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Abstract: The extracellular matrix (ECM) is a master regulator of all cellular functions and a major 

component of the tumor microenvironment. We previously defined the "matrisome" as the ensemble of 

genes encoding ECM proteins and proteins modulating ECM structure or function. While compositional 

and biomechanical changes in the ECM regulate cancer progression, no study has investigated the 

genomic alterations of matrisome genes in cancers and their consequences. Here, mining The Cancer 

Genome Atlas (TCGA) data, we found that copy number alterations and mutations are frequent in 

matrisome genes, even more so than in the rest of the genome. We also found that these alterations are 

predicted to significantly impact gene expression and protein function. Moreover, we identified 

matrisome genes whose mutational burden is an independent predictor of survival. We propose that 

studying genomic alterations of matrisome genes will further our understanding of the roles of this 

compartment in cancer progression and will lead to the development of innovative therapeutic strategies 

targeting the ECM.  

Keywords: extracellular matrix; tumor microenvironment; copy number alterations; mutations; protein 

domains; survival 

 

1. Introduction 

The advent of next-generation sequencing (NGS) techniques and the wealth of “big data” they have 

generated have revolutionized biomedical research and propelled the discovery of mechanisms underlying 

diseases [1] leading to the development of novel strategies to diagnose and care for patients. In recent years, 

The Cancer Genome Atlas (TCGA) has provided researchers with an unmatched set of genomics, 

epigenomics, transcriptomics, and clinical data [2], enabling disruptive discoveries of driver mutations and 

oncogenic signaling pathways [3], probing the immune landscape of tumors  pathways [4], or correlating 

genomic alterations to response to anti-cancer therapies [5].  

While cancer research has mostly focused on the study of tumor–cell-intrinsic processes, the past few 

decades have seen an increased focus being placed on the study of the tumor microenvironment and on 

the tumor extracellular matrix (ECM) [6–8]. The extracellular matrix (ECM) is the complex and dynamic 

assembly of hundreds of proteins that regulates cellular metabolism and phenotypes and governs tissue 

formation and homeostasis [9]. The ECM is a major structural and functional component of the tumor 
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microenvironment [10]. Desmoplasia, or ECM accumulation, is a characteristic feature of tumors, and a 

higher ECM content is often associated with poorer prognosis in a broad range of cancer types [11]. 

Moreover, all 10 hallmarks of cancers proposed by Weinberg and Hanahan [12] are under the direct control 

of chemical or mechanical signals from the ECM [10,13,14]. This recognition of the prominent roles of the 

ECM in different aspects of cancer progression, including tumor heterogeneity and response to treatment, 

has been permitted in part by technological advances, including imaging, mechanical probing, and 

proteomic methods, that have overcome limitations posed by the intrinsic biochemical properties of ECM 

components [15]. It has also been permitted by the emergence of tools to consistently and comprehensively 

annotate ECM genes and proteins in big data [16]. To assist with this effort, we previously used a 

computational approach to predict the "matrisome", defined as the compendium of genes encoding core 

ECM proteins, or structural component of the ECM, including collagens, proteoglycans, and glycoproteins, 

and ECM-associated proteins, including ECM remodeling enzymes, proteins structurally or functionally 

related to ECM components, as well as secreted factors [17,18]. The matrisome, as a defining framework, 

has allowed ECM research to enter the -omics era [19]. Used to annotate proteomics data of murine or 

human tumors, it has revealed that compositional and quantitative alterations of the matrisome contribute 

to tumor progression [20–25]. In addition, proteomics of the ECM of tumor xenografts has also shown that, 

while stromal cells and in particular cancer-associated fibroblasts are the main contributors to the 

production of the ECM of tumor microenvironments [26], tumor cells also produce and secrete ECM 

proteins [17,21,22]. Used to annotate transcriptomic data, it has helped shed light on the ECM contribution 

to specific cancer types, including high-grade serous ovarian cancer [25,27,28] or acute myeloid leukemia 

[29], or across cancers [30]. Importantly, in a recent study, we evaluated the level of the expression of 

matrisome genes in 10,487 patients across 32 tumor types using TCGA data and demonstrated that 

matrisome gene expression can segregate different tumor types [31]. Last, “omic” technologies have 

uncovered ECM genes and proteins whose levels are  predictive of cancer patient outcome [23,25,32–34]. 

However, while mutations in ECM genes have been linked to a plethora of diseases and syndromes [35], 

no study has focused on determining the presence and extent of genomic alterations and mutations in ECM 

genes in cancers, a crucial piece of information to further understanding of the tumor microenvironment 

(TME) [36]. 

Here, we sought to profile the genomic and the mutational landscapes of the matrisome using TCGA 

data. We focused our analysis on a panel of 14 of the most frequent solid cancer types occurring in diverse 

organs and projected to account for more than 1 million of new cancer cases in the US in 2020 and to be 

responsible for more than 350,000 cancer deaths in the US in 2020 (Table 1) [37]. For our analysis, we 

retrieved data on 1014 of the 1027 human matrisome genes for 6740 patients and surveyed the nature and 

potential consequences of 4433 copy number alterations (CNAs) and 4497 mutations affecting matrisome 

genes (Table 2). We determined the impact of these genomic alterations (copy number alterations and 

mutations) on gene expression levels, predicted protein functions, and overall patient survival. Our results 

demonstrate that matrisome genes are subject to more copy number and mutational alterations than the 

rest of the genome and that mutations of matrisome genes are statistically more likely to have a functional 

impact. We further identified common core matrisome and matrisome-associated genes altered across 

multiple cancer types, and within these genes, we identified sequences encoding protein domains that 

accumulate more frequent mutations, which hints at the potential functional consequences these mutations 

could have on the multi-faceted roles of the ECM in cancer initiation and progression. Last, we report the 

identification of matrisome genes whose mutational burden correlates with overall survival, demonstrating 

the potential prognostic value of analyzing genomic features of the matrisome to predict cancer patient 

outcome.   
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Table 1. List of cancer types included in the meta-analysis. 

Abbreviation Cancer Type 

Estimated 

New 

Cases in 

2020 in 

the US 

Estimated 

Deaths in 

2020 in 

the US 

5-Year 

Survival 

(2009–

2015) 

BRCA Breast Carcinoma 279,100 42,690 91% 

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 13,800 4,290 69% 

COAD / READ Colon Adenocarcinoma / Rectum Adenocarcinoma 147,950 53,200 66% 

ESCA Esophageal Carcinoma 18,440 16,700 21% 

LUSC / LUAD Lung Squamous Cell Carcinoma / Lung Adenocarcinoma 228,820 135,720 21% 

OV Ovarian Serous Cystadenocarcinoma 21,750 13,940 48% 

PAAD Pancreatic Adenocarcinoma 57,600 47,050 10% 

PRAD Prostate Adenocarcinoma 191,930 33,330 99% 

SKCM Skin Cutaneous Melanoma 100,350 6,850 94% 

STAD Stomach Adenocarcinoma 27,600 11,010 32% 

UCS / UCEC Uterine Carcinosarcoma / Uterine Corpus Endometrial Carcinoma 65,620 12,590 83% 
 Total 1,152,960 377,370  

Note: Cancer types are color-coded using the color of their respective awareness ribbon. 

Table 2. Number of patients included in the meta-analysis and number of patients for which copy number 

alterations (CNAs) or mutations in matrisome genes were found. 

Abbreviation Cancer Type 

# Of 

Patient

s in 

TCGA 

# Of 

Patients 

with 

Matrisom

e CNAs 

# Of 

Patients 

with 

Matrisom

e 

Mutations 

BRCA Breast Carcinoma 1236 773 (63%) 749 (61%) 

CESC 
Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma 
312 276 (88%) 278 (89%) 

COAD / 

READ 
Colon Adenocarcinoma / Rectum Adenocarcinoma 545/183 

270 (50%) / 

87 (48%) 

288 (53%) / 

87 (48%) 

ESCA Esophageal Carcinoma 204 181 (89%) 183 (90%) 

LUAD / LUSC Lung Adenocarcinoma / Lung Squamous Cell Carcinoma 641/623 
504 (79%) / 

473 (76%) 

506 (80%) / 

475 (76%) 

OV Ovarian Serous Cystadenocarcinoma 604 59 (10%) 58 (10%) 

PAAD Pancreatic Adenocarcinoma 196 156 (80%) 155 (79%) 

PRAD Prostate Adenocarcinoma 566 447 (79%) 437 (77%) 

SKCM Skin Cutaneous Melanoma 479 359 (75%) 356 (74%) 

STAD Stomach Adenocarcinoma 511 424 (83%) 429 (84%) 

UCEC / UCS Uterine Corpus Endometrial Carcinoma / Uterine Carcinosarcoma 583/57 
368 (63%) / 

56 (98%) 

440 (75%) / 

56 (98%) 
 Total 6740 4433 (66%) 4497 (67%) 

Note: Cancer types are color-coded using the color of their respective awareness ribbon. 

2. Results and Discussion 

2.1. Copy Number Alterations in Matrisome Genes Are More Frequent Than in the Rest of the Genome 

We first sought to measure the extent and impact of copy number alterations (CNAs) on matrisome 

genes. To address this, we evaluated the frequency with which matrisome genes were subject to CNAs and 

showed that, overall, they tended to be more frequently and/or more extensively altered than the rest of 

the genome (Graphical abstract and Figure 1).  
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We further determined the type of CNA that affected matrisome genes and stratified CNAs as low- or 

high-level copy number amplifications (Figure S1A,B and Table S1) and homozygous or single-copy 

deletions (Figure S1C,D and Table S1). To simplify interpretation, we binned data into quartiles (Q0–Q4) 

based on the percentage of samples showing CNAs in a given tumor, Q0 indicating that no CNAs were 

detected, Q1 the first quartile where CNAs are found in 0–25% of the samples, Q2 the second where CNAs 

are found in 26–50% of the samples, etc. Results show that, in general, matrisome CNAs in a tumor follow 

the same quantitative trends as non-matrisome ones, though at times they are more abundant overall (e.g., 

Figure 1 BRCA, LUAD, and PAAD) and more quantitatively affected (e.g., gain in Q2 in Figure 1 in LUSC). 

On the other hand, in some tumors, matrisome CNAs quantitatively decreased (e.g., Figure 1, ESCA, OV, 

and UCEC). These data suggest a trend towards a more dynamic copy number tolerance than the rest of 

the genome whose consequences have not been, until now, evaluated. 

Further breakdown of the data per matrisome gene category (Figure S2) shows the same general 

outlook: matrisome genes seem particularly tolerant of copy number alterations, with minor tumor-specific 

differences in the amount and type of CNAs within the matrisome categories. For example, we observed 

that the core matrisome (collagens, glycoproteins, and proteoglycans) tends to accumulate more CNAs 

than matrisome-associated genes in breast and lung neoplasms, while tending to accumulate less in 

colorectal, ovarian, and uterine tumors, possibly hinting at different contexts, and perhaps selective 

pressure on the matrisome components, between these tumor types. 

 

Figure 1. Frequency of copy number alterations of matrisome genes across 14 different cancer types. Bar 

charts represent the frequency of CNAs in matrisome genes (purple bars) and non-matrisome genes (rest of 
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the genome, grey bars) across 14 different cancer types. Chi-square test p-values, (calculated on the 

frequency per binned categories) are indicated for each cancer type (*p < 0.05; **p < 0.01; ***p < 0.001). Binned 

groups are represented by different shades of purple and grey to represent genes in which CNAs are found 

in x% of the samples: Q0 = 0% (lighter shade), 0% < Q1 ≤ 25%, 25% < Q2 ≤ 50% (darker shade). See also Figure 

S1, Figure S2, and Table S1. 

2.2. Consequences of CNAs on Matrisome Gene Expression Levels 

We next sought to determine the potential consequences of CNAs on matrisome gene expression 

levels. While the majority of alterations were predicted to have no impact on expression levels (Figure 2A), 

we identified, for each cancer type, subsets of core matrisome and matrisome-associated genes that either 

have a significantly positive impact on gene expression, i.e., genes showing a 0.5-fold (or 50%) higher 

expression in patients with CNAs versus patients with no CNAs (Figure 2B,C), or have a significantly 

negative impact on gene expression, i.e., genes showing a 0.5-fold (or 50%) lower expression in patients 

with CNAs versus patients with no CNAs (Figure 2B and Figure 2D). Among these, the majority of genes 

having a significant impact on gene expression were matrisome-associated genes (Figure 2C,D), suggesting 

that functional and signaling elements within the matrisome (ECM remodeling enzymes, cytokines and 

chemokines, growth factors etc.) are more frequently targeted by CNA-dependent expression regulation 

than structural genes (collagens, glycoproteins, and proteoglycans), which is along the same line of the 

pan-cancer observations by Shao et al. [38]. Additionally, these findings can also be explained by the high 

number of paralogs of core matrisome genes that might act as a buffer to preserve the functionality of this 

compartment. 

 

Figure 2. Consequences of CNAs on matrisome gene expression levels. (A). Number of total CNAs identified 

in matrisome genes per cancer type and matrisome category (B). Number of CNAs with significant effects 
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(i.e., resulting in at least a 50% increase or decrease in expression level vs. patients with no CNAs) on 

matrisome gene transcription per cancer type and matrisome category. In (A) and (B), bars represent the 

number of genes whose expression is affected by CNAs per tumor, from lowest (blue) to highest (red) values.  

(C–D). Bar charts represent the percentage of CNAs with a significant (>50% higher or lower gene expression 

than in patients with no CNA) positive (C) or negative (D) impact on core matrisome (purple) or matrisome-

associated (coral) gene transcription.  

2.3. Matrisome Genes Are Significantly More Susceptible to Be Mutated 

Matrisome genes, and in particular core matrisome genes encoding structural components of the ECM 

such as collagens, are significantly longer than other genes (Figure 3A) and thus call for more mutations 

than the rest of the genome. This observation prompted us to compute the number of mutations normalized 

by gene length (see Methods), which revealed that matrisome genes accumulate significantly more 

mutations per gene length and across the overall number of genes involved than the rest of the genome 

(Graphical Abstract, Figure 3B, Figure S3, and Table S2A–D). This suggests that either or both a lower 

selective pressure on these mutations by, for example, immune cells and/or a higher fitness as local 

mutators that act as a buffer to the preservation of the global genomic information might act on matrisome 

sequences at the genomic level [38–40]. In line with this, we found a higher overall mutational burden in 

the matrisome compartment in comparison to the rest of the genome (Figure S3), but a lower recurrence of 

mutations, with most mutations in matrisome genes found in only one patient (Table S2C,D). Of note, for 

three cancer types, cutaneous melanoma, stomach adenocarcinoma, and endometrial carcinoma, we found 

a subset of mutations in matrisome genes found in more than five patients (Table S2C). In light of our 

findings on CNAs, we can speculate that the selective pressure on these mutations might be counteracted 

and dispersed by the high number of matrisome gene paralogs, which might further point to a role for 

matrisome gene mutations as local mutators or interactors rather than cancer drivers.  

While most of the mutations identified were specific to only one patient or to a few patients within a 

single tumor type (Table S2), we could nonetheless identify potential “hotspot” mutations, defined as 

occurring in at least five patients per tumor type, and in at least two different tumor types, for six genes 

(Figure S4). Among these are PXDN and FBN2, encoding the core ECM glycoproteins peroxidasin and 

fibrillin 2, whose roles in different cancers have been already discussed [41,42], though no evidence of a 

mutational impact of these proteins has been presented. 

We further interrogated the molecular nature of the mutations and found that for all matrisome gene 

categories and for most cancer types, these were in majority (>~70%) transitions, i.e., the interchange of a 

purine for another (A/G) or of a pyrimidine for another (C/T) (Figure S5). Two noticeable deviations are 

lung adenocarcinomas and skin cutaneous melanomas. Interestingly, for the former, the frequency of 

transversions, the replacement of a purine by a pyrimidine and a hallmark of the carcinogenic effects of 

smoking on genes [43], and the frequency of transitions were similar, and this was consistent across all 

matrisome gene categories (Figure S5). For melanoma, the carcinogenic effects of ultraviolet-A and -B 

wavelengths suffice to explain the increased amount of transitions, and the sum of these observations put 

local genomic variance in the matrisome as a factor that probably comes later in carcinogenic evolution 

than the primary effects of driver events.  

When looking at the type of mutations affecting matrisome genes, we found that the majority of 

mutations across all cancer types were missense mutations (~50%), followed by silent mutations (~25%) 

(Figure 3C). We also observed a high percentage of frame shift deletions in breast cancer (BRCA), while 

cervical squamous cell carcinomas and endocervical adenocarcinomas (CESC) and esophageal carcinomas 

(ESCA) accumulated a large number of mutations in the 3′ UTR of matrisome genes. In addition, when 

looking specifically at the frequency of mutation types per matrisome gene categories and cancer types, we 

observed that matrisome genes and particularly secreted factors presented frequent mutations affecting 
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splicing sites in cervical squamous cell carcinomas and endocervical adenocarcinomas (CESC), esophageal 

carcinomas (ESCA), and uterine carcinosarcoma (UCS) (Figure S6). This is of particular relevance, since 

there exist multiple examples of alternative splicing of ECM genes (e.g., fibronectin, tenascin) or growth 

factors resulting in the production of isoforms only reported to be expressed in pathological conditions 

such as wound healing and cancers [44–46], and these splice variants have been proposed to serve as 

biomarkers or anchors to selectively target drugs or biological agents to tumors [47–49].    

 

Figure 3. Mutations in matrisome genes (A.) Violin plot represents the density of genes of given lengths for 

core matrisome (purple), matrisome-associated (coral), and non-matrisome (grey) genes. Dots indicate the 

mean of the distribution. (B.) Violin plot represents the density of genes of given number of mutations per 

gene length ratios for core matrisome (purple), matrisome-associated (coral), and non-matrisome (grey) 
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genes. Dots indicate the mean of the distribution. (C.) Pie charts represent the type of mutations in 

matrisome genes across cancer types. See also Figure S3, Figure S4, and Figure S5. 

2.4. Mutated Protein Domains and Potential Consequences on ECM Protein Functions 

ECM proteins present a characteristic domain-based organization that supports their scaffolding 

properties via ECM protein–protein interactions and their signaling properties via ECM/growth factor 

interactions and ECM/ECM-receptor interactions [18,50,51]. These protein domains initially served as the 

basis for the in-silico prediction of the matrisome component via sequence analysis [17]. We thus sought to 

determine whether mutations in matrisome genes occurred preferentially in certain protein domains 

and/or preferential sites and whether we could infer the possible impact of such mutations on protein 

folding, protein complex assembly, or signaling functions. We focused our survey on the top 20 most 

mutated domains in each of the 14 cancer types studies and identified 46 unique protein domains with the 

highest mutation frequency (Figure 4 and Table S3). Of these, 19 are core-matrisome-defining protein 

domains and 15 are matrisome-associated-protein defining domains [17]. While some of these domains are 

not exclusively found in ECM proteins, others, such as the laminin G and laminin N-terminal domains, the 

zona pellucida domain, or the NIDO domain, are specific to matrisome components.  

 

Figure 4. Top 20 most frequently mutated domains in extracellular matrix (ECM) proteins. Bubble plot 

represents the top 20 most frequently mutated domains in ECM proteins across all 14 cancer types analyzed. 

The color code indicates domains originally used to predict core-matrisome-proteins (purple) and 
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matrisome-associated (coral) proteins (see [17] for details on matrisome-defining domains). The diameter of 

the bubbles is proportional to the mutation frequency of each domain in each cancer type. See also Table S3. 

2.5. Functional Consequences of Matrisome Gene Mutations  

Using the “Polymorphism Phenotyping v2” (PolyPhen-2) algorithm predictions as previously 

reported [52], we next evaluated the impact of mutations at the protein level. As compared to mutations 

affecting non-matrisome genes, we found that mutations of matrisome genes are statistically slightly more 

likely to have a functional impact (Figure 5A). Further investigations into predicted effects for the different 

matrisome categories show major differences, with ECM proteins (collagens, proteoglycans, and ECM-

affiliated molecules) having a proportionally much greater burden of mutations with unclear/unknown 

effects as compared to, for example, ECM-associated proteins such as metalloproteinases or growth factors 

(Figure 5B).  

While further investigations will be required to explain this observation, we can hypothesize that the 

highly modular structure of core matrisome genes and proteins, in particular collagens, can potentially 

absorb more mutations without suffering a functional damage with respect to genes with a much simpler 

organization such as ECM regulators and secreted factors. Moreover, how these mutations affect post-

translational modifications and three-dimensional protein conformation remains to be addressed. This 

general trend holds true when subsetting results by matrisome gene category and cancer type (Figure S7), 

suggesting no specialization in the functional type of mutations occurring within the matrisome of different 

tumor types. 

 

Figure 5. Prediction of mutational effects of matrisome genes on function. (A.) Bar chart presents the 

frequency of possibly damaging (yellow) or probably damaging (red) mutations in matrisome genes and 

non-matrisome genes across all cancer types studied. (B.) Bar chart presents the frequency of the predicted 

mutational effect of matrisome genes on function: benign (blue), possible damaging (yellow), probably 

damaging (red), and unknown (light pink) across all cancer types studied. See also Figure S7. 

2.6. Identification of the Top 10 Most Mutated Matrisome Genes Across 14 Cancer Types 

Our analysis reveals that several matrisome genes are frequently mutated across tumors, though with 

different specific mutations (Figure 6A and Table S4). Notably, the ten most mutated matrisome genes per 

tumor type overlap regardless of tissue- or cell-of origin-patterns (Figure 6A and Table S4). This is, for 

example, the case of mucin 16 (MUC16) or filaggrin (FLG), which are mutated in all 14 tumors analyzed, or 
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of hemicentin 1 (HMCN1), mucin 5 B (MUC5B) or reelin (RELN) mutated in 12/14 tumors. These genes, 

however, are also the largest of all matrisome genes and it is thus unsurprising to find them topping the 

Pan-Cancer matrisome mutational burden chart. Interestingly, we observed again a differential 

distribution in the accumulation of mutations between core matrisome and matrisome-associated genes, 

with the latter (which includes the mucins) being more frequently represented at top position across all 

cancers considered. 

Among the core matrisome, the most  frequently mutated gene across cancer types is HMCN1, which 

encodes the glycoprotein hemicentin-1, also known as fibulin-6 (FBN6) and a member of the fibulin protein 

family and component of basement membranes [53] (Figure 6B). While the importance of HMCN1 in cancer 

progression remains unclear, our data suggest a wider contribution to oncological processes than 

previously reported [54,55]. Of note, our survey did not find any correlation between the mutational 

burden in HMCN and cancer patient survival. 

Similarly, especially considering the impact on patient survival (see Figure 7), our data suggest that 

mutations within the mucin genes, especially MUC16 and MUC5B, are worth further assessment for their 

potential prognostic use, again expanding on observations from previous reports [56].  

 

Figure 6. Top 10 most mutated matrisome genes. (A.) Bubble plot represents the top 10 most frequently 

mutated genes in ECM proteins across all 14 cancer types analyzed. The diameter of the bubbles is 

proportional to the mutation frequency of each gene in each cancer type while the relative position along 
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the x axis reflects the number of tumor types in which the gene is mutated (the leftmost genes being mutated 

in all tumor types analyzed). See also Table S4. (B.) Lollipop charts show the mutational landscape for the 

most frequently mutated core matrisome gene, HMCN, encoding hemicentin. Missense mutations (green 

circles) and truncation mutations, including nonsense mutations, nonstop mutations, frameshift deletions, 

frameshift insertions or splice sites (black circles), are shown. Data and lollipop graphs were obtained from 

cBioPortal.  

2.7. Consequences of Matrisome Gene Mutations on Patient Survival 

Finally, we evaluated the consequences of mutational burden in matrisome genes (at the whole gene 

level as well as at the domain level) on patient survival, focusing on genes with a concordant effect per se 

(univariate analysis) and after correcting for age, sex, and ethnicity in multivariate analyses. Figure 7 

depicts the prognostic value of two core matrisome genes, COL6A1 and LAMB3, and of two matrisome-

associated genes, MUC5B and MUC16, whose mutational burden significantly correlated either negatively 

(Table 3A and Table 4A) or positively (Table 3B and Table 4B) with overall survival in at least two cancer 

types: colorectal cancer and melanoma for COL6A1,  lung adenocarcinoma and stomach adenocarcinoma 

for LAMB3, melanoma and uterine corpus endometrial carcinoma for MUC16, and lung adenocarcinoma 

and uterine corpus endometrial carcinoma for MUC5B. More globally, our results show that, independent 

of the matrisome category to which these genes belong (core matrisome, Table 3, Figure 7, and Table S5A; 

or matrisome-associated, Table 4, Figure 7, and Table S4A), the prognostic value of their mutational burden 

depends on the gene itself, hinting at the functional consequences of mutations on the functions of the 

respective protein. The same holds true for matrisome protein domains (Table S5B), though, from both the 

gene-centric and the domain-centric analyses, we observed that mutations in the tumor matrisome are 

much more likely to associate with increased overall survival (overall survival, approximately 61% of genes 

and 81% of domains reported in Table S5), supporting the idea that mutations in the tumor matrisome 

disrupt the organization of the tumor microenvironment and disadvantage neoplastic cells taking away 

structural cues they require for extensive growth, spreading, and metastasis. This observation may provide 

another explanation for the low recurrence of matrisome mutations found across tumors, though the lack 

of time coordinates within the TCGA data and their bulk rather than single cell structure prevented us from 

testing this further (see Conclusion). 

Table 3. Mutated core matrisome genes impacting patient survival. 

A. Mutated core matrisome genes with a negative impact on overall survival based on univariate and multivariate 

analyses 

Tumor Gene 
Matrisome 

Category 

OS 

Difference 

p-Value, 

Univariate 

p-Value, 

multivariate 

# Cases with 

Mutations 

COAD OTOL1 ECM Glycoproteins −1.811 0.021 0.010 10 

COAD MATN2 ECM Glycoproteins −1.675 0.040 0.048 11 

COAD NELL2 ECM Glycoproteins −1.271 0.018 0.012 16 

COAD LTBP4 ECM Glycoproteins −1.040 0.010 0.011 23 

LUAD MMRN2 ECM Glycoproteins −1.910 0.000 0.000 11 

LUAD LAMC2 ECM Glycoproteins −1.841 0.017 0.016 11 

LUAD COL22A1 Collagens −1.595 0.012 0.009 63 

LUAD LAMB3 ECM Glycoproteins −1.106 0.008 0.011 22 

LUSC CILP2 ECM Glycoproteins −2.269 0.036 0.026 14 

LUSC COL2A1 Collagens −1.099 0.010 0.026 22 

PRAD MXRA5 ECM Glycoproteins −1.146 0.007 0.038 10 

SKCM COL6A1 Collagens −1.478 0.014 0.028 10 
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B. Mutated core matrisome genes with a positive impact on overall survival based on univariate and multivariate 

analyses 

Tumor Gene 
Matrisome 

Category 

OS 

Difference 

p-Value, 

Univariate 

p-Value, 

Multivariate 

# Cases with 

Mutations 

COAD COL6A1 Collagens 1.026 0.014 0.036 17 

LUAD TNC ECM Glycoproteins 1.382 0.014 0.040 18 

LUAD MMRN1 ECM Glycoproteins 1.414 0.017 0.029 43 

LUSC COL25A1 Collagens 1.860 0.015 0.038 16 

SKCM ACAN Proteoglycans 1.405 0.025 0.006 64 

SKCM COL4A6 Collagens 1.579 0.010 0.007 48 

SKCM HSPG2 Proteoglycans 1.650 0.029 0.021 38 

SKCM COL4A3 Collagens 1.755 0.005 0.004 49 

STAD COL15A1 Collagens 1.201 0.015 0.012 31 

STAD VWF ECM Glycoproteins 1.215 0.015 0.012 32 

STAD TECTA ECM Glycoproteins 1.242 0.009 0.014 41 

STAD NELL2 ECM Glycoproteins 1.398 0.004 0.023 19 

STAD COL4A1 Collagens 1.495 0.049 0.026 31 

STAD LAMB3 ECM Glycoproteins 1.568 0.026 0.030 22 

STAD COL5A2 Collagens 1.720 0.012 0.009 22 

UCEC FBN2 ECM Glycoproteins 1.059 0.005 0.036 79 

UCEC RELN ECM Glycoproteins 1.163 0.010 0.044 61 

UCEC FRAS1 ECM Glycoproteins 1.259 0.015 0.037 66 

Table 4. Mutated genes encoding extracellular matrix regulators or affiliated proteins impacting patient 

survival. 

A. Mutated genes encoding ECM regulators or ECM-affiliated proteins with a negative impact on overall survival 

based on univariate and multivariate analyses 

Tumor Gene 
Matrisome 

Category 

OS 

Difference 

p-Value, 

Univariate 

p-Value, 

Multivariate 

# Cases with 

Mutations 

BRCA SULF2 ECM Regulators −1.443 0.037 0.047 10 

COAD ADAMTS15 ECM Regulators −1.238 0.002 0.003 12 

COAD GPC6 ECM-affiliated −1.100 0.031 0.043 15 

COAD GPC5 ECM-affiliated −1.009 0.039 0.046 11 

LUAD FCN2 ECM-affiliated −1.473 0.047 0.036 13 

LUAD ADAM19 ECM Regulators −1.340 0.012 0.012 31 

LUAD PLXNA4 ECM-affiliated −1.065 0.041 0.040 52 

LUAD MMP16 ECM Regulators −1.037 0.015 0.029 54 

LUSC PLG ECM Regulators −1.770 0.042 0.008 14 

LUSC ITIH6 ECM Regulators −1.565 0.028 0.016 25 

SKCM PZP ECM Regulators −1.565 0.022 0.031 33 

SKCM CLEC6A ECM-affiliated −1.460 0.028 0.013 18 

SKCM SEMA5A ECM-affiliated −1.252 0.022 0.035 26 

B. Mutated genes encoding ECM regulators or ECM-affiliated proteins with a positive impact on overall survival 

based on univariate and multivariate analyses 

Tumor Gene 
Matrisome 

Category 

OS 

Difference 

p-Value, 

Univariate 

p-Value, 

Multivariate 

# Cases with 

Mutations 

BRCA PLXNA2 ECM-affiliated 1.011 0.013 0.030 15 

LUAD MUC5B ECM-affiliated 1.296 0.012 0.014 53 

LUAD ADAMTS5 ECM Regulators 1.342 0.015 0.016 32 

LUSC ADAMTSL1 ECM Regulators 1.624 0.008 0.025 16 
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LUSC TGM7 ECM Regulators 2.123 0.009 0.043 10 

SKCM FREM2 ECM-affiliated 1.371 0.036 0.004 51 

SKCM COLEC12 ECM-affiliated 1.703 0.047 0.031 20 

SKCM MUC16 ECM-affiliated 2.100 0.000 0.000 251 

STAD MUC16 ECM-affiliated 1.077 0.040 0.027 145 

STAD ADAMTSL3 ECM Regulators 1.186 0.025 0.029 25 

STAD SULF1 ECM Regulators 1.246 0.025 0.035 30 

STAD MUC4 ECM-affiliated 1.301 0.027 0.024 29 

STAD CSPG4 ECM-affiliated 1.551 0.026 0.020 26 

STAD ADAM12 ECM Regulators 1.913 0.046 0.042 12 

STAD MMP3 ECM Regulators 1.916 0.031 0.026 13 

STAD SERPINB8 ECM Regulators 2.546 0.014 0.027 10 

UCEC MUC5B ECM-affiliated 1.128 0.019 0.043 102 

UCEC PLXNB3 ECM-affiliated 1.154 0.026 0.050 60 

 

Figure 7. Mutation burden in core matrisome genes impact cancer patient overall survival. Kaplan–Meier 

curves represent the overall survival probability over time (in months) of patients carrying (coral trace) or 
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not (teal trace) mutations in the specified core matrisome genes COL6A1 and LAMB3, or matrisome-

associated genes MUC5B or MUC16. P-values indicated correspond to the ones calculated in the univariate 

analysis. See Table 3 and Table 4. 

2.8. Cross-Validation Using Independent Cancer Patient Cohorts 

While cross-cohort comparisons can be hindered by the composition of the cohorts (mixed population 

background, age, etc.) and the differing end-points used and tend to mask rarer mutations (such as the 

ones reported here), we further sought to validate our observations in other, comparably large cohorts of 

cancer patients. We focused on the four genes, COL6A1, LAMB3, MUC5B, and MUC16, for which we 

showed that mutational burden had a prognostic value for patient survival (Figure 7) and interrogated a 

large collection of samples from patients and cells from 178 cohorts available via the cBioPortal (see 

Methods). We observed a wide variation in the number of cases harboring CNAs or mutations in these 

genes (Figure S8A and Table S6A–D). We also observed an overall low occurrence and recurrence of CNAs 

and mutations for each of these genes (see the peak of the density plots around the 0 value in Figure S8A) 

and a higher number of studies with cases affected by CNAs or mutations for MUC5B and MUC16, than 

for COL6A1 and LAMB3 (Table S6A–D). Importantly, both observations are in line with our findings on 

matrisome mutational frequencies in TCGA.  

We further sought to cross-validate the prognostic value of these genes in a combined cohort of adult 

patients from TCGA and Genotype-Tissue expression project (GTEx) cohorts and pediatric patients from 

the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohort and KidsFirst 

initiatives (Figure S8B). Interestingly, we observed significant associations with survival for both MUC5B 

and MUC16 and a borderline association for COL6A1, which is similar to what we observed in the pan-

cancer TCGA cohort (Figure 7), with MUC5B mutations associating with better survival and COL6A1 and 

MUC16 associating with poorer survival (Figure S8B). 

3. Methods 

3.1. Source Data 

All data except the matrisome gene list and Pan-Cancer tumor purity values were sourced from the 

harmonized TCGA Pan-Cancer Atlas resource and downloaded from the University of California, Santa 

Cruz UCSC Xena Browser hub (http://xenabrowser.net/). Online analyses for cross-validation purposes 

were performed through cBioPortal (https://www.cbioportal.org/) and the Xena Browser. The following 

files were downloaded for further analysis: 

3.2. Matrisome Gene List 

The human matrisome data were downloaded from the Matrisome Project data browser 

(http://matrisome.org/) [19]. In order to assist with the identification and classification of genes encoding 

proteins found within the ECM, we previously defined the matrisome as the collection of genes encoding 

structural elements of the ECM ("core matrisome") and genes encoding proteins either structurally or 

functionally associated with the ECM ("matrisome-associated”) [17,18,57]. We further divided these 

divisions of the matrisome into categories, the core matrisome being composed of collagens, proteoglycans, 

and other ECM glycoproteins, while the matrisome-associated is composed of proteins structurally of 

functionally affiliated with ECM proteins, ECM-remodeling enzymes and their regulators ("ECM 

regulators"), and secreted factors [17,18,57].  
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3.3. Gene Expression Data  

Sample-level normalized, log2 (norm_value +1)-transformed gene expression data, Xena identifier: 

EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena were downloaded for this study. The 

same data are available through Sage Bionetworks’ Synapse Pan-cancer Atlas data browser 

(http://www.synapse.org/#!Synapse:syn4976369.3).  

3.4. Copy Number Alterations (CNAs)  

Gene-level copy number (gistic2_thresholded), Xena identifier: 

TCGA.PANCAN.sampleMap/Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes. TCGA pan-

cancer gene-level copy number alterations (CNA) were estimated using the Genomic Identification of 

Significant Targets in Cancer 2 (GISTIC2) threshold method, compiled using data from all TCGA cohorts. 

Copy number was measured experimentally using whole genome microarray at a TCGA genome 

characterization center. Subsequently, the GISTIC2 method was applied using the TCGA FIREHOSE 

pipeline to produce gene-level copy number estimates. GISTIC2 further thresholded the estimated values 

to –2, –1, 0, 1, and 2, representing homozygous deletion, single copy deletion, diploid normal copy, low-

level copy number amplification, and high-level copy number amplification, respectively. Genes were 

mapped onto the human genome coordinates using UCSC cgData HUGO probeMap [58]. 

Somatic mutations (SNP and INDEL): TCGA Unified Ensemble "MC3" mutation calls, Xena identifier: 

mc3.v0.2.8.PUBLIC.xena [59]. 

3.5. Clinical Data 

Curated clinical data, Xena identifier: Survival_SupplementalTable_S1_20171025_xena_sp. These data 

were derived from the integration of the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [60]. 

3.6. Pan-Cancer Purity Data 

TCGA Pan-Cancer tumor purity data (consensus measurement of purity estimations, CPE) were 

obtained from Aran et al [61]. 

3.7. Cross-Validation Data 

The prevalence of mutations in COL6A1, LAMB3, MUC5B, and MUC16 across 178 studies was 

evaluated via cBioPortal (http://www.cbioportal.org/) [62,63]. Further assessments on the effect of the 

mutational burden of these genes on patient survival were conducted in the integrated “TCGA TARGET 

GTEx KidsFirst” cohort, available via the Xena Browser. 

3.8. Statistical Analysis 

All analyses were performed in The R Project for Statistical Computing (R) and were restricted to the 

following tumor types: Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma (CESC), Colon Adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), 

Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Ovarian Cancer (OV), Pancreatic 

Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD), Rectum Adenocarcinoma (READ), Skin 

Cutaneous Melanoma (SKCM), Stomach Adenocarcinoma (STAD), Uterine Corpus Endometrial 

Carcinoma (UCEC), and Uterine Carcinosarcoma (UCS). Quantitative categorical differences were tested 

using a two-sided Chi-square test, while quantitative numerical differences were tested using a two-sided 

Mann–Whitney U test.  
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To calculate the effect of CNAs on transcription, only those CNAs were selected whose expression 

level for the same gene harboring the CNA in carriers was at least 50% increased or decreased vs. non-

carriers.  

Differences in the number of mutations normalized by gene length in the matrisome vs. non 

matrisome were tested by the Mann–Whitney U test and by further randomization tests. These included 1) 

1000 tests against random ~33% of whole non-matrisome human genes, 2) 1000 tests against random non-

matrisome human gene sets, each the same size as the number of mutated matrisome genes, and 3) 1000 

tests against random non-matrisome human gene sets, each composed of genes longer than the average 

length of matrisome genes. Gene lengths were pulled from the “Goseq” library in R. For matching 

mutations and protein domains, we first pulled protein domain coordinates for matrisome genes using the 

Ensemble database and the R libraries “ensembldb” and “EnsDb.Hsapiens.v86” and then mapped each 

mutation onto the domains using a “between” SQL query implemented in the R library “sqldf”.  

Hotspots mutations were defined as those occurring at least five times per tumor type in at least two 

different tumor types.  

Mutation effects on overall survival (at the whole-gene or domain level) were modelled in univariate 

(Kaplan–Meier) and multivariate (Cox proportional hazard) analyses, the latter including also age at 

diagnosis, gender, and ethnicity as covariates. Mutations were filtered before analysis to remove entries 

with fewer than 10 patients in at least one tumor, and analyses were performed for overall survival (OS). 

Further data can be provided on request to the Authors or by running the relevant code section (see “Data 

availability” and “Code availability” sections). Only genes/domains with a significant concordant effect in 

both the analyses are reported. 

To assess the eventual effect of tumor purity on CNAs and mutations, we retrieved consensus 

measurement of purity estimations (CPEs, available for 11 of the 14 tumor types studied here) and imputed 

effects using generalized linear models (GLMs). 

In all analyses, a p value < 0.05 was chosen as the threshold for reporting significant results. 

3.9. Data Availability 

All starting data are freely available and downloadable from the sources noted above (see “Source 

data” section). The same data are enclosed in a freely accessible Zenodo repository 

(10.5281/zenodo.3941354). All results tables can be obtained from the authors upon request.  

3.10. Code Availability 

All the codes have been prepared into an R notebook and made available through GitHub 

(http://github.com/Izzilab/pancancer-matrisome-mutations) and Zenodo (10.5281/zenodo.3941348) or as 

an HTML through RPubs (http://rpubs.com/Izzilab/matrisome-CNAs-and-mutations). 

4. Conclusion 

This first survey of the genomic and mutational landscape of the cancer matrisome has uncovered the 

interesting, and yet perhaps unexpected, extent and consequences of copy number and mutational 

alterations of matrisome genes in a panel of 14 solid tumor types.  

Of note, TCGA data were collected from bulk tumor samples and more specifically, mostly from tumor 

cells, as previously shown [61] and further validated here (Figure S9 and Table S7). We can thus confidently 

map our findings to tumor cells rather than to other cells of the tumor microenvironment. In this respect, 

we observed that the presence of eventual impurities (i.e., the presence of other cell types of the TME) is a 

marginal confounder for CNAs and a negligible one for mutations. Further acknowledging that the number 

of CNAs and mutations in the cancer genome and the sample composition in terms of tumor/TME fractions 



Cancers 2020, 12, 2046 17 of 21 

 

are not linearly nor directly associated [61,64], the estimates we report for their interactions probably exceed 

their true extent.    

While we have previously shown that tumor cells do secrete ECM proteins, cancer-associated 

fibroblasts are the main ECM producers and remodelers. In addition, there is now an increased recognition 

of the impact of cellular and microenvironmental heterogeneity on tumor progression, metastasis 

formation, and response to treatment. Future studies should thus focus on elucidating the presence and 

roles of matrisome CNAs and mutations in the different cell populations found in the tumor 

microenvironment, the timeline of their occurrence, and, importantly, the loco-regional distribution of 

mutated ECM proteins within the tumor microenvironment.  

Future studies are also necessary to decipher the functional consequences of the mutations identified 

here. One possibility is that mutations in matrisome genes, and more specifically located in sequences 

encoding protein domains, can affect protein/protein (e.g., ECM protein/ECM protein, ECM/growth factor, 

ECM/enzyme, ECM protein/ECM receptor) interactions and subsequently alter biochemical and 

mechanical signaling, leading to dysregulation of cellular phenotypes and eventually to cancer 

progression. Additionally, with recent reports highlighting the impact of the ECM on immune cells within 

the tumor microenvironment [30], mutations in matrisome genes could also result in the generation of neo-

antigens and thus rewire the immune response. 

Last, our analysis also had the power to identify matrisome genes whose mutational burden was an 

independent predictor of overall survival. It would thus be interesting to expand our survey to the study 

of specific genes that could predict disease-specific or metastasis-free survival and compute whether 

mutational burden in certain matrisome genes correlates with the variation of the progression-free interval.  

We believe that our results are a starting point to the more extensive mapping of clinically relevant 

matrisome gene alterations and can be used to prioritize further investigations that may lead to significant 

translational applications to improve cancer patient care. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/8/2046/s1, Figure S1: 

Copy number alterations of matrisome genes across 14 different cancer types broken down by CNA type (related to 

Figure 1), Figure S2: Copy number alterations of matrisome genes across 14 different cancer types broken down by 

CNA type and matrisome gene category (related to Figure 1), Figure S3: Number of mutations per matrisome gene 

length and matrisome gene category (related to Figure 3), Figure S4: Identification of potential mutational hot spots in 

matrisome genes, Figure S5: Type of mutations per matrisome gene category and cancer type, Figure S6: Location and 

type of mutations per matrisome gene category and cancer type, Figure S7: Prediction of mutational effects per 

matrisome gene category and cancer type (related to Figure 5), Figure S8: Cross-validation using independent cancer 

patient cohorts, Figure S9: Purity of samples assessed across the TCGA Pan-Cancer cohort, Table S1. Consequences of 

CNAs on matrisome gene expression levels, Table S2. Frequency and recurrence of mutations of matrisome genes, 

Table S3. Top 20 most frequently mutated domains in ECM proteins, Table S4. Top 10 most mutated matrisome genes, 

Table S5. Effect of mutations on univariate and multivariate survival at the ECM gene level (A) and ECM protein-

domain level (B), Table S6. Frequency of CNAs and mutations in the matrisome genes COL6A1 (A), LAMB3 (B), MUC5B 

(C), MUC16 (D) in 180 different patient cohorts, representing 47500 cases available via cBioPortal, Table S7. Correlation 

of tumor purity with occurrence of CNAs and mutations in matrisome genes. 
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