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Supplement for the original article 

Potential Added Value of PET/CT Radiomics for 
Survival Prognostication beyond AJCC 8th Edition 
Staging in Oropharyngeal Squamous Cell Carcinoma 
Stefan P. Haider; Tal Zeevi, MSc; Philipp Baumeister, Christoph Reichel, Kariem Sharaf, Reza 
Forghani, Benjamin H. Kann, Benjamin L. JudsonManju L. Prasad, Barbara Burtness, Amit Mahajan 
and Seyedmehdi Payabvash,  

1. Supplementary Methods 

1.1. Image Pre-Processing Pipeline 

For normalization of PET scan voxel values, we divided each voxel’s intensity by the left lentiform 
nucleus’ maximum intensity to improve the inter-scanner and inter-institutional generalizability of PET-
based quantitative metrics [1]. To ensure texture feature rotational invariance [2] and even out voxel size 
and slice thickness dissimilarities [3–6], we generated isotropic 3 × 3 × 3 and 2 × 2 × 2 mm PET and CT voxels, 
respectively, using trilinear image interpolation [7]. A re-segmentation process of CT volumes of interest 
(VOI) only retaining voxels within a 1–300 Hounsfield unit (HU) range was applied to restrict radiomics 
analysis to soft tissue densities. We generated ten image derivates per original PET or CT scan to refine 
radiomics analysis of specific characteristics: High and low frequency analysis was enhanced using a 
“coif-1” wavelet transform to generate eight decompositions per original [7,8]. Laplacian of Gaussian (LoG) 
filtering for edge-enhancement with “sigma” settings of 3 and 6 mm for PET, and 2 and 4 mm for CT images 
yielded two additional derivates per original scan [7,9]. To enable extraction of texture and first-order 
features [2], voxel intensities were discretized using a fixed-bin-width method [7,10] with a 2 unit width for 
PET and CT scans. We customized a Pyradiomics version 2.1.2 pipeline to facilitate image pre-processing 
[7,11].  

1.2. Ancillary Study to Determine Feature Robustness 

Given the variable robustness of individual radiomics features to segmentation inconsistencies, we 
conducted a multiple delineation-based feature pre-selection study to exclude features with low inter- and 
intra-observer stability from the feature set utilized in this study. Imaging data was acquired from three 
collections provided by a public imaging repository (“The Cancer Imaging Archive”, TCIA) [12] – including 
(1) the “Head-Neck-PET-CT” collection from four Canadian centers [13,14]; (2) the “Head and Neck Cancer 
CT Atlas” collection from MD Anderson Cancer Center dataset [15,16]; and (3) the “TCGA-HNSC” 
collection from various institutions across the United States [17].  

Subjects with (1) pre-treatment PET and non-contrast CT scans of the neck, (2) biopsy-confirmed 
OPSCC, and (3) known p16 or high-risk HPV status were included. Patients with (1) recurrent OPSCC, or 
(2) >50% of the primary tumor VOI affected by CT artifacts [18] were excluded.  

A randomly sampled cohort of 50 patients from the pooled TCIA cohorts (stratified by dataset) was 
selected. Observer 1 segmented all primary tumors and two randomly selected metastatic nodes in each 
patient; and re-segmented the same set of lesions >2 months after initial review and segmentation. A second 
observer created a third set of segmentations. After feature extraction, two intraclass correlation coefficient 
(ICC) statistics were calculated for each radiomics feature: To assess inter-rater agreement, a two-way 
random effects, absolute agreement, single rater/measurement ICC was applied; and the two-way mixed 
effects, absolute agreement, single rater/measurement ICC was used to quantify intra-rater agreement 
[19,20]. Features with a lower 95% confidence interval bound ≥0.8 in both inter- and intra-rater assessments 
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were retained for further analysis. ICC metrics were separately calculated for primary tumors and the 
combined set of tumors and nodes. The R “psych” package [21] “ICC” function was used for ICC 
calculations.  

Table S4 summarizes the results – feature sets exhibited similar inter- and intra-rater ICC scores. PET 
feature reproducibility was superior to CT in primary tumors, but inferior in the combined set of all lesions. 
The number and ratio of features retained for further analysis in each subset are reported in Table S4.  

1.3. Dimensionality Reduction Techniques 
1.3.1. HClust – Hierarchical Clustering 

The R “stats” package (version 3.6.0) [22] “dist” function was used to generate a “euclidean” radiomics 
feature distance matrix. Next, the “stats” “hclust” function performed hierarchical clustering, applying 
Ward clustering with Ward’s clustering criterion implemented (i.e. “ward.D2” package option) [23]. We cut 
the dendrogram and retained 30 clusters (“stats” “cutree” function). One “meta-feature” was extracted from 
each cluster by averaging all radiomics features. Clustering was performed with cross-validation training 
data only, and meta-feature computation was subsequently applied in all subjects.  

1.3.2. None – No Feature Selection 

Feature dimensionality reduction was omitted, and the random survival forest models were fit on the 
unreduced feature set.  

1.3.3. pRF – Pearson Correlation-Based Redundancy Reduction with Random Forest Variable Importance 

The R “stats” package (version 3.6.0) [22] “cor” function was configured to compute a radiomics feature 
correlation matrix utilizing Pearson’s correlation coefficient (r) based on the cross-validation training set. 
To reduce pair-wise feature correlation, we excluded the feature with higher mean absolute correlation from 
any given feature pair with r >0.9 or r < −0.9 (“findCorrelation” function of “caret” package) [24].  

Thereafter, a random survival forest model was fit on the dimensionality-reduced cross-validation 
training data (“ranger” package version 0.12.1 [25]). A C-index based split rule [26] was applied to grow 
1000 decision trees with the remaining function arguments kept in default. Radiomics feature variable 
importance scores were queried from the random forest object, and features were ranked in descending 
order of their respective importance score. The 30 highest-ranked features were selected for survival 
modelling.  

1.3.4. RIDGE – RIDGE Regularized Cox Regression for Feature Selection 

Ridge-regularized Cox survival regression models were trained using the cross-validation training 
folds (“glmnet” package version 2.0-18 [27] “cv.glmnet” function). The “lambda” parameter was 
automatically determined in 10-fold cross validation within the “cv.glmnet” fitting process, and each 
feature’s regression coefficient was derived from the fit model at the “lambda” value minimizing the mean 
cross-validated error. Features were ranked in descending order of their respective absolute regression 
coefficient value, and the 30 highest-ranked features were selected for survival modelling. 
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2. Supplementary Tables 

Table S1. Patients’ Characteristics: HPV-associated Cancers. 

Survival Endpoint Progression-free Survival Overall Survival 
Number of patients – n 235 233 
Included lymph nodes – n 348 341 
Events – n (%) 51 (21.7 %) 30 (12.9 %) 
Follow-up [days] – median (IQR) 1226 (875 – 1658) 1237 (888 – 1659) 
Data source – n (%) 

Yale 
TCIA 

 
153 (65.1 %) 
82 (34.9 %) 

 
153 (65.7 %) 
80 (34.3 %) 

Sex – n (%) 
male 
female 

 
192 (81.7 %) 
43 (18.3 %) 

 
190 (81.5 %) 
43 (18.5 %) 

Age [years] – mean (SD) 60.26 (8.85) 60.23 (8.88) 
HPV status – n (%) 

positive 
negative 

 
235 (100 %) 

0 (0 %) 

 
233 (100 %) 

0 (0 %) 
Smoking – n (%) 

never-smoker 
smoker 

pack-years – median (IQR) 
pack-years unknown – n 

unknown 

 
68 (28.9 %) 
98 (41.7 %) 
18 (8.75-30) 

15 
69 (29.4 %) 

 
68 (29.2 %) 
98 (42.1 %) 
18 (8.75-30) 

15 
67 (28.8 %) 

T stage 1 – n (%) 
T1 
T2 
T3 
T4 

 
34 (14.5 %) 

101 (43.0 %) 
72 (30.6 %) 
28 (11.9 %) 

 
33 (14.2 %) 

101 (43.3 %) 
72 (30.9 %) 
27 (11.6 %) 

N stage 1 – n (%) 
N0 
N1 
N2 
N3 

 
44 (18.7 %) 
133(56.6 %) 
53 (22.6 %) 
5 (2.1 %) 

 
44 (18.9 %) 

133 (57.1 %) 
52 (22.3 %) 
4 (1.7 %) 

Overall stage 1 – n (%) 
I 
II 
III 

 
113 (48.1 %) 
89 (37.9 %) 
33 (14.0 %) 

 
113 (48.5 %) 
89 (38.2 %) 
31 (13.3 %) 

Included lymph nodes / patient – range 0 – 8 0 – 8 
Primary treatment – n (%) 

CCRT or CBRT 
RT alone 
surgery 

without adjuvant therapy 
with adjuvant RT, CCRT or CBRT 

 
150 (63.8 %) 
22 (9.4 %) 

 
10 (4.3 %) 
53 (22.6 %) 

 
148 (63.5 %) 
22 (9.4 %) 

 
10 (4.3 %) 
53 (22.7 %) 

PET 2 – mean (SD) 
slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 

 
3.40 (0.40) 
4.28 (0.94) 

149.96 (65.85) x idem 

 
3.40 (0.40) 
4.28 (0.94) 

150.08 (66.12) x idem 
CT 2 – mean (SD) 

slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 

 
3.08 (0.57) 
1.12 (0.19) 
512 x 512 

 
3.08 (0.58) 
1.12 (0.19) 
512 x 512 

1 AJCC 8th edition staging manual T/N/overall stage [28]; 2 Values are from original images before pre-processing; 
CBRT = concurrent bioradiotherapy with cetuximab; CCRT = concurrent platinum-based chemoradiotherapy; IQR = 
interquartile range; RT = radiotherapy; SD = standard deviation; TCIA = The Cancer Imaging Archive 
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Table S2. Patients’ Characteristics: HPV-negative Cancers. 

Survival Endpoint Progression-free Survival Overall Survival 
Number of patients – n 76 73 
Included lymph nodes – n 127 121 
Events – n (%) 43 (56.6 %) 28 (38.4 %) 
Follow-up [days] – median (IQR) 945.5 (667.25–1479) 979 (694–1527) 
Data source – n (%) 

Yale 
TCIA 

 
48 (63.2 %) 
28 (36.8 %) 

 
47 (64.4 %) 
26 (35.6 %) 

Sex – n (%) 
male 
female 

 
61 (80.3 %) 
15 (19.7 %) 

 
59 (80.8 %) 
14 (19.2 %) 

Age [years] – mean (SD) 61.68 (10.35) 61.79 (10.45) 
HPV status – n (%) 

positive 
negative 

 
0 (0 %) 

76 (100 %) 

 
0 (0 %) 

73 (100 %) 
Smoking – n (%) 

never-smoker 
smoker 

pack-years – median (IQR) 
pack-years unknown – n 

unknown 

 
8 (10.5 %) 

45 (59.2 %) 
30 (14.38-50) 

5 
23 (30.3 %) 

 
8 (11.0 %) 

44 (60.3 %) 
30 (13.75-45) 

5 
21 (28.8 %) 

T stage 1 – n (%) 
T1 
T2 
T3 
T4 

 
9 (11.8 %) 

19 (25.0 %) 
27 (35.5 %) 
21 (27.6 %) 

 
9 (12.3 %) 

19 (26.0 %) 
25 (34.2 %) 
20 (27.4 %) 

N stage 1 – n (%) 
N0 
N1 
N2 
N3 

 
16 (21.1 %) 
16 (21.1 %) 
44 (57.9 %) 

0 (0 %) 

 
15 (20.5 %) 
16 (21.9 %) 
42 (57.5 %) 

0 (0 %) 
Overall stage 1 – n (%) 

I 
II 
III 
IV 

 
4 (5.3 %) 
2 (2.6 %) 

17 (22.4 %) 
53 (69.7 %) 

 
4 (5.5 %) 
2 (2.7 %) 

16 (21.9 %) 
51 (69.9 %) 

Included lymph nodes / patient – range 0 – 8 0 – 8 
Primary treatment – n (%) 

CCRT or CBRT 
RT alone 
surgery 

without adjuvant therapy 
with adjuvant RT, CCRT or CBRT 

 
58 (76.3 %) 
6 (7.9 %) 

 
3 (3.9 %) 
9 (11.8 %) 

 
56 (76.7 %) 
5 (6.8 %) 

 
3 (4.1 %) 
9 (12.3 %) 

PET 2 – mean (SD) 
slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 

 
3.39 (0.28) 
4.36 (0.85) 

138.53 (26.39) x idem 

 
3.38 (0.27) 
4.36 (0.86) 

138.52 (26.89) x idem 
CT 2 – mean (SD) 

slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 

 
3.23 (0.48) 
1.11 (0.18) 
512 x 512 

 
3.18 (0.38) 
1.10 (0.18) 
512 x 512 

1 AJCC 8th edition staging manual T/N/overall stage [28]; 2 Values are from original images before pre-processing; 
CBRT = concurrent bioradiotherapy with cetuximab; CCRT = concurrent platinum-based chemoradiotherapy; IQR = 
interquartile range; RT = radiotherapy; SD = standard deviation; TCIA = The Cancer Imaging Archive
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Table S3. List of Extracted Radiomics Features. 

Feature Family Feature Name 
First-order 1 10th percentile 

2 90th percentile 
3 Energy 
4 Entropy 
5 Interquartile Range 
6 Kurtosis 
7 Maximum 
8 Mean 
9 Mean Absolute Deviation 

10 Median 
11 Minimum 
12 Range 

13 Robust Mean Absolute 
Deviation 

14 Root Mean Squared 
15 Skewness 
16 Total Energy 
17 Uniformity 
18 Variance 

Shape 1 Elongation 
2 Flatness 
3 Least Axis Length 
4 Major Axis Length 

5 
Maximum 2D Diameter 
(Column) 

6 Maximum 2D Diameter (Row) 
7 Maximum 2D Diameter (Slice) 
8 Maximum 3D Diameter 
9 Mesh Volume 

10 Minor Axis Length 
11 Sphericity 
12 Surface Area 
13 Surface Area to Volume Ratio 
14 Voxel Volume 

Texture - Gray Level Cooccurrence Matrix Features 1 Autocorrelation 
2 Cluster Prominence 
3 Cluster Shade 
4 Cluster Tendency 
5 Contrast 
6 Correlation 
7 Difference Average 
8 Difference Entropy 
9 Difference Variance 

10 Informational Measure of 
Correlation 1 
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Feature Family Feature Name 

11 Informational Measure of 
Correlation 2 

12 Inverse Difference 
13 Inverse Difference Moment 

14 
Inverse Difference Moment 
Normalized 

15 Inverse Difference Normalized 
16 Inverse Variance 
17 Joint Average 
18 Joint Energy 
19 Joint Entropy 

20 
Maximal Correlation 
Coefficient 

21 Maximum Probability 
22 Sum Average 
23 Sum Entropy 
24 Sum of Squares 

Texture - Gray Level Size Zone Matrix Features 1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity 
Normalized 

3 Gray Level Variance 

4 
High Gray Level Zone 
Emphasis 

5 Large Area Emphasis 

6 Large Area High Gray Level 
Emphasis 

7 Large Area Low Gray Level 
Emphasis 

8 Low Gray Level Zone 
Emphasis 

9 Size Zone Non-Uniformity 

10 Size Zone Non-Uniformity 
Normalized 

11 Small Area Emphasis 

12 Small Area High Gray Level 
Emphasis 

13 
Small Area Low Gray Level 
Emphasis 

14 Zone Entropy 
15 Zone Percentage 
16 Zone Variance 

Texture - Gray Level Run Length Matrix Features 1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity 
Normalized 

3 Gray Level Variance 

4 
High Gray Level Run 
Emphasis 

5 Long Run Emphasis 
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Feature Family Feature Name 

6 Long Run High Gray Level 
Emphasis 

7 Long Run Low Gray Level 
Emphasis 

8 Low Gray Level Run 
Emphasis 

9 Run Entropy 
10 Run Length Non-Uniformity 

11 
Run Length Non-Uniformity 
Normalized 

12 Run Percentage 
13 Run Variance 
14 Short Run Emphasis 

15 Short Run High Gray Level 
Emphasis 

16 Short Run Low Gray Level 
Emphasis 

Texture - Neighboring Gray Tone Difference Matrix Features 1 Busyness 
2 Coarseness 
3 Complexity 
4 Contrast 
5 Strength 

Texture - Gray Level Dependence Matrix Features 1 Dependence Entropy 
2 Dependence Non-Uniformity 

3 
Dependence Non-Uniformity 
Normalized 

4 Dependence Variance 
5 Gray Level Non-Uniformity 
6 Gray Level Variance 
7 High Gray Level Emphasis 
8 Large Dependence Emphasis 

9 
Large Dependence High Gray 
Level Emphasis 

10 
Large Dependence Low Gray 
Level Emphasis 

11 Low Gray Level Emphasis 
12 Small Dependence Emphasis 

13 Small Dependence High Gray 
Level Emphasis 

14 Small Dependence Low Gray 
Level Emphasis 

Complete list of Pyradiomics [11] features used in this study. Exact feature definitions are 
provided in ref. [7]  
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Table S4. Multiple Delineation-based Feature Stability Assessment. 

Radiomics Source 
VOI 

Number of 
lesions (n) 

Mean inter-
Rater ICC (SD) 

Mean Intra-
Rater ICC (SD) 

Number of Retained 
Features (%) 

Primary tumors 50 
PET: 0.92 (0.12)  
CT: 0.86 (0.16) 

PET: 0.91 (0.11)  
CT: 0.89 (0.13) 

PET: 751 (72.4 %)  
CT: 586 (54.7 %) 

Primary tumors 
and lymph nodes 

50 (tumor lesions) 
65 (lymph nodes) 

PET: 0.88 (0.15)  
CT: 0.91 (0.13) 

PET: 0.87 (0.16)  
CT: 0.93 (0.11) 

PET: 651 (62.8 %)  
CT: 854 (82.4 %) 

Based on three VOI sets created by two observers, inter- and intra-rater ICC were calculated for each 
feature in primary tumor lesions and a combined set of tumor and lymph node VOI. The mean (SD) ICC in 
PET and CT feature subsets is reported as well as the number (%) of features retained for further analysis 
(lower 95% confidence interval bound of inter- and intra-rater ICC ≥0.8). 
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3. Supplementary Figures 
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Figure S1. Heatmap depicting mean Harrell´s C-index ± SD in validation folds across 33 repeats of 3-fold 
stratified cross validation. 

AJCC = AJCC model; Combined = combined model; HClust = hierarchical clustering; none = no 
dimensionality reduction applied; OS = overall survival; PFS = progression-free survival; pRF = Pearson 
correlation-based redundancy reduction with random survival forest variable importance; Radiomics = 
radiomics model; RIDGE = Cox regression with RIDGE regularization adapted for feature selection; SD = 
standard deviation.
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Figure S2. Kaplan-Meier plots with log-rank test p-values depicting radiomics- and AJCC-based risk 
stratification in HPV-associated (a,b) and HPV-negative (c,d) cohorts in the OS and PFS study arms. 

OS = overall survival; PFS = progression-free survival. 
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