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Abstract: Pancreatic neuroendocrine tumours (PanNETs) are rare diseases and a good example of
how research is not only feasible, but also of crucial importance in the scenario of rare tumours.
Many clinical trials have been performed over the past two decades expanding therapeutic options
for patients with advanced PanNETs. Adequate management relies on optimal selection of treatment,
which may be challenging for clinicians due to the fact that multiple options of therapy are currently
available. A number of therapies already exist, which are supported by data from phase III studies,
including somatostatin analogues and targeted therapies (sunitinib and everolimus). In addition,
chemotherapy remains an option, with temozolomide and capecitabine being one of the most popular
doublets to use. Peptide receptor radionuclide therapy was successfully implemented in patients
with well-differentiated gastro-entero-pancreatic neuroendocrine tumours, but with certain questions
waiting to be solved for the management of PanNETs. Finally, the role of immunotherapy is still
poorly understood. In this review, the data supporting current systemic treatment options for locally
advanced or metastatic PanNETs are summarized. Strategies for treatment selection in patients
with PanNETs based on patient, disease, or drug characteristics is provided, as well as a summary
of current evidence on prognostic and predictive biomarkers. Future perspectives are discussed,
focusing on current and forthcoming challenges and unmet needs of patients with these rare tumours.

Keywords: treatment; chemotherapy; PRRT; targeted therapy; pancreatic; somatostatin analogues;
neuroendocrine

1. Introduction

Pancreatic neuroendocrine neoplasms (PanNENs) are rare tumours, accounting for 2–5% of
pancreatic malignancies and 6–7% of all NENs, with an estimated annual incidence of 0.48 per
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100,000 persons [1–4]. The median age at diagnosis is 60 years, with a slight predominance of female
gender [5]. The number of patients with newly-diagnosed PanNENs is increasing (predominantly
non-functional tumours), mainly due to increased awareness and improved diagnostic techniques.
Pancreatic neuroendocrine neoplasms exhibit a shorter overall survival (OS) as compared to other
gastro-entero-pancreatic (GEP)-NENs, with five-year OS of 38% according to the Surveillance,
Epidemiology, and End Results (SEER) registry [1,5], though a more optimistic outcome has been
reported in several European studies [2,6–8]. One of the reasons for the low survival rate is that over
50% of patients with PanNENs are diagnosed at an advanced stage (defined as locally advanced or
metastatic), which is among the most important prognostic factors [9]. The extent of metastatic disease
(e.g., unilobar or bilobar hepatic metastasis, sparing of extrahepatic disease), together with Ki-67,
are also strong factors that influence the progression-free survival (PFS) and OS [10], together with
others, such as advanced age [11].

Pancreatic neuroendocrine neoplasms are classified based on evidence of hormone-related
symptoms, these form two groups: non-functioning (NF-PanNEN) or functioning (F-PanNEN).
The latter account for a minority (30%) of all PanNENs, and may secrete hormones and peptides,
such as gastrin, glucagon, insulin, and vasoactive intestinal peptide (VIP), amongst others [12].
Although the majority of PanNENs are sporadic, they may arise as part of a few hereditary conditions,
like multiple endocrine neoplasia (MEN)-1 (responsible for 20–30% of gastrinomas and <5% of
insulinomas), von Hippel Lindau disease, neurofibromatosis-1, and tuberous sclerosis.

Based on pathological characteristics, PanNENs had previously been classified into grade 1
pancreatic neuroendocrine tumours (PanNETs) (well-differentiated morphology with Ki-67 < 3%);
grade 2 PanNETs (well-differentiated morphology with Ki-67 3–20%) and grade 3 neuroendocrine
carcinoma (Ki-67 > 20%, regardless of morphology). In 2017, the new WHO grading system for
PanNENs introduced a further sub-group: well-differentiated NET with Ki67 > 20% (grade 3 PanNET),
distinct from poorly-differentiated neuroendocrine carcinoma (grade 3 PanNEC) (Table 1) [13,14].

Table 1. WHO Classification Pancreatic neuroendocrine tumours (PanNET), 2017.

Tumour Features G1 NET G2 NET G3 NET NEC *

Ki-67 <3 3–20 >20 >20

Mitosis <2 2–20 >20 >20

Differentiation Well differentiated Well differentiated Well differentiated Poorly differentiated

* Large cell and small cell neuroendocrine carcinoma should be considered as separate subtypes.
Legend: PanNETs—pancreatic neuroendocrine tumours; G—grade; NET—neuroendocrine tumour;
NEC—neuroendocrine carcinoma.

The goals of systemic treatment in patients with locally advanced and metastatic PanNET are to
increase survival, induce tumour shrinkage, relieve symptoms, prevent tumour-related complications,
and improve quality of life. The latest European Neuroendocrine Tumour Society (ENETS) guidelines,
last updated in 2016, base treatment decisions on the extent of disease, grading, functionality, and the
presence/absence of other symptoms not connected with hormonal production [15]. Options of
systemic therapy for patients with well differentiated PanNETs include somatostatin analogues
(SSAs) [16–21], targeted therapies (such as everolimus [22–25] and sunitinib [26,27]), chemotherapy
(streptozotocin/5-fluorouracil (STZ/5-FU) [28–30] or temozolomide/capecitabine (TemCap) [31–35]),
Peptide Receptor Radionuclide Therapy (PRRT) [36–47], and immunotherapy [48–50].

As the options of systemic therapy increase, it becomes more challenging for clinicians to select
the most appropriate option or sequence of treatments for individual patients. The aim of this review is
to provide a comprehensive summary of the current evidence supporting the use of systemic treatment
for patients that are diagnosed with PanNETs; adequate systemic treatment selection based on patient’s
individual characteristics will be discussed.
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2. Evidence Regarding the Use of Available Systemic Treatment Option

2.1. Evidence Supporting the Use of Somatostatin Analogues (SSAs)

Somatostatin analogues act by targeting somatostatin receptors (SSTR 1–5) [51]. The best
characterised SSAs are octreotide long-acting release (LAR) and lanreotide autogel, which mainly
target SSTR-2 (expressed in about 80% of PanNETs [52]) and SSTR-5. In contrast, the next-generation
SSA (pasireotide) targets a wider range of SSTRs (SSTR-1, -2, -3, and -5) [53,54]. Because of their
anti-secretory effect, SSAs have been used for many years for symptom control only [51]. However,
their anti-proliferative effect [55,56]) is now well established [57], Table S1 summarises the main clinical
trials exploring the role of SSAs in PanNETs.

The first robust evidence of the anti-proliferative effect of SSAs came from the PROMID clinical
trial [20,21]; this prospective phase III randomised, placebo-controlled, double-blind study assessed
the use of octreotide LAR in patients with locally-advanced or metastatic, treatment-naïve grade (G) 1
midgut NET, or NET with an unknown origin. Improvement of median time to tumour progression
(TTP) was statistically and clinically significant (octreotide LAR 14.3 months vs. placebo 6 months,
Hazard Ratio (HR) 0.34 (95%-CI 0.20–0.59; p = 0.000072). Patients in the placebo arm were allowed to
cross over to octreotide LAR at time of progression, which is likely the main reason why the differences
on TTP did not translate into OS improvement. Although patients with PanNETs were not included
in the PROMID trial, the results were considered to be strong and led to the use of octreotide with
anti-proliferative intent for patients with PanNETs in ENETS Guidelines [15,58]. This approach was
validated in several retrospective series and small phase II study demonstrating anti-proliferative
activity of octreotide LAR in PanNETs, mostly in low Ki-67 NETs (more durable responses in patients
with Ki-67 < 10) [59].

The pivotal phase III trial assessing the effect of SSAs in patients with PanNETs was the
CLARINET study [16,17,19,60]. This randomized, double-blind, placebo-controlled study evaluated
lanreotide autogel in patients with locally advanced or metastatic, non-functioning (except gastrinomas),
well-differentiated GEP-NETs with Ki-67 < 10%. The study period lasted for 96-weeks (core study),
followed by an open label extension (OLE) part. Most of the patients were treatment-naïve (84% in
both arms) and had stable disease at baseline (96% in the lanreotide and 95% in the placebo arms,
respectively). The study showed a benefit in terms of PFS with a HR of 0.58 (95%-CI 0.32–1.04,
core study) [16] and median PFS of 29.7 months for the group of PanNETs (whole core and OLE
study) [19]; the benefit in PFS was observed regardless of tumour burden [19]. Despite the low response
rate (2%), disease stabilisation was high (64%), achieving a high disease control rate (DCR) of 66%.
Within the OLE part, data on patients who had crossed over to lanreotide autogel after progression on
placebo and patients on lanreotide autogel with no progression at 96th week (n = 88) was reported;
interestingly, half of these were PanNETs [17]. The median PFS for patients with PanNETs was
29.7 months, being somewhat shorter than the median PFS for all patients recruited into the CLARINET
trial (38.5 months) [19].

Many studies have aimed to increase the anti-tumour effect of SSAs, by development of
new-generation SSAs such as pasireotide LAR [61] (Table S1) or by developing combinations of
SSAs with other anti-tumour agents, such as everolimus (COOPERATE-1 study [62] (Table S2).
Unfortunately, these efforts were not successful and the use of SSAs in PanNETs is currently limited to
single agent strategies.

2.2. Evidence Supporting the Use of Targeted Therapies

An important paradigm change arose from an improved understanding of the role of the
mammalian target of rapamycin (mTOR) and angiogenesis in tumour growth and progression. Table S2
summarises the main clinical trials of the use of targeted therapies in patients with PanNETs.

The inhibition of mTOR, with everolimus, was postulated as a promising strategy in the
RADIANT-1 phase II study [22]. This led to RADIANT-3, a large phase III prospective, randomised,
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placebo-controlled, double-blind trial of patients with well-differentiated PanNETs who were
randomised to receive everolimus or placebo [23–25]. Objective responses were low (<5%) and
independent of prior treatment with chemotherapy. The study showed a longer median PFS with
everolimus (11 vs. 4.6 months; HR 0.35; 95%-CI, 0.27–0.45; p < 0.001); due to cross-over, this benefit did
not impact OS [23–25]. Target-specific side effects included hyperglycaemia, pneumonitis, infection,
and stomatitis; however, G3/4 serious adverse events (SAEs) were relatively few. Alternative inhibitors
of mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2), such as BEZ235, have been tested in
patients with PanNETs with disappointing results [63].

Sunitinib is a multi-tyrosine kinase inhibitor that inhibits vascular growth factor receptor (VEGFR-2
and -3), platelet derived growth factor receptor (PDGFR) and stem-cell factor receptor (c-kit). Building on
the phase II study [64], the SUN111 phase III double-blind, placebo-controlled clinical trial in patient
with PanNETs showed a clinically meaningful benefit of sunitinib over placebo with improved median
PFS (11.4 vs. 5.5 months for sunitinib and placebo, respectively; HR 0.42; 95%-CI, 0.26–0.66; p < 0.001).
The objective response rate (ORR) was 9%, including two patients with complete responses (CR) to
sunitinib [26,27]. Longer median PFS in patients with Ki-67 < 5% (HR 0.38 (95%-CI 0.16–0.92)) and
higher response rate for patients with non-functioning tumours (HR 0.26 (0.13–0.54)) were reported.
No impact on OS was identified due to cross-over (38.6 vs. 29.1 months (HR 0.73; 95%-CI 0.50–1.06);
p = 0.094)).

Sunitinib and everolimus have been approved for treatment of PanNETs for many years now due
to the results from the performed studies. Collected data regarding the use of both targeted agents in
real world setting confirm their benefit with similar PFS and even higher RR on average in the phase
IV and retrospective studies [10,65–69] as you may see on Table S2. Everyday practice shows that
although active, sunitinib and everolimus are derive on significant toxicity and grade 3/4 side effects
for patients (Table S2).

Other antiangiogenic molecules have been tested in patients with PanNETs over the last 10 years
in several phase II trials, such as pazopanib (targeting VEGFR, PDGFR, c-KIT, and fibroblast growth
factor receptors (FGFR)); cabozantinib (targeting hepatocyte growth factor receptor protein (MET),
VEGFR, RET, GAS6 receptor (AXL), KIT, Fms-like tyrosine kinase-3 (FLT3)); lenvatinib (targeting
VEGFR, FGFR, PDGFR alpha, c-Kit, and the RET proto-oncogene); and surufatinib (targeting VEGFRs,
FGFR, colony-stimulating factor 1 receptor) [18,70–73]. In all of these studies, mixed populations
of patients with GEP-NETs were recruited, with limited numbers of patients with PanNETs (20–55).
Most patients had already received previous targeted therapies with the aim of overcoming resistance
to previous everolimus and/or sunitinib. The median PFS for patients with PanNETs ranged from
11.7 months for pazopanib [18] to 21.8 months for cabozantinib [71]. Among the expected moderate
responses (between 15–19%) [18,71,73], there was a promising 42.3% response rate reported with
lenvatinib [72]. With lenvatinib, the responding patients had a significantly better PFS compared
to non-responders, a finding that is even more evident for the PanNET subgroup (median PFS in
responders vs. non-responders: not reached (NR) vs. 11.2 months in PanNETs (p = 0.004). Phase III
studies are now running with cabozantinib (NCT03375320) and surufatinib (NCT02589821), which will
further explore the role of these novel agents in the field of PanNETs.

Other targeted therapies have been tested, including PARP inhibitors (palbociclib [74]), novel
VEGF inhibitors (ziv-aflibercept [75]), histone deacetylase (HDAC) inhibitors (panobinostat [76]),
and anti-IGF1R (Insulin-like growth factor) antibodies (ganitumab (AMG 479) [77]), with disappointing
results. A combination of targeted therapies with other agents (e.g., sunitinib combined with
evofosfamide (a DNA alkylator bromo-isophosphoramide mustard) has led to encouraging ORRs
(17.6%), but with very high levels of grade 3/4 toxicity (52.9%) [78].

2.3. Evidence Supporting the Use of Peptide Receptor Radionuclide Therapy (PRRT)

The ability to deliver radioactive particles, based on a diagnostic nuclear medicine scan
(theragnostic concept), is the essence of PRRT. Peptide receptor radionuclide therapy consists of
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a chelator (DOTA) or linker that binds on one side with a SSTR ligand (agonist or antagonist) and
a therapeutic particle (Yttrium-90 (90Y) or Lutetium-177 (177Lu)) on the other [43]. The NETTER-1
trial was the pivotal phase III study performed assessing the use of PRRT in patients with NETs [36].
Patients diagnosed with metastatic midgut NET, who had progressed on SSAs were recruited (patients
with PanNETs were excluded from the NETTER-1 trial). Peptide receptor radionuclide therapy
improved median PFS in patients with low liver tumour burden (LTB) (28.35 months with PRRT
vs. 11.04 months in the control arm (HR = 0.218, 95% CI 0.120–0.394)), in patients with moderate
LTB (NR vs. 8.67 (HR = 0.202, 95% CI 0.077–0.525)), and in patients with high LTB (19.38 vs. 5.52
(HR = 0.193, 95% CI 0.079–0.474) [79]. In addition, both median OS (NR vs. 27.4 months; HR 0.398,
95%-CI 0.207–0.766) and response rate (RR, 17% vs. 3%) were more favourable in the PRRT arm as
compared to high dose of octreotide LAR (control arm) [36].

Unfortunately, activity data on PRRT use in patients with PanNETs are not based on randomised
Phase III studies, since these patients were not included in the NETTER-1 study (Table S3). 90Y and
177Lu use were both explored in retrospective series and phase II studies and prolonged median PFS
and OS, between 20–39 months and 40.1–76 months, respectively [37–47] have been reported. In the
majority of the studies, the RRs were high (24–54%), with few exceptions (objective response of 13%
for patients with PanNETs was reported by Hamiditar et al. [45]).

The largest series reporting outcome data in patients treated with PRRT was the study by Brabander
and colleagues [80]. In this single-arm study, efficacy of 177Lu was explored in patients with a variety
of SSTR-positive NETs; the final analysis was limited to Dutch GEP-NET population which included
197 patients with a pancreatic primary. This study showed high response rates (ORR 60.9%, 95%-CI
52.1–69.2%), long median PFS (30.5 months) and median OS (70.8 months) that were even more
favourable in patients with PanNETs with progressive disease at baseline (median PFS 35.6 months;
median OS 80.7 months) [80]. The magnitude of effect (survival) was similar to that seen in the
NETTER-1 study for patients with intestinal NETs, leading to the approval of PRRT for the treatment
of patients with PanNETs [80].

2.4. Evidence Supporting the Use of Chemotherapy

Chemotherapy has been a therapeutic option for patients with well-differentiated PanNETs for
many years, and it is recommended for patients with more aggressive disease [81]. There is also some
evidence suggesting that chemotherapy may have more of a role for patients with pancreatic NETs
(vs. non-pancreatic) [82]. The backbone of NET chemotherapy contains alkylating agents (streptozotocin
(STZ), temozolomide) and fluoropyrimidines (5-fluorouracil (5-FU), capecitabine) [28–30,83–85].
Although single-agent schedules have been evaluated [86], combinations are preferred with response
rates varying between 36–56% across the studies [28–30,83–85]. A summary of the main studies
exploring the role of chemotherapy in patients with PanNETs is provided in Table S4.

Unfortunately, most of the studies of chemotherapy in patients with PanNETs are retrospective
series or small phase II trials. The only phase III study, published in 1992, explored the efficacy of
STZ + 5-FU, STZ + doxorubicin, or chlorozotocin alone [30]. Higher response rates were observed with
STZ-containing schedules (45% and 69% vs. 30%, respectively). Triple combinations were also explored,
combining STZ and 5-FU with either doxorubicin or cisplatin [84,85], but are not recommended due to
toxicity and insufficient PFS gain [85]. The combination of oxaliplatin with 5-FU/capecitabine in a few
small phase II studies in combination with bevacizumab resulted in RRs between 30–41% [87–89].

Temozolomide has attracted attention lately due to its oral formulation. It has been combined
with thalidomide [90], antiangiogenic drugs such as bevacizumab [91] or targeted therapies such as
everolimus [92]. The most explored chemotherapy combination is temozolomide and capecitabine
(TemCap) [31–34]. The synergy of both drugs may be due to capecitabine depleting the enzyme
O6-methylguanine DNA methyltransferase (MGMT) [93–95]. The E2211 study was the first prospective
randomised phase II trial in chemotherapy-naïve patients diagnosed with advanced PanNETs, who were
randomised to TemCap vs. temozolomide alone [31]. The study showed an improvement in PFS in
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favour of TemCap (median PFS 22.7 vs. 14.4 months), regardless of the tumour grade (p-value 0.410);
of note there was a higher prevalence of G1 patients in the TemCap arm. Toxicity is mainly in the form
of myelosuppression, which raises the issue of the optimal length of therapy [96].

2.5. Evidence Supporting the Use of Immunotherapy

The concept of immunotherapy is not new to NENs, since alpha interferon (IFN) has been used
in the field for many years [97]. Recently, the SWOG S0518 phase III trial in advanced midgut NETs,
failed to show superiority of IFN alpha-2b in combination with octreotide LAR 20mg, compared to
bevacizumab plus SSAs with similar, although long, median PFS (15.4 vs. 16.6 months) [98].

Unfortunately, immunotherapy with checkpoint inhibitors in patients with PanNETs has led
to disappointing results (Table S5). Pembrolizumab, an anti–programmed death-1 (PD-1) antibody,
has been explored in well-differentiated NEN population first in a phase Ib study (KEYNOTE -028 [49];
16 patients with PanNETs included) followed by a phase II clinical trial (KEYNOTE-158 [48]; number of
patients with PanNETs not specified). Reported median PFS was short (4.5 months in PanNETs) [49]
and observed responses were low (6% in PanNETs) [49]. The new anti-PD-1 antibody spartalizumab
was tested in a phase II trial in a mixed population of patients with non-functioning NENs (well- and
poorly-differentiated) and a variety of primaries, independent of programmed death-ligand 1 (PDL-1)
status (33 were PanNETs) [50]. The responses were low, with a 3% RR in patients with PanNETs [50].

Althogh many options have been explored, current systemic therapeutics approved by EMA
and FDA are limited to SSAs—Sandostatin LAR, Lanreotide Autogel; targeted therapy—sunitinib
and everolimus; PRRT—177Lu-Dotatate; chemotherapy—temozolomide, capecitabine, streptozocine,
dzcarbazine, 5-Fu and oxaliplatin; immunotherapy—interferon alpha 2b, Table 2.

Table 2. Approved systemic treatment options for PanNET by FDA and EMA.

Approved Treatments EMA FDA

Sandostatin LAR V V

Lanreotide Autogel V V

Pasireotide LAR - -

Sunitinib V V

Everolimus V V

Pazopanib - -

Surufatinib - -

Cabozantinib - -

Lenvatinib - -

Efosfamide +/− Sunitinib - -

Palbociclib - -

Ziv-Aflibercept - -

Bevacizumab +/− Pertuzumab - -

BEZ235 - -

Panobinostat - -

Ganitumab - -

177Lu-Dotatate V V

90Y-DOTATOC - -

90Y-DOTATOC plus 177Lu-DOTATOC - -

177Lu-Oxodotreotide - -
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Table 2. Cont.

Approved Treatments EMA FDA

Temozolomide V V

Capecitabine V V

Streptozocine V V

Dacarbazine V V

5-Fu V V

Oxaliplatin V V

Pembrolizumab - -

Spartalizumab - -

Interferon alpha 2b V V

3. Considerations for Treatment Selection

Figure 1 summarises the pooled median PFS (Figure 1A) and ORRs (Figure 1B) reported in the
above-mentioned studies, by treatment group.

Although patients with PanNETs were only included in one of the main randomized studies
exploring the anti-proliferative effect of SSAs, it is clear that SSAs have a role for controlling tumour
growth and managing symptoms in patients with functioning PanNETs; median PFS is high, despite a
very low ORR. In contrast, the role of SSAs is probably limited for patients with non-functional
PanNETs in the presence of more aggressive features, like Ki-67 > 10%, larger tumour burden, or the
presence of cancer-related symptoms.

Although many trials have explored multiple targeted therapies, only everolimus and sunitinib
are currently approved and available for the management of patients with PanNETs. Their role seems
to be independent of functional status, although there is a preference of everolimus for insulinomas
due to its capacity to produce hyperglycaemia. Based on available data, targeted therapies are able to
achieve prolonged disease control, despite low objective response rates. The only exception seems to
be lenvatinib in the treatment of patients with advanced G1/G2 PanNETs and gastronintestinal NETs
(achieved a high RR) [72], but its activity is still to be proven in the context of a phase III study.

The role of PRRT in patients with PanNETs is currently open to discussion; no randomised
phase III trial is available to support its use, which makes the interpretation of available phase II and
retrospective study evidence challenging. When comparing the pooled PFS data (Figure 1A), it could
be argued that PRRT provides the longest median PFS and should, therefore, be the first choice for
patients with PanNETs. However, the data are to be interpreted with caution, since patient selection
is likely to represent a very significant bias when comparing these studies. The fact that all patients
treated with PRRT are required to be SSTR+ (likely to be a better prognosis population) must be taken
into account and could explain why PRRT appears to have the longest median PFS [99–101].

The choice of chemotherapy in clinical practice in these patients seems to favour TemCap,
a decision that was supported by its favourable toxicity profile and oral administration route. The RR
is the highest of all therapy options (Figure 1B), despite this superiority not being translated into the
longest PFS (likely to represent a selection bias with patients treated with TemCap having a higher
Ki-67, tumour burden, and worse prognosis). Finally, further studies and possible combinations
strategies are likely to be required prior to immunotherapy becoming part of the therapeutic arsenal
for patients with PanNETs.
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Figure 1. Graphical representation and pooled progression-free survival (PFS) and objective response rate (ORR) by treatment group. Data for the studies summarised in 
Tables 1–5 are presented. Mean PFS and ORR are calculated from studies with data available. PRRT: Peptide receptor radionuclide therapy; SSA: somatostatin analogue. Figure 1. (A) Graphical representation and pooled progression-free survival (PFS) and (B) objective response rate (ORR) by treatment group. Data for the studies
summarised in Tables S1–S5 are presented. Mean PFS and ORR are calculated from studies with data available. PRRT: Peptide receptor radionuclide therapy;
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SSA: somatostatin analogue. a—PROMID trial—Octreotide arm [20,21]; b—CLARINET trial—Lanreotide arm [19,60]; c—Phase II study, Yao et al., 2008—Everolimus
arm [102]; d—RADIANT-1—Everolimus arm [22]; e—RADIANT-3—Everolimus arm [24,103]; f—SUN111—Sunitinib arm [26,27]; g—Retrospective, Rinzivillo et al.,
2018—Sunitinib arm [65]; h—Phase II study NCT01466036—Cabozantinib arm [71]; i—Phase I/II study NCT02267967—Surufatinib arm [73]; j—TALENT
trial—Lenvatinib arm [72]; k—Phase II study, Phan et al., 2010—Pazopanib arm [18]; l—PAZONET—Pazopanib arm [70]; m—Phase II study NCT01024387—Ganitumab
(AMG 479) arm [77]; n—PALBONET—Palbociclib arm [74]; o—Phase II study, Salazar et al., 2018—BEZ235 arm [63]; p—SUNEVO (GETNE 1408)—Efosfamide/Sunitinib
arm [104]; q—Phase II study, Bendell et al., 2016—Bevacizumab/Pertuzumab/Octreotide arm [105]; r—COOPERATE-2 trial—Everolimus/Pasireotide LAR
arm [62]; t—NETTER-1 trial—177Lu-Dotatate arm [36,106]; u—Retrospective, T.Brabader et al., 2017—177Lu-Dotatate arm [37]; v—Prospective observational
study, Garske-Román, U et al., 2018—177Lu-Dotatate arm [38,43]; w—Phase II study, Sansovini et al., 2017—177Lu-Dotatate arm [39,43]; x—Prospective trial,
Bertani et al., 2016—90Y-DOTATOC/177Lu-DOTATOC arm [41,43]; y—Phase II study, Rogowski et al., 2016—90Y-DOTATOC arm [43,44]; z—Retrospective,
Horsch et al., 2016—90Y-DOTATOC/177Lu-DOTATOC arm [43,47]; aa—Retrospective, Baum et al., 2018—90Y-DOTATOC/177Lu-DOTATOC arm [43,46];
ab—E2211 trial—Temozolomide/Capecitabine arm [31]; ac—Retrospective study, De Mestier et al., 2019—Temozolomide/Capecitabine arm [32]; ad—Retrospective
study, Campana et al., 2018—Temozolomide/Capecitabine arm [33]; ae—Phase II study, Kunz et al., 2016—FOLFOX + Bevacizumab arm [89]; af—BETTER
trial—5-FU/Streptozocin/Bevacizumab arm [28]; ag—Phase I/II, Chan et al., 2013—Temozolomide + Everolimus arm [92]; ah—Phase III study, Moertel et al.,
1992—Chlorzotocin-arm [30]; ai—Phase III study, Moertel et al., 1992—Streptozotocin/5-FU arm [30]; aj—Phase III study-Moertel et al., 1992—Doxorubicin/Streptozotocin
arm [30]; ak—Retrospective study, Delaunoit et al., 2004—Doxorubicin + Streptozotocin [83]; al—Retrospective, Kouvaraki et al., 2004—Streptozotocin/5-FU/Doxorubicin
arm [84]; am—Retrospective, Strosberg et al., 2011—TEM/CAP arm [34]; an—Phase II study, Chan et al., 2012—Temozolomide/Bevacizumab arm [91]; ao—Retrospective,
De Mestier et al., 2019—EM/CAP arm [35]; ap—Retrospective, De Mestier et al., 2019—5-FU/Dacarbazine arm [35]; aq—KEYNOTE -028—Pembolizumab
arm [49]; ar—Single-arm open-label study, Halperin et al., 2019—Ziv-Aflibercept arm [75]; as—Phase II study, Jin et al., 2016—Panobinostat arm [76];
at—Phase II, Imhof et al., 2011—90Y-DOTATOC arm [42]; au—Expanded access trial, Hamiditaba et al.r, 2017—177Lu-DOTATOC arm [45]; av—Dumont et al.,
2015—90Y-DOTATOC/177Lu-DOTATOC arm [40]; aw—Retrospective study, Turner, 2010—Streptozotocin/5-FU/Cisplatin arm [85]; ax—Phase II study, Ramanathan,
2001—Dacarbazine arm [86]; ay—Phase II study, Kulke, 2006—Temozolomide/Thalidomide arm [90]; az—Phase II study, Venook, 2008—5-Fu/Oxaliplatin/Bevacizumab
arm [87]; ba—Phase II study, Kunz, 2010—Capecitabine/Oxaliplatin/Bevacizumab arm [88]; bb—Phase II multicentre study, NCT02955069—Spartalizumab arm [50];
* No patients with PanNETs were included in the trial; ** at 24th month; *** NO SEPARATE INFORMATION ABOUT patients with PanNETS; # Central review.
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3.1. Building an Individualized Plan

Current ENETS guidelines recommend surgery (even in the presence of distant metastases) for
patients with PanNETs if disease is fully resectable [15]. In patients with PanNETs, the predominant
metastatic site is the liver, which accounts for 40–93% of all metastases [107]. There is evidence
supporting the fact that resection of liver metastases improves survival [108,109] Positive results from
the synchronous resection of primary and the liver metastases [110,111] were the basis of the latest
ENETS recommendations [58]. Following curative surgery, there is no clear evidence supporting
adjuvant strategies for PanNETs [112]. For patients with functioning tumours, supportive medications,
such as diazoxide in insulinoma, PPI in gastrinoma and somatostatin analogues (octreotide LAR or
lanreotide autogel), or IFN-alpha 2b are recommended, with options, such as debulking surgery or
loco-regional or ablative therapies, used to treat refractory symptoms. Liver transplantation is an
option for selected patients [15].

In the absence of surgical options, for patients with advanced disease diagnosed with
non-functional PanNETs (G1 or G2 (Ki-67 < 10%)) who have low tumour burden and no symptoms and
in the absence of documented disease progression, a watch-and-wait approach could be considered.
This strategy has a more limited role in everyday practice for locally advanced or metastatic disease
due to very well tolerated available therapeutic options and it should be considered in very selected
patients. Alternatively, potential subsequent therapeutic strategies include SSAs, targeted therapies,
chemotherapy, and PRRT. For patients with G2 non-functional PanNETs, high tumour burden, and/or
documented progression or cancer-related symptoms a recommendation strategy could contain first
line chemotherapy, followed by second-line targeted therapies and third line PRRT. Other guidelines,
such as the North America Neuroendocrine Tumour Society (NANETS) updated in 2013 [113] and the
National Comprehensive Cancer Network (NCCN) last updated in 2019, are more broad [114]; there is
less focus on the tumour grade for treatment selection, but they all suggest watchful waiting as an
option for patients with low-volume disease and the opportunity for initiation of targeted agents or
even PRRT (NCCN) in the case of symptomatic or high volume disease.

Treatment selection for advanced disease depends not only on tumour-specific characteristics,
such as grade or Ki-67, but also on the aim of therapy and other factors (Figure 2), which will now be
discussed. A multidisciplinary approach is crucial for the management of patient with rare diseases,
like PanNETs, and referring patients to NEN-dedicated teams is recommended [115,116].

(1). Pathology: tumours with low Ki-67 or low-grade are usually associated with higher expression
of SSTR, a more indolent disease course and poorer responses to chemotherapy, in comparison
with tumours with high Ki-67 or higher-grade [117]. Low Ki-67 seems to be an independent
predictor of better response to PRRT [118], although the observed benefit was present in both G1
(HR 0.24 (95%-CI 0.13–0.44)) and G2 (HR 0.15 (95%-CI 0.07–0.34)) patients with midgut NETs [36].
Similarly, the benefit from lanreotide was comparable in both groups of patients [G1 (HR 0.43
(95%-CI 0.25–0.74)) vs. G2 (Ki-67 up to 10%) (HR 0.45 (95%-CI 0.22–0.91)]. Patients with PanNETs
with a Ki-67 >10% were not included in the CLARINET study [19]; thus, evidence to support the
use of SSAs in this patient group is scarce [119]. The phase III study exploring the role of sunitinib
in the treatment of patients with PanNETs suggested an impact on PFS [120], more marked in the
group of patients with Ki-67 < 5% (HR 0.38 (95%-CI 0.16–0.92)) [vs Ki-67 > 5% (HR 0.63 (95%-CI
0.24–1.71))] [34]; however, it has to be mentioned that the limited number of patients with Ki-67
data available in this study (36 patients out of the 86 patients in each arm), limited the power
of this subgroup analysis. Everolimus showed similar PFS benefit in both groups: G1 (HR 0.41
(95% CI 0.31–0.53), G2 (HR 0.21 (95% CI 0.11–0.42)) [23].

(2). Functional vs. Non-functional disease: functionality is associated with well differentiated
tumours, lower grade, low Ki-67, and higher expression of SSTRs. For symptomatic control,
SSAs or PRRT are considered. However, the PFS impact reported in the CLARINET study in
patients with non-functioning PanNETs supports the use of lanreotide, regardless of functioning
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status [19,60]. No subgroup analysis by functional status was performed in the NETTER-1
study [36]. The non-functional population may benefit more (HR 0.26 (0.13–0.54)) from sunitinib
therapy compared to the functional cohort (HR 0.75 (0.30–1.84)); acknowledging the limited
number of patients (and therefore limited power) in this latest group (86 vs. 46 patients,
respectively) [26]. Such information is not available for everolimus [23].

(3). Tumour load, liver involvement: large tumour burden as well as large liver tumour load
and presence of extrahepatic metastases are negative prognostic features in patients with
PanNETs [10]. However, benefits from SSAs and PRRT were seen in both the CLARINET
and NETTER trials, with improvements in PFS, irrespective of tumour load or the presence of
extrahepatic disease [19,36]. In addition, the benefit from sunitinib in the landmark trial was
seen regardless of number of sites of disease (≤2 or ≥3) [121]. Despite this similar effect being
reported in clinical trials, for patients with higher tumour load, the aim of therapy may be in
favour of reducing tumour burden, for which strategies with higher objective response rates may
be considered. These could be in the form of chemotherapy or PRRT, while SSAs and targeted
therapies (reported to achieve lower response rate) may be reserved for patients with lower
tumour burden. One of the exceptions may be lenvatinib, which leads to high response rates [72]
and may change the management approach, if the results are confirmed in phase III studies.
The type of distant metastases also represents the aggressiveness of the disease and it is also
illustrated in a recently published analysis of SEER data from 2010 to 2014 [122]. Involvement
of liver and bone is connected with worse prognosis followed by brain metastases (not very
common in PanNETs). Scoring systems to assign groups with different survivals may also be
useful in calculating the individual risk in different NENs [122]. Tumour growth rate (TGR) is
another factor that is able to predict PFS and response to treatment [123].

(4). Other individual factors may be considered when selecting therapy. A watch-and-wait approach
could be a suitable strategy in selected patients with grade 1 PanNETs when comorbidities or
other patient-related factors may play a significant role. In addition, selection of a specific targeted
therapy (i.e., sunitinib vs. everolimus) may be supported, depending on specific comorbidities:
favouring everolimus for patients with hypertension or in the scenario of an insulinoma and
favouring sunitinib for patients with diabetes or past medical history of lung comorbidities.
The presence of MGMT deficiency has been suggested as a predictive marker for temozolomide,
even though its role as a predictive factor in patients with PanNETs is still to be clarified,
and testing should not be employed in routine clinical practice [94,124]. Similarly, the predictive
role of PD-L1 as a biomarker for immunotherapy treatment has been suggested in other disease
groups [125–127]. However, despite 42% of patients with PanNETs being expected to express
PD-L1 [128], the lack of responses in studies using immunotherapy [48–50] indicates that this
biomarker may not be relevant in NENs.

(5). Prior therapies administered may impact future therapy options; both sunitinib and everolimus
showed efficacy in the setting of treatment-naïve and pre-treated (including SSAs or chemotherapy)
patients [22,24,27,65]. In contrast, the CLARINET study only included treatment-naïve patients
and therefore the use of SSAs for patients who had already progressed on previous treatments is
unclear [19]. Unfortunately, use of PRRT frontline or as a subsequent line of therapy could not
be definitely settle down based on the study by Brabander and colleagues, where no baseline
characteristics for the studied PanNETs population was provided [80]. Chemotherapy has been
used in first/subsequent lines of therapies in PanNET patients and benefit has been shown,
regardless of prior treatment. This could be illustrated in the E2211 trial, which included patients
with advanced PanNET who were randomized to receive Temozolomide or TemCap combination.
The fact that almost half of patients in the E2211 trial received prior targeted therapies and
that 53% of patients randomised to TemCap received concomitant SSAs supports the role of
chemotherapy, regardless of the line of therapy [31].
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3.2. Challenges in the Sequencing of Therapy

With the expansion of available therapeutic options, the concept of planning a “continuum of care”
is becoming more relevant. This approach includes, “individualised planning, in which patients are
given the opportunity to benefit from exposure to all active agents and modalities, while minimising
unnecessary treatment and toxicity, with the ultimate goal of improving survival as well as quality
of life” [129]. Therefore, one of the main challenges that clinicians currently face in treating patients
with advanced PanNETs is the difficulty of selecting not only the first-line, but also subsequent lines of
therapy. It is most likely that one specific sequencing strategy will not be applicable to all patients.
While the guidelines provide a simplified framework, the reality is that individual characteristics (e.g.,
performance status, type of progression—oligo, systemic, comorbidities, disease features (grade, Ki-67,
functional status), previous treatment regiments, and the response to them as well as side effects) at the
time of each change in line of therapy are to be revisited, within a multidisciplinary setting, in order to
provide patients with the best treatment sequence strategy.

Neoadjvant approach in locally advanced or even metastatic PanNETs with surgical treatment in
responders to first line systemic therapy is a potential strategy [130]. In the recent years, some studies
report good results and R0 resections after neoadjuvant PPRT [131–134]; however, this should be
validated in larger studies and patient selection has to be improved.

Although some ongoing clinical trials (i.e., SEQTOR [135] or COMPETE [136]) may answer
specific questions regarding sequencing between two therapies (chemotherapy vs. targeted (SEQTOR);
targeted vs. PRRT (COMPETE)), they are unlikely to answer all of the questions that will arise in
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clinical practice, in view of the high number of potential sequencing combinations if all therapy options
are to be taken into account (Figure 3).

Following progression to SSA, whether to maintain SSA or not while administering other
concomitant systemic therapies is debatable. In functioning disease, controlling the symptoms may be
a reason to continue SSAs. However, the majority of PanNETs are non-functioning and the survival
advantage in prolonging SSA application is not yet clear. In combination with PRRT, for example,
providing more strong SSRT blockade may translate in longer PFS and OS [137]. Synergetic mechanism
of action on PI3K/AKT/mTOR pathway [138] is one probable reason of combing SSAs and everolimus
that could be seen in the result from RADIANT-1 confirmed in phase II EVERLAR study [22,139].
There were some promising results regarding RR especially in PanNETs from couple of trials exploring
the combination of metronomic chemotherapy (cepecitabine or temozolomide) with Bevacizumab
and SSAs [140,141]. In the study with Temozolomide induced depletion of MGMT by prolonged
administration of the cytotoxic drug is discussed to be potential reason for the observed responses,
but this needs to be further explored [140].
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4. Ongoing Challenges

The field is currently facing multiple challenges. Firstly, the assessment of tumour response to
therapy remains challenging in NETs. Significant improvement in response assessment in patients
with PanNETs have been made, moving away from using clinical/biological responses to the use of
validated WHO (World Health Organization) and RECIST (Response Evaluation Criteria in Solid
Tumours) criteria [142]. In addition, more sensitive and specific nuclear imaging techniques visualising
SSTR expression (111In- SPECT, 68-GaPET/CT) may be used for the diagnosis and assessing response
to therapy beyond RECIST. Combining different imaging technologies and assessment of disease with
cross-sectional and molecular imaging is increasingly relevant for patients with PanNETs, not only
for treatment selection following a theranostic approach, but also for assessment of response to
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therapy [143,144]. The development of novel radiological assessment strategies may also be of help
(i.e., alternative cut-off definitions for assessment of response [145] or assessment of Tumour Growth
Rate (TGR) [123,146,147].

Secondly, the development of biomarkers remains an unmet need. The currently used
Chromogranin-A and 5-hydroxyindoleacetic acid (5-HIAA) are known to have limitations with
false positive and negative results. However, there is a lack of alternatives beyond the use of fasting gut
hormones. Alternative possible biomarkers in the form of growth factors, such as VEGF and its receptors,
placental growth factor (PlGF), Interleukin-8 (IL-8), PD-1/PD-L1 expression, T-cell immunoglobulin and
mucin domain 3 (TIM3), X-linked transcriptional regulator (ATRX), death domain-associated protein
6 (DAXX) genes, circulating tumour cells, and circulating tumour DNA, have been studied without
consensus on their utility [148–152]. The use of biomarkers can be employed beyond the selection of
patients for specific therapies; understanding the biology of PanNETs, especially the mechanisms of
acquired resistance (for example, to targeted therapy, although this applies equally to other treatments)
is needed. The impact of previous treatment on subsequent treatment efficacy is also an ongoing
research question.

Thirdly, in view of increasing treatment options, cost-effectiveness is an important aspect to
consider. Some initial attempts comparing everolimus, 177Lu PRRT and sunitinib in advanced,
unresectable, or metastatic progressive NETs have been reported [153]. However, information coming
from such studies has to be interpreted carefully and its implementation into clinical practice may
be challenging.

5. Future Perspectives

The future of systemic treatment for patients with advanced PanNETs may rely on therapy
combinations. While monotherapy strategies have already been shown to be effective, there is limited
information regarding potential combinations with the aim of pursuing synergistic effects. Thus,
the ongoing trend of combining therapeutic approaches in clinical trials with different mechanisms
of action to gain more advantages in effect and in overcoming resistance pathways may be a future
therapeutic option for patients with PanNETs (Figure 4).

It is also worth highlighting the significant change in the design of ongoing clinical trials in the
field (Figure 5). While a few years ago (Figure 5A, most combination strategies were exploring the role
of targeted agents combined with other molecules, the current scenario seems very different, with most
combination studies exploring the addition of chemotherapy (mainly based on alkylating agents) to
other therapeutics strategies (Figure 5B).

Expanded research is needed in order to evaluate the role of SSA beyond its role as a
first-line option for PanNETs. The current evidence relies on the CLARINET study, which was
not powered for subgroup analysis; with no level-1 evidence to support the use of octreotide as an
anti-proliferative in patients with PanNETs. The role of SSAs as maintenance therapy (REMINET
study; NCT02288377) and as a drug to combine with other therapeutic options (e.g., targeted therapies
(everolimus/metformin (MetNET1, NCT02294006); everolimus +/− bevacizumab, NCT01229943) or
chemotherapy (capecitabine/bevacizumab (XELBEVOCT, NCT01203306)) and the role of high dose
SSAs (CLARINET-Forte, NCT02651987) are still to be determined.

Additional data supporting the role of PRRT in patients with PanNETs would strengthen
the evidence base, given the limitations of the Brabander study [80]. The power of the study
cannot be assessed, as the study was not randomised-controlled (which makes it difficult to
clarify if the prolonged PFS is due to PRRT or due to patient selection) and did not provide a
sample size calculation [80]. The use of radioisotope treatment in the neoadjuvant [131–134] or
adjuvant setting [41,154], alone or in combinations with other therapeutics [130], is being investigated.
However, future prospective randomised trials exploring PRRT usage need to provide clarity regarding
patient selection, including predictive biomarkers of treatment response (beyond SSTR expression).
Novel radioisotopes are being investigated as well as novel targets, with some promising results reported
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in studies while using SSTR antagonists (which block more SSTR2 receptors [136,155]). Building a
more personalised approach by improving the dosimetry techniques for pre-therapeutic measurement
of organ and tumour exposure may provide optimal radionuclide therapy for each patient, accounting
for individual characteristics (disease, age and comorbidities: “personalised dosimetry” [156]).

Diverse objective responses achieved with targeted therapies are poorly understood. For many
years targeted therapies achieved low RRs. However, lenvatinib has achieved a higher RR in patients
with PanNETs, but the mechanism is still not clear [72]. Similarly, phase IV data from the use of
sunitinib in PanNETs have also reported higher RRs than previous studies (9.3% in phase III study vs.
24.5% in phase IV study) [27,67]. Whether this is reflection of better patient selection, more adequate
management of toxicities, with increased exposure to active drugs, or evolution of imaging techniques
can only be speculated. A better understanding of these factors is required when considering targeted
therapies in the neoadjuvant setting, especially in cases where good responses are observed.

Finally, the role of immunotherapy in patients with PanNETs will require further research and
“outside-the-box” thinking following initial disappointing results. Strategies to convert immune “cold”
tumours into “hot” are probably required in order to move this research area forward [157,158].
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Figure 5. Ongoing combination trials in patients with PanNETs. Figure 5B: Combinations | under clinical
evaluation (2020). Figure 5A: Combinations | under clinical evaluation (2016). (A) 1NTC00942682
(Phase I), 2NCT00607113 (Phase II), 3NCT01229943 (randomised Phase II), 4NCT00655655 (Phase I),
5NCT01149434 (Phase I/II), 6NCT01784861 (Phase I/II), 7NCT00843531 (Phase II), 8NCT02077933
(Phase I), 9NCT00985374 (Phase I/II), 10NCT01204476 (Phase I), 11NCT01381822 (Phase I),
12NCT02402062 (Phase II), 13NCT00576680 (Phase I/II) Grade1&2, 14NCT02248012 (Phase II) Grade3,
15NCT010126 (Phase II). (B) 5FU: 5-fluoro uracil, LV5FU2: folinic acid. 5FU (V bolus & 48 h continuous
infusion). 1NCT02246127 (SEQTOR, Phase III), 2NCT01263353 (COOPERATE-1, Phase I), 3NTC03351296
(BETTER 2, Phase II), 4NTC03279601 (Phase II).
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6. Conclusions

The management of patients with advanced PanNETs is becoming increasingly complex due
to expanding treatment options. The main goal is the construction of an individualised treatment
strategy that is based on multidisciplinary discussion, not only at first presentation but also when
changing lines of therapy. Treatment decisions should be based on patient-related and tumour-related
factors and the need for cytoreductive or stabilisation effect. Research regarding choices of different
therapeutic strategies, including SSAs, targeted therapy, PRRT, chemotherapy, and/or immunotherapy
in combination or sequentially in the treatment of patients with advanced PanNET is needed, as is the
development of novel prognostic and predictive biomarkers.
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Funding: This manuscript did not receive any funding.

Acknowledgments: V.G.M.-C. was funded by European Neuroendocrine Tumour Society ENETS. A.L. was
part-funded by The Christie Charity. J.B. received funding from the ENETS Centre of Excellence Fellowship Grant
Award. This manuscript has been supported by The Systemic Therapy Research Group at The Christie NHS
Foundation Trust.

Conflicts of Interest: V.G.M.-C.: Received travel and educational grants from ESMO, PRIME, ESO. Received travel
and accommodation support from Pfizer, Novartis, Astellas, Amgen, Mundi Pharma. Received speaker honoraria
from Pfizer and Novartis. A.L.: Travel and educational support from Ipsen, Pfizer, Bayer, AAA, SirtEx, Novartis,
Mylan and Delcath. Speaker honoraria from Merck, Pfizer, Ipsen and Incyte. Advisory honoraria from EISAI,
Nutricia Ipsen, QED and QED. Member of the Knowledge Network and NETConnect Initiatives funded by Ipsen.
A.B.: Received no financial support and has no conflicts of interest. M.G.M.: Received research grant support
from Servier, Ipsen and NuCana. She has received travel and accommodation support from Bayer, Ipsen and
Novartis and speaker honoraria from Pfizer, Ipsen, NuCana and Mylan. She has served on advisory boards
for Celgene, Ipsen, Sirtex and Baxalta; all outside the scope of this work. J.B.: Received travel research and
educational support from Ipsen, Pfizer, AAA, Novartis and Nanostring; speaker honoraria from Novartis, Pfizer
and Ipsen; advisory honoraria from Nutricia. S.S.: Received no financial support and has no conflicts of interest.
L.G.: Received no financial support and has no conflicts of interest. W.M.: Received no financial support and has
no conflicts of interest. P.M.: Consulting or Advisory role for Novartis (AAA), Siemens and Alliance Medical
Limited. J.W.V.: Consulting or Advisory role for Agios, AstraZeneca, Delcath Systems, Keocyt, Genoscience
Pharma, Incyte, Ipsen, Merck, Mundipharma EDO, Novartis, PCI Biotech, Pfizer, Pieris Pharmaceuticals, QED
and Wren Laboratories; Speakers’ Bureau for Imaging Equipment Limited Ipsen Novartis Nucana; and Travel
Grants from Celgene and Nucana.

References

1. Lawrence, B.; Gustafsson, B.I.; Chan, A.; Svejda, B.; Kidd, M.; Modlin, I.M. The epidemiology of
gastroenteropancreatic neuroendocrine tumors. Endocrinol. Metab. Clin. N. Am. 2011, 40, 1–18. [CrossRef]
[PubMed]

2. Garcia-Carbonero, R.; Capdevila, J.; Crespo-Herrero, G.; Díaz-Pérez, J.A.; Martínez Del Prado, M.P.; Alonso
Orduña, V.; Sevilla-García, I.; Villabona-Artero, C.; Beguiristain-Gómez, A.; Llanos-Muñoz, M.; et al.
Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine
tumors (GEP-NETs): Results from the National Cancer Registry of Spain (RGETNE). Ann. Oncol. 2010, 21,
1794–1803. [CrossRef]

3. Kuiper, P.; Verspaget, H.W.; Van, H.S.; Overbeek, L.; Biemond, I.; Lamers, C.B. Pathological incidence
of duodenopancreatic neuroendocrine tumors in the Netherlands: A Pathologisch Anatomisch Landelijk
Geautomatiseerd Archief study. Pancreas 2010, 39, 1134–1139. [CrossRef] [PubMed]

4. Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence,
Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol.
2017, 3, 1335–1342. [CrossRef]

5. Highlights in GEP-NETs from the 2016 NANETS Symposium—Hematology & Oncology.
Available online: https://www.hematologyandoncology.net/supplements/highlights-in-gep-nets-from-the-
2016-nanets-symposium/ (accessed on 18 July 2020).

http://www.mdpi.com/2072-6694/12/7/1988/s1
http://dx.doi.org/10.1016/j.ecl.2010.12.005
http://www.ncbi.nlm.nih.gov/pubmed/21349409
http://dx.doi.org/10.1093/annonc/mdq022
http://dx.doi.org/10.1097/MPA.0b013e3181f3a681
http://www.ncbi.nlm.nih.gov/pubmed/20871479
http://dx.doi.org/10.1001/jamaoncol.2017.0589
https://www.hematologyandoncology.net/supplements/highlights-in-gep-nets-from-the-2016-nanets-symposium/
https://www.hematologyandoncology.net/supplements/highlights-in-gep-nets-from-the-2016-nanets-symposium/


Cancers 2020, 12, 1988 19 of 29

6. Hauso, O.; Gustafsson, B.I.; Kidd, M.; Waldum, H.L.; Drozdov, I.; Chan, A.K.C.; Modlin, I.M. Neuroendocrine
tumor epidemiology: Contrasting Norway and North America. Cancer 2008, 113, 2655–2664. [CrossRef]

7. Caldarella, A.; Crocetti, E.; Paci, E. Distribution, incidence, and prognosis in neuroendocrine tumors:
A population based study from a cancer registry. Pathol. Oncol. Res. 2011, 17, 759–763. [CrossRef] [PubMed]

8. Lepage, C.; Bouvier, A.M.; Phelip, J.M.; Hatem, C.; Vernet, C.; Faivre, J. Incidence and management of
malignant digestive endocrine tumours in a well defined French population. Gut 2004, 53, 549–553. [CrossRef]
[PubMed]

9. Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003, 97, 934–959.
[CrossRef]

10. Panzuto, F.; Merola, E.; Rinzivillo, M.; Partelli, S.; Campana, D.; Iannicelli, E.; Pilozzi, E.; Mercantini, P.;
Rossi, M.; Capurso, G.; et al. Advanced digestive neuroendocrine tumors: Metastatic pattern is an
independent factor affecting clinical outcome. Pancreas 2014, 43, 212–218. [CrossRef]

11. Sackstein, P.E.; O’Neil, D.S.; Neugut, A.I.; Chabot, J.; Fojo, T. Epidemiologic trends in neuroendocrine
tumors: An examination of incidence rates and survival of specific patient subgroups over the past 20 years.
Semin. Oncol. 2018, 45, 249–258. [CrossRef]

12. Ito, T.; Lee, L.; Jensen, R.T. Treatment of symptomatic neuroendocrine tumor syndromes: Recent advances
and controversies. Exp. Opin. Pharmacother. 2016, 17, 2191–2205. [CrossRef] [PubMed]

13. Kim, J.Y.; Hong, S.-M.; Ro, J.Y. Recent updates on grading and classification of neuroendocrine tumors.
Ann. Diagn. Pathol. 2017, 29, 11–16. [CrossRef] [PubMed]

14. Choe, J.; Kim, K.W.; Kim, H.J.; Kim, D.W.; Kim, K.P.; Hong, S.-M.; Ryu, J.-S.; Tirumani, S.H.; Krajewski, K.;
Ramaiya, N. What Is New in the 2017 World Health Organization Classification and 8th American Joint
Committee on Cancer Staging System for Pancreatic Neuroendocrine Neoplasms? Korean J. Radiol. 2019, 20,
5–17. [CrossRef] [PubMed]

15. Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.;
Pape, U.-F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of
Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site.
Neuroendocrinology 2016, 103, 172–185. [CrossRef]

16. Caplin, M.E.; Phan, A.T.; Cadiot, G.; Wall, L.; Martinez, S.; Blumberg, J.; Ruszniewski, P. Lanreotide in
Metastatic Enteropancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2014, 371, 224–233. [CrossRef]
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