). (c) Pictures of cells analyzed in (b). (d) Control (MCF10A,
CTL) and CYLD-deficient MCF10A cells (KO-B4, KO-C5, and KO-F2) were grown in the presence or
absence of TGFβ for 24 h and quantitated. Average values (+/− SE) of cell viability relative to the
initiation of treatment from three independent experiments are shown. The statistical analysis of the
pairwise comparisons indicated by brackets was performed by the Student’s t-test method. (* p ≤ 0.05,
** p ≤ 0.01).

TGFβ pathway signaling has complex roles in carcinogenesis with cytostatic effects in early stages
and protumorigenic roles that include the promotion of EMT in late metastatic stages. Despite exhibiting
increased TGFβ pathway activity, the CYLD-deficient MCF10A cell lines showed similar apparent
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growth characteristics to their parental counterparts, suggesting that CYLD inactivation may counteract
the cytostatic effect of the TGFβ pathway. To directly test this, control and CYLD-deficient MCF10A
cells were incubated in the absence or presence of exogenous TGFβ for various time points and their
viability was determined. CYLD-deficient MCF10A cells were insensitive to the cytostatic effect of
TGFβ, as demonstrated by their increased viability, which was significantly reduced in the parental
MCF10A cells (Figure 4d).

The nuclear activation of the transcriptional effectors YAP and TAZ can counteract the cytostatic
effect of TGFβ, promoting anchorage-independent growth and enhanced migratory capacity [41].
YAP/TAZ are key effectors of the Hippo signaling pathway, which are regulated in part by a
phosphorylation cascade relayed by the kinases Macrophage Stimulating (MST)1/2 and Large Tumor
Suppressor Kinase (LATS) 1/2 [42]. Upon Hippo pathway kinase inactivation, YAP/TAZ accumulate in
the nucleus and permit enhanced nuclear SMAD activation [41,43]. We therefore tested whether loss
of CYLD impacted YAP/TAZ localization and activity. We found that CYLD-deficient cells showed
elevated nuclear YAP/TAZ levels (Figure 5a, b) and YAP/TAZ target genes, such as connective tissue
growth factor (CTGF) and Ankyrin Repeat Domain 1 (ANKRD1), showed increased expression compared
to control cells (Figure 5c). The total levels of YAP or TAZ proteins did not change substantially
upon inactivation of CYLD (Figure S6a). Taken together, the results shown in Figure 5c and Figure
S6a support the notion of enhanced nuclear translocation of YAP and TAZ upon CYLD inactivation.
To determine whether the activity of YAP and TAZ is required for the phenotypes induced by CYLD
downregulation, we concomitantly downregulated CYLD and YAP or TAZ expression using RNA
interference (Figure S6b). We found that downregulation of either YAP or TAZ prevented the EMT that
is induced by CYLD downregulation (Figure 5d). These observations indicated that loss of CYLD leads
to enhanced YAP/TAZ activity, which is essential for the observed EMT.
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Figure 5. CYLD-regulated mammary EMT depends on the inhibition of the Hippo pathway.
(a) Immunofluorescence analysis of YAP and TAZ localization in control (CTL-) and CYLD-deficient
MCF10A clones (KO-). (b) YAP/TAZ staining intensity in individual nuclei was measured relative
to the average nuclear area from panel a. Results were normalized to clone CTL-G3 to obtain fold
changes in YAP/TAZ levels between clones. Statistical analysis was performed using one-way ANOVA
and Tukey’s multiple comparisons tests. CTL-G3 (n = 7926), CTL-G12 (n = 6778), KO-F2 (n = 14360),
KO-B4 (n = 5883), and KO-C5 (n = 8453). Error bars represent mean +/− SD. (**** p < 0.0001) (c) CYLD
inactivation leads to the induction of YAP/TAZ target genes. Total RNA was extracted from control
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(CTL) and CYLD-deficient MCF10A cells (KO-B4, KO-C5, and KO-F2) and used to determine the
relative levels of the indicated ANKRD1 (Ankrd1) and CTGF (Ctgf ) mRNAs using qPCR. The histogram
indicates the average values (+/− SE) of relative mRNA levels as determined by the ∆∆CT method
using YWHAZ as the endogenous control from at least three independent experiments. The statistical
analysis of the pairwise comparisons indicated by horizontal lines was performed by the Student’s t-test
method. (* p ≤ 0.05, ** p ≤ 0.01). (d) Simultaneous CYLD and YAP or TAZ downregulation prevents
the EMT process that is induced by CYLD downregulation. MCF10A cells were transfected with
CYLD-targeting (siCyld), YAP-targeting (siYap), TAZ-targeting (siTaz), or luciferase-targeting (Ctrl)
siRNAs as indicated. After 48 h, total RNA was extracted and used to determine the relative levels of
the indicated vimentin (Vim), E-cadherin (Cdh1), N-cadherin (Cdh2), and CYLD (Cyld) mRNAs by qPCR.
The histogram indicates the average values (+/− SE) of relative mRNA levels as determined by the
∆∆CT method using YWHAZ as the endogenous control from at least three independent experiments.
The statistical analysis of the pairwise comparisons indicated by horizontal lines and brackets was
performed by the Student’s t-test method (*, #: p ≤ 0.05, **, ##: p ≤ 0.01).

2.5. Inactivation of CYLD in the Mouse Mammary Epithelium Results in Hyperplastic Alterations

To determine whether CYLD plays an important role in the homeostasis of the mammary
epithelium in vivo, mice with targeted inactivation of CYLD in the mammary epithelium were
generated and analyzed. Towards this goal, previously generated mice with a floxed ninth coding exon
(Cyldfl9 mice, [44]) were crossed with mice expressing the Cre recombinase under the control of the
MMTV promoter (Figure S7, [45]). The genetic background of the mice was a mixed C57BL/6-BALB/c
(1:1) background. Truncation of the catalytic domain of CYLD as a result of elimination of exon 9,
resulted in a high frequency of mice with hyperplastic mammary epithelia (Figure 6a–c). In contrast
to the mammary tissue of control mice that showed small numbers of Ki-67-positive (proliferating)
epithelial cells in selected gland profiles, mammary glands from CYLD-deficient mice showed multifocal
to multifocally diffuse areas containing gland profiles with prominent Ki-67 expression (Figure 6a, b).
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Figure 6. Immunohistochemical analysis of control and CYLD-deficient mouse mammary glands.
(a) Comparison of Ki-67 expression in mammary epithelia of control (Cyldfl9/fl9) and CYLD-deficient
(MMTVCre-Cyldfl9/fl9) mice. Bar = 100 µM. (b) Quantitation of Ki-67 expression in mammary
epithelia of control (Cyldfl9/fl9) and CYLD-deficient (MMTVCre-Cyldfl9/fl9) mice. (c) Hyperplasia
was semi-quantitatively assessed in mammary gland sections from control and CYLD-deficient
mice of a matched background (C57BL/6-BALB/c (1:1)) as described in the materials and methods.
(d) Comparison of YAP/TAZ expression in mammary epithelia of control (Cyldfl9/fl9) and CYLD-deficient
(MMTVCre-Cyldfl9/fl9) mice. Bar = 50 µM. * p < 0.05.
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In addition, mammary glands from CYLD-deficient mice displayed high levels of nuclear YAP/TAZ
staining, consistent with our observations in vitro (Figure 6d). We did not observe other apparent
abnormalities in mice with mammary epithelial CYLD deficiency up to the age of 8 weeks, at which
time point the mice were sacrificed for histological analysis. These results extend our findings from the
cell line models to establish a critical role for CYLD in mammary epithelia architecture and homeostasis
in vivo.

2.6. CYLD Downregulation in Human Breast Cancer Patient Samples Correlates with the Activation of the
YAP/TAZ Pathway.

Given our observations in vitro and in vivo in mice, we next set out to investigate whether CYLD
downregulation correlates with aberrant YAP/TAZ signaling in human breast cancers. For this, we used
gene set enrichment analysis (GSEA) to determine how downregulation of CYLD expression associates
with YAP/TAZ-regulated genes. A total of 996 stage- and CYLD-expression-stratified samples of
human breast cancer cases from the Tumor Cancer Genome Atlas (TCGA) database were queried.
Stage definition was based on the TNM system, which assesses the size of the tumor and whether it has
grown into nearby tissue (T), whether cancer is present in the lymph nodes (N), and whether the cancer
has spread to other parts of the body beyond the breast (M). The enrichment score was calculated
for YAP/TAZ-regulated genes in stage I versus stage IV samples with reduced CYLD expression [46].
In total, 10% of the queried samples demonstrated underexpressed CYLD. As shown in Figure 7, a clear
enrichment of the YAP/TAZ-regulated genes in CYLD-underexpressing samples was observed.

Figure 7. Gene set enrichment analysis (GSEA) of YAP/TAZ-regulated genes in relation to CYLD
expression in breast cancer samples. Shown is the enrichment plot for the YAP/TAZ-regulated gene set
correlated with reduced CYLD expression in stage I versus stage IV breast cancer cases. The enrichment
score (ES) is indicated.

3. Discussion

The present report identified a novel mechanism of mammary epithelial cell identity maintenance,
which depends on the coordinated regulation of YAP/TAZ and TGFβ pathways by the tumor
suppressor CYLD. More specifically, our experiments demonstrated that either downregulation or
carboxyl-terminal truncating mutations of CYLD are sufficient to induce mammary EMT. This was
evident in two human mammary epithelial cell lines using two- and three-dimensional culture systems.
In addition, the inactivation of CYLD in mouse mammary epithelia induced hyperplastic alterations,
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which are consistent with the changes that were observed in the cell line models. The mechanism
that underlies this critical function of CYLD in mammary epithelial cells was analyzed further in
the present study. Previous reports have identified a negative regulatory role for CYLD on the
TGFβ pathway in lung and oral squamous epithelial cells [47–49]. However, the activation of the
TGFβ pathway per se is known to have cytostatic effects in epithelial cells and this was confirmed in
our analysis of wild type MCF10A cells [50]. Remarkably, the inactivation of CYLD circumvented
the cytostatic effects of TGFβ pathway activation, while exploiting its EMT-inducing function to
promote the attenuation of mammary epithelial cell characteristics. Our study demonstrated that
this effect was achieved by the concomitant activation of the YAP/TAZ transcriptional regulators.
Previous work from us had shown that the artificially induced activation of YAP/TAZ can offset the
cytostatic activity of TGFβ in mammary epithelial cells and promote their tumorigenic properties [41].
The present study identified CYLD as the critical negative regulator of both TGFβ and YAP/TAZ
activities in mammary epithelial cells that safeguards their epithelial identity. In fact, our study
identified for the first time CYLD as a negative regulator of the YAP/TAZ transcriptional regulators
in confluent culture conditions. Hyperactivation of the YAP/TAZ complex has previously been
involved in the progression of breast cancer by promoting migration and invasion [51]. Our analysis
indicates that one of the molecular alterations that can induce the activity of these transcription
factors in mammary epithelial cells is the downregulation of CYLD. The molecular mechanism of
CYLD-dependent regulation of YAP/TAZ is not clear at present. It is possible that CYLD affects the
activity of YAP/TAZ by modulating the ubiquitination of these factors or specific upstream regulators.
CYLD selectively hydrolyzes K63- or M1-linked polyubiquitin chains. Therefore, a possible mechanism
of CYLD-mediated regulation of YAP/TAZ would involve the modulation of K63- or M1-linked
protein polyubiquitination. Interestingly, K63-linked polyubiquitination of YAP promotes its nuclear
localization and activity and the deubiquitinase OTUD1 was identified as the deubiquitinase that can
reverse K63-linked polyubiquitination of YAP and promote its activation [52]. CYLD may act in a
similar manner, yet the relevant targets of CYLD are not known at present. The identification of the
proteins that are targeted by CYLD and regulate the YAP and TAZ factors will require a systematic
analysis of protein ubiquitination in wild-type and CYLD-deficient mammary epithelial cells.

Our data identified CYLD as a key factor that coordinately regulates both the YAP/TAZ and
the TGFβ signaling pathways to prevent mammary EMT. In agreement with previous studies,
the coordinated activation of YAP/TAZ and TGFβ pathways conferred stem cell-like phenotypic
characteristics in CYLD-deficient mammary cells and cancelled the growth inhibitory effect of TGFβ.
These attributes are consistent with a phenotypic transition from a benign behavior to an invasive
one, which can be triggered by the loss of CYLD protein function or expression, most likely at a late
stage of cancer progression. It should be noted that EMT is not a binary process and several studies
have identified intermediate stages in the transition from the epithelial to the mesenchymal state with
potential implications for the progression of cancer [53,54]. At present, the detailed role of CYLD in
the manifestation of the various stages of EMT is not clear. CYLD may affect a specific step in the
EMT process or have a broader role in it. These questions will be addressed in future studies using
temporally controlled systems of CYLD expression manipulation.

Despite the extensive evidence supporting a tumor-suppressing role of CYLD in breast cancer,
one cannot exclude the possibility that CYLD may also play a tumor-promoting role in certain cases of
breast cancer. This functional duality has been documented for other cancer-associated genes [55,56].
Interestingly, in one recently published study [57], analysis of tumor mRNA expression in a specific
cohort of breast cancer patients from the TCGA database showed that high expression of CYLD was
linked to shorter disease-free survival. The apparent contradiction between the study by Popeda et
al. [57] and the study by Hayashi et al. [35] may be due to the fact that the former is based on mRNA
expression data whereas the Hayashi study was based on protein expression data. Furthermore, it is
possible that the role of CYLD in breast cancer development and evolution may depend on the
particular type of breast cancer, as well as additional genetic and epigenetic alterations that exist in
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these tumors. Clearly, additional analyses of properly stratified clinical samples are needed to clarify
these issues.

Overall, our study provides compelling evidence that could explain the association of CYLD
downregulation at least with a subset of poor-prognosis invasive breast cancers and identify
valuable elements of a growth regulatory framework that can be exploited for therapeutic and
diagnostic purposes.

4. Materials and Methods

4.1. Cell Culture

MCF7 is a human breast cancer cell line that resembles the luminal type of breast cancer. MCF10A
are immortalized human mammary epithelial cells. MCF7 and MCF10A cells were obtained originally
from ATCC and they were authenticated by short-tandem repeat (STR) profiling (Eurofins Genomics
Europe, Konstanz, Germany). MCF7 were grown in Dulbecco’s Modified Eagles medium containing
4.5 g/L of glucose (Gibco-Invitrogen, Waltham, MA, USA), 10% fetal bovine serum (Gibco-Invitrogen),
and 100 U/µL of penicillin-streptomycin (Gibco-Invitrogen). MCF10A cells were cultured in (1:1)
DMEM:F12 medium (Gibco-Invitrogen) supplemented with 5% horse serum (Gibco-Invitrogen),
100 ng/mL EGF (Peprotech, London, UK), 1µg/mL hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA),
10 µg/mL insulin (Cayman Chemical, Ann Arbor, MI, USA), and 100 U/µL of penicillin-streptomycin
(Gibco-Invitrogen). The cells were maintained in an incubator at 5% CO2 with a controlled temperature
of 37 ◦C.

4.2. Mouse Models

All animal experiments were approved by the Aristotle University of Thessaloniki Faculty of
Veterinary Medicine Review Board for compliance to FELASA regulations and licensed by the National
Veterinary Administration authorities (License No. 94,354/866). Mice (C57BL/6 and BALB/c) were
kept in bio-containment facilities in individually ventilated cages, fed with sterilized regular mouse
chow (Mucedola, Milan, Italy), and given sterilized water ad libitum. Genotyping of the mice
was performed by polymerase chain reaction (PCR) analysis of genomic DNA. The following PCR
primers were used to characterize the CYLD locus: FWD1: 5′-GATGGCTCTTGTCACCACTT-3′, Fn:
5′-GGATCACTGTTGCCATCCTT-3′, and Rn4: 5′-AAAAAGACCCCCAGCCTTTA-3′. The presence
of the Cre transgene was assessed by PCR of genomic DNA using the following primers: 1084:
5′-GCGGTCT GGCAGTAAAAACTATC-3′, 1085: 5′-GTGAAACAGCAT TGCTGTCACTT-3′, 7338:
5′-CTAGGCCACAGAATTGAAAGATCT-3′, and 7339: 5′-GTAGGTGGA AATTCTAGCATCATCC-3′.
The 1084 and 1085 primers amplify a 102-bp DNA fragment of the Cre transgene, whereas the 7338 and
7339 primers were used concurrently with the Cre-specific primers to amplify a 324-bp genomic DNA
fragment as the internal control. All female mice of experimental groups were maintained on a mixed
1:1 C57BL/6:BALB/c background. Each experimental group included 8 female mice.

4.3. Generation of CYLD-Mutated MCF10A Cell Lines

For the stable generation of CYLD-mutated MCF10A cell lines, the lentiviral vector
lentiCRISPRv2 [58,59] was used. Three different gRNAs targeting exons 2, 3, and 9 of the CYLD locus
(http://www.ensembl.org/index.html, ENSG00000083799) and one control sgRNA targeting GFP were
designed using the Crispr tool of the Benchling suite (www.benchling.com). The sgRNA-coding
oligonucleotides were subcloned in the LentiCRISPRv2 vector using the BsmBI restriction sites.
The sequences of the cloned oligonucleotides were verified by sequencing. All sgRNA sequences are
listed in Table S1. Third-generation VSV-G pseudotyped high-titer lentiviruses were generated by
transient co-transfection of HEK293FT cells without serum 2 h prior to transfection with a five-plasmid
combination as follows: One 150-mm tissue culture dish containing 4.5× 106 cells was transfected using
10 mM PEI (Sigma-Aldrich) diluted with Opti-MEM (Gibco-Invitrogen) and mixed with 10 µg lentiviral

http://www.ensembl.org/index.html
www.benchling.com
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vector, 3 µg pVSVG [60], 5 µg pADV [61], 4.15 µg pRRE, and 2.1 µg pREV [62]. Supernatants were
collected every 24 and 48 h after transfection, pulled together, and frozen at −70 ◦C. For lentiviral
transduction, 103 MCF10A cells/well were seeded in 24-well tissue culture plates and infected the
following day with all four different lentiviruses in the presence of 8 µg/mL Polybrene (Santa Cruz
Biotechnology, Dallas, TX, USA). Two days post-transduction, cells were selected for 6 days with
puromycin (250µg/mL, Invivogen, San Diego, CA, USA), and monoclonal cell colonies were subcultured
and established. Images were captured using an Inverted Primovert microscope (Zeiss, Oberkochen,
Germany). The CYLD-deficient clones KO-B4, KO-C5, and KO-F2 were generated with gRNAs
targeting exons 2, 3, and 9, respectively.

4.4. TGFβ Treatment and Cell Viability Assay

TGFβ (Peprotech) was reconstituted in citric acid (pH = 3.0) at a stock concentration of 100
µg/mL. Cells were seeded in 12-well cell culture plate (5 × 104/well) and the following day were
treated with 5 ng/mL TGFβ for 24 h. Cell viability was determined by the Trypan Blue exclusion assay
(Sigma-Aldrich).

4.5. Small Interfering RNA (siRNA) Knockdown

First, 2 × 106 cells were seeded in 6-well plates and allowed to grow overnight. The following day,
after a dilution with nuclease-free water, cells were transfected with 10 nM of CYLD- [63], SMAD2-,
YAP-, or TAZ-targeting siRNAs (Qiagen, Hilden, Germany) using 3 µL of Lipofectamine RNAiMax
transfection agent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
A control siRNA, targeting the luciferase gene [64], was used as a negative control. Images were
captured using Inverted Primovert microscope (Zeiss).

4.6. Immunoblotting

Cells were rinsed twice with ice-cold phosphate-buffered solution (PBS) and lysed with SDS lysis
buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, and 3% β-mercaptoethanol), followed by heating
at 95 ◦C for 5 min. For the phosphorylated form of proteins, whole cell extracts were harvested in RIPA
lysis buffer (50 mM Tris-HCl pH7.4, 150 mM NaCl, 2 mM EDTA, 1% NP-40, and 0.1% SDS) containing
DTT 1 mM and protease/phosphatase inhibitor cocktail (Sigma Aldrich). The samples were analyzed by
SDS-PAGE and proteins were electrophoretically transferred to nitrocellulose membrane for Western
blot analysis. Blocking was done using 5% not-fat dry milk (Sigma-Aldrich) or 5% BSA (Sigma-Aldrich)
for the detection of phosphorylated proteins, for 1 h at room temperature. Immunoblotting was
performed using antibodies outlined in Table S2. Membrane-bound antibodies were detected by
an enhanced chemiluminescence detection kit (Pierce, Waltham, MA, USA) using a Typhoon FLA
7000 imaging system (GE Healthcare Life Sciences, Chicago, IL, USA). Bands were quantified using
ImageJ software (NIH, Bethesda, city, MD, USA).

4.7. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR (qPCR)

Nucleozol reagent (Macherey-Nagel, Düren, Germany) was used to extract total RNA from
cells and 1 µg of total RNA was transcribed to cDNA using the RevertAid Reverse Transcriptase
system (Fermentas, Waltham, MA, USA) and oligodT18. Analysis of cDNA samples by real-time qPCR
was performed using the Applied Biosystems StepOne system and SYBR Green (Kapa Biosystems,
Wilmington, MA, USA) according to the manufacturer’s instructions. The PCR program included
1 cycle at 95 ◦C for 10 min and 40 cycles at 95 ◦C for 15 s and at 60 ◦C for 1 min. The threshold cycle
(CT) value for each gene was normalized to the CT value for YWHAZ. Relative expression levels
were determined by the ∆∆CT method [65]. The sequences of primers used for qPCR are outlined in
Table S3.
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4.8. Flow Cytometric Analysis for CD44/CD24 Markers

MCF10A cells were collected using Trypsin (ThermoFisher Scientific, Waltham, MA, USA) and
washed in PBS. First, 106 cells were blocked with blocking buffer (PBS + 2% FBS) on ice for 10 min and
incubated with anti-CD44-FITC (IM7, Biolegend, San Diego, CA, USA) and anti-CD24-PE (sc-19585 PE,
Santa Cruz Biotechnology) conjugated antibodies in 1:200 and 1:100 dilution, respectively, for 30 min
on ice. Cells were then washed with blocking buffer and CD44/CD24 markers were analyzed using a
Partec CyFlow ML flow cytometer (Sysmex Partec, Görliz, Germany).

4.9. Three-Dimensional Mammosphere Formation

MCF10A cells were collected using Trypsin (ThermoFisher Scientific) and resuspended in Assay
Media (same as MCF10A growth media, but with no EGF and 2% horse serum). At the same time, frozen
Matrigel (Corning, New York, NY, USA) was spread evenly to each well of an 8-well chamber slide
(Lab-Tek, Scotts Valley, CA, USA) and placed in a cell culture incubator for solidification. After counting
the cells using a Neubauer hemocytometer (Marienfeld, Lauda-Königshofen, Germany), 5 × 103 cells
were resuspended in Assay Media containing 2% Matrigel (Corning) and 5% EGF (Peprotech) and
were seeded to a well of a Matrigel-precoated 8-well chamber slide. Cells were allowed to grow in the
incubator for 20 days, with fresh Assay Media containing 2% Matrigel and 5% EGF being added every
4 days. Images were captured every 5 days using an Inverted Primovert microscope (Zeiss).

4.10. Three-Dimensional Invasion Assay

A three-dimensional spheroid assay was performed to assess the invasive ability of MCF10A cells,
as described before [66]. MCF10A cells were collected using Trypsin (ThermoFisher Scientific) and
resuspended in MCF10A cell culture media. After counting the cells using a Neubauer hemocytometer
(Marienfeld), a dilution was performed to allow for seeding of 103 cells per 20 µL drop of cell culture
media. Here, 40 drops for each cell line were seeded onto the lid of a 10 cm cell culture dish, while
5 mL of PBS were added to the bottom. Cells were incubated at 37 ◦C for 72 h to generate spheroids.
After 72 h, spheroids were collected and combined with a 1:1 mixture of cold Matrigel (Corning) and
collagen type I (Corning), and this viscous mixture was seeded into the center of the well on a 24-well
plate. For each cell line, the material was enough for 3 independent 3-D cultures. The 3-D cultures
were placed in the incubator for 30 min to allow polymerization of the mixture and 1 mL of cell culture
media was submerged slowly to the 3-D cultures. For the monitoring of spheroid invasion, images
were captured at 0 (after plating), 24, 48, and 72 h using an Inverted Primovert microscope (Zeiss).
The invasive ability was quantified using the ImageJ software and expressed as the longest invasive
distance originating from the spheroid, minus the radius of the spheroid. For every biological replicate,
the invasive ability of one spheroid from each of 3 independent technical replicates was assessed.

4.11. Immunofluorescence

MCF10A cells and mammospheres were fixed with 4% paraformaldehyde (Santa Cruz
Biotechnology) and permeabilized with 0.5% Triton X-100 (ThermoFisher Scientific) in PBS before
incubating with 5% normal goat serum (ThermoFisher Scientific) to block non-specific binding.
They were then probed with the primary and secondary antibodies outlined in Table S2. Nuclei were
stained with DAPI solution (Biolegend). Immunofluorescent specimens were observed using
a Zeiss LSM 780 confocal microscope or a Zeiss AxioObserver D1 microscope. For YAP/TAZ
immunofluorescence, MCF10A cells were fixed with 4% paraformaldehyde (Santa Cruz Biotechnology)
for 15 min, washed with PBS, and permeabilized with 1% Triton-X-100 (American Bioanalytical,
Canton, MA, USA) for 15 min. After washing with PBS, cells were blocked with 2% BSA (Fisher
Scientific, Waltham, MA, USA) in PBS for 1 h and then incubated with primary antibody (D24E4, Cell
Signaling, Beverly, MA, USA) overnight at 4 ◦C. Cells were washed in TBST and secondary antibody
(711-166-152, Jackson ImmunoResearch, Cambridge, UK) was added for 1 h at room temperature.
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Primary and secondary antibodies were diluted in 2% BSA in PBS. Nuclei were stained with Hoescht
(Sigma-Aldrich). The intensity of the YAP/TAZ nuclear stain in the immunocytochemistry experiments
was quantitated using CellProfiler as previously described [67,68]. Specifically, image channels for
nuclei and YAP/TAZ were split, individual nuclei were identified as primary objects, and the integrated
intensity of YAP/TAZ staining was measured in individual nuclei across multiple images from two
repeated experiments. The average nuclear area for each condition was then determined, and the
intensity of YAP/TAZ staining relative to the size of individual nuclei was calculated.

4.12. Immunohistochemistry (IHC) and Morphometry

Formalin-fixed mammary glands were embedded in paraffin, cut at 5 µm, and stained with
immunohistochemistry (IHC). Sections were blocked with normal goat serum (dilution 1:20 v/v in
PBS, Dako, Jena, Germany) at 37 ◦C for 1 h. Heat-induced antigen retrieval was performed with
citrate buffer, pH = 6.0 for YAP/TAZ or with CC1 epitope retrieval solution (Ventana Medical Systems,
Inc., Oro Valley, AZ, USA) for Ki-67. Primary antibodies for IHC included rabbit antibodies against
YAP/TAZ (D24E4, Cell Signaling, dilution 1:100 v/v) and Ki-67 (ab16667, Abcam, Cambridge, UK,
dilution 1:100 v/v). Rabbit primary antibody binding was detected with goat anti-rabbit polymer HRP
(ZytoChem Plus, Berlin, Germany). Color was developed with diaminobenzidine substrate-chromogen
(ThermoFisher Scientific/Lab Vision) and tissues were counterstained with hematoxylin.

The extent of hyperplasia was semi-quantitatively assessed in Ki-67-immunostained mammary
gland sections from control and CYLD-deficient mice of a matched background (C57BL/6-BALB/c
(1:1)). Each section was scored on the basis of the frequency of mammary gland profiles showing
pseudostratified epithelia with ample Ki-67 positivity using a 0–4 scale. Grading was done according
to the following scheme. No abnormal gland profiles (score 0); abnormal gland profiles <25% (score
1), 25–50% (score 2), 50–75% (score 3), and 75–100% (score 4) of the total gland profiles present in
the section. To quantify proliferation in hyperplastic mammary epithelia, 5 × 40 high power images
of mammary gland profiles were captured from each Ki-67-stained section, resulting in 40 images
from each experimental group. Ten images per group were then randomly selected and Ki-67-positive
and -negative nuclei of mammary epithelial cells were counted in each image. Proliferation data was
recorded as the fraction of Ki-67-positive epithelial cell nuclei/total epithelial cell nuclei in each image.
Cell counts were performed with the ImageJ image processing and analysis program. Results were
statistically compared between groups using the Mann–Whitney U test. Images were captured using
an Inverted Eclipse E500 microscope (Nikon, Tokyo, Japan).

4.13. Statistics

All datasets were taken from n ≥ 3 biological replicates, unless it is specified differently. Data are
presented as mean± SE. The calculation of p values was performed with an unpaired Student’s t-test with
Excel (Microsoft Office) or one-way ANOVA, Tukey’s multiple comparisons test, and Mann–Whitney
U test with GraphPad Prism software (GraphPad Software, La Jolla California USA);; p < 0.05 was
considered significant.

4.14. Gene Set Enrichment Analysis (GSEA)

GSEA calculates the enrichment score (ES) by walking down the ranked-ordered list of genes,
increasing a running-sum statistic when a gene is in the gene set and decreasing it when it is not [69,70].
The generated plot (Figure 7) contains in the middle a rank-ordered list of 500 YAP/TAZ-dependent
genes (Table S4) identified as the most variable targets from a meta-analysis of a publicly available
dataset of YAP-regulated mice gut epithelium organoids [46]. The top of this list (red color, Figure 7)
contains genes upregulated in CYLD-downregulated samples. The bottom of the list (blue color,
Figure 7) contains downregulated genes in CYLD-upregulated samples. Anytime a gene from the gene
set is found along the list, a vertical black bar is plotted (hit). If most of the hits are at the top of the
list, then this gene set is enriched in CYLD-downregulated cases. However, if they are distributed
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homogenously across the rank-ordered list of genes, then that gene set is not enriched in any of the
gene expression profiles.

5. Conclusions

Our study identified CYLD as a critical regulator of EMT in mammary epithelial cells.
CYLD prevents the acquisition of mesenchymal phenotypic characteristics by mammary epithelial
cells through the coordinated suppression of TGFβ signaling and YAP/TAZ activation. Our findings
explain the association of CYLD downregulation with aggressive breast cancers and lay the ground for
the development of targeted therapeutic approaches of CYLD-deficient breast cancers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2047/s1,
Figure S1: CYLD inactivation upregulates N-cadherin protein expression, Figure S2: CYLD downregulation leads
to EMT-like phenotypic changes in MCF10A cells, Figure S3: CYLD downregulation induces EMT-like changes in
breast cancer cell line MCF7, Figure S4: Quantification of the fluorescence intensity of vimentin and SMA staining
of Figure 2, Figure S5: CYLD inactivation upregulates CD44 and downregulates CD24 mRNA expression, Figure
S5: Evaluation of siRNA-mediated downregulation of CYLD, YAP and TAZ, Figure S6. Analysis of YAP, TAZ and
CYLD expression by immunoblotting. Figure S7: Generation of mice with mammary-specific deletion of CYLD
exon 9 (MMTVCre-Cyldfl9/fl9). Figure S8: Uncropped images of the Western blots shown in figures 1,4,S1, and S6.
Table S1. sgRNA sequences used for CRISPR/Cas9-mediated CYLD mutagenesis, Table S2. Antibodies used
in Western Blot and Immunofluorescence, Table S3. Primer sequences used in qPCR, Table S4. List of the top
500 genes with the highest variability between YAP-expressing and YAP-deficient mouse gut organoid cultures.
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