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Abstract: In recent years, major advances have been made in cancer immunotherapy. This has
led to significant improvement in prognosis of cancer patients, especially in the hematological
setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major
mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation
of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and
cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40–90% of human
tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations
relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation
in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore
MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an
overview of the mechanisms underlying reversible MHC-I downregulation and describe potential
strategies to counteract this reduction in MHC-I antigen presentation in cancer.

Keywords: MHC-I downregulation; cancer immunotherapy; antigen presentation; tumor
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1. Introduction

In recent years, major advances have been made in cancer immunotherapy, thereby drastically
improving the prognosis of cancer patients. Several types of Food and Drug Administration
(FDA)-approved immunotherapies, such as checkpoint inhibitors (CPI), chimeric antigen receptor
(CAR) T-cells, and dendritic cell vaccines, aim to boost T-cell-mediated cytotoxicity to combat
cancer. These treatments led to increased survival chances, particularly for patients suffering from
hematological cancers, but translation to the solid tumor setting was found difficult. Additional immune
escape mechanisms, including immune checkpoint expression, induction of immunosuppressive
immune subsets (e.g., regulatory T-cells and myeloid-derived suppressor cells (MDSCs)), loss of
immunogenic antigens, and decreased antigen presentation allow these tumors to evade anti-tumor
immunity (reviewed by Sharma et al. [1]), posing serious challenges to overcome in order to improve
therapy response.

One way in which tumors can avoid tumor-associated antigen presentation, and therewith
T-cell-mediated cytotoxicity, is the downregulation of surface display of major histocompatibility
complex (MHC) class I, a crucial factor in the initiation of an adaptive immune response. The importance
of MHC-I downregulation in immune evasion is substantiated by the observed correlations between
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MHC-I expression on tumor cells and the amount of tumor infiltrating lymphocytes (TILs) in several
cancers [2,3]. Furthermore, several groups have reported impaired MHC-I antigen processing and
presentation as a predictor of (acquired) resistance to CPI therapy [4–8] and adoptive cell therapy [9–11].

Downregulation of MHC-I has been described in 40–90% of human tumors [9,12–20],
often correlating with worse prognosis [18,21–29]. Both adult and pediatric tumors are able to
reduce MHC-I surface display by the use of different regulatory mechanisms. Where adult tumors
downregulate MHC-I expression in order to escape from the immune system, pediatric cancers, such
as neuroblastoma, often arise from embryonic tissues that intrinsically lack immunological features,
potentially explaining the low expression of MHC-I in these cancer types [30].

The intrinsic reversible nature of most MHC-I dysregulations provides an opportunity to restore
MHC-I antigen presentation and facilitate adaptive anti-tumor immunity. This review aims to provide
an overview of the mechanisms underlying reversible MHC-I downregulation and demonstrate
potential therapeutic targets to induce MHC-I expression and improve T-cell-mediated cytotoxicity
in cancer.

2. Dysregulation of MHC-I Expression in Cancer

T-cell receptors (TCRs) of CD8+ T-cells can only bind to their targets in the context of MHC-I,
which is expressed on all nucleated cells. MHC-I presents endogenous antigens, a process important
for reporting intracellular changes, for example caused by viral infections or malignant transformation,
to the immune system in order to initiate a CD8+ T-cell response. The heterodimer MHC-I consists
of a heavy chain, encoded by the human leukocyte antigen (HLA)-A, HLA-B, and HLA-C genes,
and an invariant light chain called β2-microglobulin (β2M). The heterodimer requires stabilization
by a peptide, which is loaded into the MHC-I peptide-binding groove by the antigen processing
machinery (APM).

Antigen presentation in MHC-I context is a complex, multi-step process which can be dysregulated
at many levels. MHC-I and β2M are synthesized in the endoplasmic reticulum (ER) and require
stabilization by chaperone proteins (e.g., calreticulin, ERp57, and tapasin). Designated intracellular
proteins are targeted for degradation by ubiquitination, after which they undergo proteasomal
degradation into peptides. These peptides are subsequently translocated into the ER by the transporter
associated with antigen processing (TAP) and bind to MHC-I directly or after further processing by
ER aminopeptidases (ERAP1 and ERAP2). Interaction between tapasin and TAP allows translocation
of peptides into the MHC-I binding groove, release of chaperone proteins, and stabilization of the
MHC-I complex. Finally, the MHC-I-antigen complex travels via the Golgi apparatus to the cell surface,
where antigen presentation to CD8+ T-cells can start. In cancer, one or several proteins in this complex
pathway can be dysregulated, which may have major consequences on cell surface display of MHC-I
(Figure 1).

Although downregulation of surface expression of MHC-I allows evasion from T-cell-mediated
anti-tumor immunity, low MHC-I expression sensitizes cells to Natural Killer (NK) cell-mediated
cytotoxicity. MHC-I functions as an inhibitory ligand for NK-cells by binding to inhibitory receptors,
such as killer cell immunoglobulin-like receptors (KIRs), thereby dampening NK-cell activation.
Accordingly, when MHC-I is downregulated, the inhibitory signals initiated by MHC-I are no longer
present, leading to enhanced NK-cell activation and cytotoxicity [31]. Nonetheless, tumors have
developed several mechanisms to escape NK-cell-mediated cytotoxicity. For example, tumors often
produce factors, such as transforming growth factor β (TGF-β) and prostaglandin, that impair NK-cell
function and block their infiltration into the tumor site [32]. Additionally, tumors may temporarily
upregulate MHC-I expression in response to NK-cells, which allows them to avoid recognition by
these cells [19,22,33]. As a result, tumors show plasticity in evading both NK- and T-cell-mediated
cytotoxicity, thereby facilitating tumor immune escape. The importance of this plasticity is substantiated
by the observation that colorectal cancer patients with reversible MHC-I downregulations have a worse
prognosis compared to patients with irreversible MHC-I downregulations [22].
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Figure 1. Major histocompatibility complex class I (MHC-I) antigen processing and presentation is a 
complex, multi-step process and can be dysregulated in cancer at multiple levels. APM = antigen 
processing machinery; ERAP = ER aminopeptidases; MHC-I = major histocompatibility complex I; 
TCR = T-cell receptor 

Dysregulated cell surface display of MHC-I complexes may be caused by genetic, epigenetic, 
transcriptional, and post-transcriptional alterations, which leads either to irreversible or reversible 
changes in MHC-I expression. Irreversible MHC-I defects are described in multiple types of cancer, 
including melanoma, head and neck squamous cell carcinoma (HNSCC), and lung, colorectal, 
bladder, laryngeal, and breast cancer [9,12–17] and arise due to structural genetic alterations, for 
example, in the class I heavy chain genes [12–14], β2M [9,15,16], and the TAP-encoding genes [17]. As 
MHC-I expression cannot be upregulated in tumors harboring this type of mutations, these 
irreversible defects will not be the main focus of this review. Reversible MHC-I dysregulations are 
characterized by the coordinated (post-)transcriptional downregulation of the HLA class I heavy 

Figure 1. Major histocompatibility complex class I (MHC-I) antigen processing and presentation is
a complex, multi-step process and can be dysregulated in cancer at multiple levels. APM = antigen
processing machinery; ERAP = ER aminopeptidases; MHC-I = major histocompatibility complex I;
TCR = T-cell receptor

Dysregulated cell surface display of MHC-I complexes may be caused by genetic, epigenetic,
transcriptional, and post-transcriptional alterations, which leads either to irreversible or reversible
changes in MHC-I expression. Irreversible MHC-I defects are described in multiple types of cancer,
including melanoma, head and neck squamous cell carcinoma (HNSCC), and lung, colorectal, bladder,
laryngeal, and breast cancer [9,12–17] and arise due to structural genetic alterations, for example, in
the class I heavy chain genes [12–14], β2M [9,15,16], and the TAP-encoding genes [17]. As MHC-I
expression cannot be upregulated in tumors harboring this type of mutations, these irreversible defects
will not be the main focus of this review. Reversible MHC-I dysregulations are characterized by the
coordinated (post-)transcriptional downregulation of the HLA class I heavy chain, components of
the APM, or β2M and have been observed in several types of tumors, including HNSCC, bladder
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cancer, and neuroblastoma [18–20]. The reversible nature of these pathway dysregulations makes them
interesting targets in cancer immunotherapy.

3. MHC-I Expression Regulation

Three major transcription binding sites responsible for MHC-I heavy chain expression can be
distinguished: an Enhancer A region, which can be recognized by NFkB; an interferon-stimulated
response element (ISRE), which can be bound by interferon regulatory factor (IRF) 1; an SXY-module,
which is recognized by NOD-like receptor family CARD domain containing 5 (NLRC5) [34]. Other
APM genes are induced by the same set of transcription factors, resulting in the observation that the
downregulation of APM players often coincides [35]. Accordingly, different pathways can lead to
transcriptional activation of the MHC-I heavy chain-encoding genes as well as other genes responsible
for the APM. In addition, these pathways can also act synergistically, magnifying the effect on MHC-I
expression. By studying how MHC-I expression is normally regulated, we may be able to better
understand the underlying mechanisms of MHC-I downregulation in tumors and find potential targets
for cancer immunotherapy in order to reverse this downregulation.

4. Inducing MHC-I Expression in Cancer via NFkB Stabilization

The NFkB family consists of many inducible transcription factors, including NFkB1 (p50), NFkB2
(p52), RelA, RelB, and c-REL. During homeostasis, these proteins are sequestered in inactive cytosolic
complexes by interaction with inhibitor of kB (IkB) family members (e.g., IkBα and p105). Upon
pathway activation, IkB proteins are degraded, causing the release of NFkB transcription factors,
allowing them to migrate to the nucleus to affect expression of target genes. Two major NFkB-inducing
pathways can be distinguished: the canonical and the non-canonical NFkB pathway (Figure 2A,B) [36].
An elaborate description of pathway players important in this review can be found in Box 1. Although
NFkB is constitutively active in most cancers [37], some tumors are able to downregulate NFkB
signaling, which has been shown to impair MHC-I expression [35]. NFkB expression was found to be
associated with favorable response to CPI therapy in patients with melanoma, indicating the potential
of upregulating its expression to increase anti-tumor immunity [4,38]. To date, several regulators of
the NFkB pathways have been described, revealing potential targets to enforce upregulation of MHC-I
expression in cancer.

Box 1. NFkB-mediated upregulation of MHC-I.

The canonical NFkB pathway can be activated by stimulation of several immune receptors, including the
TNFα Receptor (TNFR), Toll-like receptors (TLR), and cytokines receptors, by their ligands (e.g., TNFα, IL-1,
or LPS). Upon receptor stimulation, TRAF2/6 and receptor-interacting protein 1 (RIP-1) are recruited, after which
TRAF2/6 polyubiquitinates itself and RIP-1. In addition, TGF-β-activated kinase 1 (TAK1) is ubiquitinated and
activated. TAK1 in turn is able to phosphorylate and activate the IkB kinase (IKK) complex (consisting of IKKα,
IKKβ, and NF-kappa-B essential modulator (NEMO) (also known as IKKγ)). IKK needs to be recruited to the
stimulated receptor before it can become phosphorylated, which is triggered by NEMO-mediated interaction of
IKK with polyubiquitinated RIP-1 [39]. Subsequently, IKK phosphorylates IkB proteins, thereby targeting it for
ubiquitination and degradation. Consequently, RelA-p50 and c-REL-p50 are released from their inactivating
complexes, which results in translocation to the nucleus. Here they can activate transcription of their target
genes, including MHC-I heavy chain- and other APM-encoding genes, by binding to kB enhancers in their
promotors. A schematic overview of the canonical NFkB pathway can be found in Figure 2A [36].

Activation of the non-canonical NFkB pathway is initiated by the binding of a ligand (e.g., TNFα, CD40L,
or B-cell activating factor (BAFF)) to one of the TNFR superfamily members. NFkB-inducing kinase (NIK)
becomes activated, which in turn is able to phosphorylate and activate IKKα, one of the subunits of the IKK
complex. IKKα subsequently phosphorylates the carboxy-terminal serine residues of p100, which is an IkB-like
molecule that sequesters the NFkB transcription factor RelB in the cytosol, resulting in ubiquitination and
degradation of the C-terminus of p100. As a result, p52 is generated, which forms a heterodimer with RelB,
thereby allowing migration to the nucleus, resulting in induction of transcription of target genes. A schematic
overview of the non-canonical NFkB pathway can be found in Figure 2B [36].
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Figure 2. NFkB-induced expression of MHC-I. Transcriptional activation of MHC-I heavy chain, but 
also other genes encoding for antigen processing machinery (APM) proteins, can be initiated by both 
the canonical (A) and non-canonical (B) NFkB pathway. IkB = inhibitors of kB; IKK = IkB kinase; 
NEMO = NF-kappa-B essential modulator; NIK = NFkB-inducing kinase; RIP-1 = receptor-interacting 
protein 1; TAK1 = TGF-β-activated kinase 1; TLR = toll-like receptor; TNFR = TNFα receptor; TRAF = 
TNF receptor-associated factor.
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Figure 2. NFkB-induced expression of MHC-I. Transcriptional activation of MHC-I heavy chain, but
also other genes encoding for antigen processing machinery (APM) proteins, can be initiated by both
the canonical (A) and non-canonical (B) NFkB pathway. IkB = inhibitors of kB; IKK = IkB kinase;
NEMO = NF-kappa-B essential modulator; NIK = NFkB-inducing kinase; RIP-1 = receptor-interacting
protein 1; TAK1 = TGF-β-activated kinase 1; TLR = toll-like receptor; TNFR = TNFα receptor;
TRAF = TNF receptor-associated factor.

4.1. Positive Regulators of NFkB Expression

TNFα forcefully stimulates NFkB signaling and subsequent MHC-I expression. However, its use
in cancer therapy is limited due to severe toxicities [40]. Alternatively, retinoids have been described
to induce MHC-I upregulation in cancer, which is suggested to be the result of stimulation of NFkB
signaling, even though the exact mechanism is still under debate. Studies in neuroblastoma and
embryonic carcinoma cells revealed that retinoids increase MHC-I expression via increased expression
of NFkB p50 and RelA [41,42]. In addition, Vertuani et al. [43] reported that upregulation of proteasome
subunits (Latent Membrane Protein (LMP)-2, -7, and -10) and increased half-life of MHC-I complexes
are responsible for increased MHC-I expression in neuroblastoma cell lines. Retinoids are currently
being used to treat several types of cancer, including neuroblastoma and promyelocytic leukemia, and
are known to induce differentiation, apoptosis, and inhibition of proliferation of tumor cells [44].

Other compounds reported to positively affect NFkB signaling of which to date the effect on
MHC-I expression has not been assessed, are betulinic acid, and calcium/calcineurin combined with
protein kinase C (PKC) antagonists. Betulinic acid upregulates canonical pathway activity via boosting
the activity of IKK as well as phosphorylation and degradation of IkBα in multiple cancer cell lines,
including neuroblastoma, glioblastoma, and melanoma [45]. In addition, it induces apoptosis, inhibits
topoisomerase I activity, and suppresses angiogenesis in cancer [46–50]. Secondly, a study into latent
HIV infections in CD4+ T-cells revealed that combining calcium/calcineurin and the protein kinase
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C (PKC) antagonist prostatin causes synergistic activation of NFkB through a similar mechanism as
betulinic acid [51]. A third strategy would be to increase expression of the E3 ubiquitin ligase Nedd4 [52],
which triggers polyubiquitination and proteasomal degradation of N4BP1 [53], a suppressor of NFkB.
In addition, in B-cells, Nedd4 has been reported to induce ubiquitination and degradation of TNF
receptor-associated factor (TRAF) 3 via the TNFR CD40, thereby inducing activation of both the
canonical and non-canonical NFkB pathway [52]. However, to date, no Nedd4 stimulatory compounds
have been described.

Nonetheless, dysregulation of factors affecting downstream signaling of NFkB-inducing pathways
makes it questionable whether NFkB activity, and thus MHC-I expression, can be restored by upstream
pathway activation. As a result, therapeutic intervention to inhibit negative regulators of NFkB may
be a more effective strategy to explore.

4.2. Negative Regulators of NFkB Expression

The pediatric tumor neuroblastoma is well known for its low MHC-I expression. We have
previously identified two major negative regulators of MHC-I via NFkB signaling in neuroblastoma:
Nedd4 Binding Protein 1 (N4BP1) and TNFα-induced protein 3 interacting protein 1 (TNIP1) [54].
TNIP1 affects canonical NFkB activation, whereas N4BP1 exerts an effect on both canonical and
non-canonical pathway activation.

N4BP1 interacts with several proteins involved in (de)ubiquitination, including NEDD4, Cezanne-1,
A20, and Itch [53,54] and potentially also binds to polyubiquitin itself [55,56]. Polyubiquitin binding
proteins, like N4BP1, can compete with NEMO for polyubiquitin binding, thereby directly antagonizing
activation of canonical NFkB [56]. Besides this, N4BP1 interacts with the deubiquitinase (DUB)
Cezanne-1, which functions in the deubiquitination and stabilization of TRAF3 [54] and subsequently
modulates the activation of both the canonical [54] and non-canonical NFkB [57] by affecting the
degradation of NIK and IkB, and the induction of c-REL ubiquitination and proteasome-mediated
degradation [58].

TNIP1 (also known as A20-binding inhibitor of NF-kB (ABIN)-1) is known for its stimulatory
effect on the NFkB inhibiting DUB A20 and inhibition of TNF-induced apoptosis and is upregulated in
several types of cancer [59]. Similar to N4BP1, TNIP1 inhibits NFkB by impairing NEMO-mediated
translocation of IKK to the receptor site. The exact mechanism remains unclear, but it is suggested
to be via competing with NEMO binding to RIP-1 as well as via binding to a polyubiquitin group
on NEMO itself [60]. TNIP1 is also able to prevent processing the IkB p105 into p50 [61] and to
interact with the NFkB inhibiting DUB A20, stimulating deubiquitination of NEMO, thereby impairing
IKK activation and thus canonical NFkB activation [62]. IL-17 treatment has been shown to induce
proteasome-dependent downregulation of TNIP1 [63]. This resulted in NFkB activation, thereby
suggesting its potential to upregulate MHC-I expression. However, IL-17 has been shown to play a key
role in the promotion of tumor progression by inducing chronic inflammation, tumor cell proliferation,
angiogenesis, and metastasis, which may majorly limit the use of this cytokine to induce MHC-I
expression in cancer [64].

Hence, targeting N4BP1 or TNIP1 will result in strong activation of NFkB signaling, which in
turn boosts MHC-I expression. Indeed microRNA (miR) 28-5p is an inhibitor of N4BP1 and has been
demonstrated to act as a tumor suppressor in many cancer types, including colorectal cancer, renal
cell carcinoma, and hepatocellular carcinoma [65–67]. In addition, MiR-1180 and miR-486 have also
been demonstrated to induce NFkB activation via targeting of several inhibiting players of the NFkB
pathway, including Cezanne, A20, and TNIP1-3 [68,69]. Nevertheless, it should be taken into account
that these miRs have also been associated with cancer cell growth, survival, migration, and progression,
emphasizing the need to further investigate the effect of these miRs in cancer [70,71].

The NFkB inhibiting DUB A20 is also involved in TNIP-independent regulation of NFkB
signaling [72]. A20 can form a ubiquitin-editing complex together with the ubiquitin binding
protein TAX1 Binding Protein 1 (TAX1BP1) and the E3 ubiquitin-protein ligase Itch. This complex
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can deubiquitinate RIP-1 and TRAF6, thereby inhibiting TAK1 activation as well as NEMO-mediated
recruitment and activation of IKK. In addition, A20 can induce K48-polyubiquitination of RIP-1,
thereby targeting it for proteasomal degradation [73]. TAX1BP1 is responsible for Itch recruitment to
A20, whereas Itch controls the interaction between A20 and its substrates RIP-1 and TRAF6, enabling
inactivation of these substrates. Knockout of either of these proteins results in inadequate NFkB
inhibition, indicating that all three proteins are indispensable in the functioning of this ubiquitin-editing
complex [74]. Itch has been shown to be upregulated in several types of cancer, such as breast cancer
and neuroblastoma, in which it was shown to play a major role in cancer progression [75–79].
The antidepressant clomipramine, its structural homologue norclomipramine, and 1,4-naphthoquinone
10E have been shown to reduce tumor growth and enhance chemotherapy in multiple cancer cell
lines, including breast, prostate, and bladder cancer lines, as well as in a multiple myeloma xenograft
model [80,81]. In addition, clomipramine has been shown to induce MHC-I expression in a rat model
of experimental allergic neuritis [82]. Controversially, N4BP1 has also been described to negatively
regulate Itch by blocking the binding of Itch to its substrates [53]. However, as both N4BP1 and Itch
play an important role in suppressing NFkB signaling, the potential for therapeutic inhibition of Itch
remains elusive.

Another DUB enzyme, cylindromatosis (CYLD) plays a role in the inhibition of NFkB signaling
through the removal of polyubiquitin motifs from NEMO and another important upstream protein
in the NFkB signaling pathway called TRAF2 [83]. Several miRs have been reported to target CYLD,
including miR-1288, -196, and -372-5p [84–86]. Recently, as reviewed by Farshi and colleagues, several
DUB inhibitors have been developed for the treatment of cancer, all targeting different DUB enzymes
that play distinct roles in the promotion of cancer [87]. To date, no specific DUB inhibitors have been
described to specifically target Cezanne-1, A20, or CYLD. Nonetheless, aspecific DUB small molecule
inhibitors, such as ubiquitin aldehyde (UbaI) have been described, which may suppress the activity of
these NFkB targeting DUBs [87]. However, the use of aspecific inhibitors is limited due to the severe
toxicity and simultaneous targeting of beneficial DUBs. Therefore, additional research should be
conducted to develop specific DUB inhibitors. A patent (https://patentscope.wipo.int/search/en/detail.
jsf?docId=WO2017109488, WO2017109488) describes cyanopyrrolidine derivates as specific inhibitors
of Cezanne-1. In addition, as Cezanne-1 and A20 show sequence homology, it might potentially be
possible to find cross-reactive DUB inhibitors to boost NFkB activity. However, in line with the above
described miRs, Cezanne-1, A20, and CYLD are described in tumor suppressive as well as tumor
progressive processes, which may be a counterindication for the use of inhibitors of these proteins in
cancer [88,89].

Altogether, these studies show that there are multiple proteins that play a role in suppressing
NFkB signaling, which may subsequently lead to hampered MHC-I expression. Several therapeutic
interventions have been described, which could potentially trigger NFkB expression in cancer. A major
contradiction we should be aware of is that the NFkB pathway is constitutionally active in a variety
of tumors, playing an important role in many tumor-promoting processes, including inflammation,
invasion, proliferation, angiogenesis, and metastasis [37]. This is further substantiated by the dual
effect of most described proteins [53], miRs [68–71], and therapeutic interventions [53,64,75–78,88,89]
affecting NFkB pathway induction on tumor-suppressing and tumor-promoting processes. It has been
hypothesized that NF-kB inhibits tumor growth in cancers with a low mutational burden (early stages
of cancer and potentially pediatric tumors), but that accumulation of mutations may lead to a loss
of tumor suppressive function and the oncogenic features of NF-kB can become more dominant [90].
Therefore, we should carefully study the effects of NFkB pathway induction in NFkB-downregulated
tumors as this could shift the balance from immune evasion towards tumor progression, thereby
potentially even hampering the efficacy of cancer immunotherapy.

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017109488
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017109488
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5. Inducing MHC-I Expression in Cancer via Restored IFN Signaling

In addition to NFkB, Interferons (IFNs) play a significant role in the induction of MHC-I expression.
During homeostasis, the signal transducer and activator of transcription (STAT) proteins are present
in the cytosol in their inactive form. Upon pathway activation, STATs become phosphorylated and
dimerize, allowing them to migrate to the nucleus to affect expression of target genes. Both type
I and type II interferon pathways are able to induce dimerization of STATs, thereby upregulating
MHC-I expression using different signaling pathways (Figure 3A,B). An elaborate description of
pathway players important in this review can be found in Box 2. IFNs play an important role in the
regulation of antigen processing and presentation and are described to exert pro- and anti-tumorigenic
effects in various types of cancer as extensively reviewed by Musella et al. and Castro et al. [91,92].
Downregulation of both type I and II IFN-mediated pathways have been described as mechanisms
involved in resistance to CPI- and adoptive cell therapy in melanoma and lung cancer, indicating the
potential of interference in these pathways to increase anti-tumor immunity [4–6,10,93–96]. Several
factors affecting IFN pathway expression have been described, revealing potential targets to modulate
MHC-I expression in cancer.Cancers 2020, 12, x 9 of 33 
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Figure 3. Interferon (IFN)-induced expression of MHC-I. Transcriptional activation of MHC-I heavy
chain, but also other genes encoding for antigen processing machinery (APM) proteins, can be initiated
by both the type II (A) and I (B) IFN pathway. GAS = gamma-activated site; IFNAR = IFNα receptor;
IFNGR = IFNγ receptor; ISGF3 = IFN-stimulated gene factor 3; IRF = interferon regulatory factor;
ISRE = interferon-stimulated response element; JAK = Janus Activated Kinase; STAT = signal transducer
and activator of transcription; TYK2 = tyrosine kinase 2.
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Box 2. Interferon-mediated upregulation of MHC-I.

The type II IFN pathway can be activated by stimulation of the IFNG receptor (consisting of IFNGR1 and
IFNGR2) by IFNγ, allowing binding, phosphorylation, and activation of Janus Activated Kinase (JAK) 1 and
JAK2. The intracellular domain of IFNGR1 is phosphorylated, creating a docking site for signal transducer and
activator of transcription (STAT)1, which is phosphorylated by JAK1/2, forms homodimers, and translocates
to the nucleus to activate target gene expression via binding to gamma-activated site (GAS) elements in the
promotor regions of IFN-stimulated genes (ISG). One of the genes induced by STAT1 signaling is the transcription
factor IRF1, which in turn is able to bind to the ISRE site present in the MHC-I promoter [34]. A schematic
overview of the type II IFN pathway can be found in Figure 3A [97].

Activation of the type I IFN pathway is initiated by binding of type I IFNs (e.g., IFNα and IFNβ) to the IFNA
receptor (consisting of IFNAR1 and IFNAR2), allowing binding, phosphorylation, and activation of JAK1 and
tyrosine kinase 2 (TYK2). The cytoplasmic tail of IFNAR is phosphorylated, creating a docking site for STAT1-3,
which are again phosphorylated by JAK1 to form homo and heterodimers. STAT1 homodimers can activate IRF1
expression as described for the type II IFN pathway. Additionally, STAT1/STAT2 forms a complex with IRF9
(called IFN-stimulated gene factor 3 (ISGF3), which is able to bind to the ISRE element in the MHC-I promotor.
STAT3 homodimerization also occurs, however, this does not lead to MHC-I upregulation, but rather functions
as a negative feedback loop to inhibit expression of pro-inflammatory genes. A schematic overview of the type I
IFN pathway can be found in Figure 3B [98].

5.1. Positive Regulators of IFN Signalling

IFN signaling can be induced via treatment with IFN-inducing ligands, such as IFNα, IFNβ, and
IFNγ. In addition, stimulation of several PRRs may result in downstream type I IFN production,
thereby indirectly promoting MHC-I expression. IFNγ has been suggested to have the most potent
effect on the expression levels of APM genes, including MHC-I, TAP, and ERAP, which may imply its
beneficial effect in cancer immunotherapy [35,99,100]. However, in line with NFkB-inducing ligands,
IFNs and PRR stimulation initiates a broad range of biological activities, thereby limiting its use in
cancer therapy due to severe toxicities [101]. To avoid toxicities, targeted delivery of IFNγ to the
tumor site may be of interest, for example by fusing it to an antibody specific for a tumor-associated
antigen [102].

Another targeted approach would be a cellular NK-cell therapy strategy, as NK-cells are capable of
either killing or upregulating MHC-I expression on MHC-I-lacking cells (via IFNγ secretion) [19,33,103].
The potential of NK-cell therapy is substantiated by observed correlations between the abundance of
functional NK-cells and checkpoint inhibition efficacy in non-small cell lung cancer (NSCLC) [104,105].
However, several challenges remain, including anti-inflammatory responses within the tumor
microenvironment (TME), which cause impaired NK-cell function and TME infiltration [19,33,106,107],
as well as ex vivo expansion to generate sufficient NK-cell numbers, and in vivo persistence [108].
The suggested ability of tumors to both evade NK- and T-cell mediated cytotoxicity via plasticity
in MHC-I expression is one of the anti-inflammatory mechanisms potentially decreasing efficacy of
NK-cell therapy. Interestingly, several studies have observed a beneficial outcome for individuals with
an inhibitory KIR genotype with lacking HLA-ligands (the ‘missing ligand’ genotype) undergoing
cancer immunotherapy, as inhibitory KIRs without matching HLA-ligands cannot inhibit NK-cell
cytotoxicity [109,110]. This led to the rationale of allogeneic, KIR genotype-mismatched NK-cell therapy
strategies to optimize NK-cell cytotoxicity by decreasing HLA-dependent inhibition of NK-cells [111].
Besides this, it should be considered that the immune checkpoint programmed cell death-ligand 1
(PD-L1) is also shown to be upregulated by IFNγ [112,113]. As a result, IFNγ simultaneously induces
MHC-I upregulation and T-cell suppression, thereby potentially creating a vicious circle of T-cell
activation and inhibition.

5.2. Negative Regulators of IFN Signaling

The embryonic transcription factor double homeobox 4 (DUX4) has been shown to be upregulated
in many cancer types, in which it causes downregulation of JAK1/2 and STAT1, thereby suppressing
IFN target gene transcription, including MHC-I and other APM genes [114]. In line with this, DUX4
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has been demonstrated to be significantly upregulated in non-responders to CPI, indicating that the
DUX4-induced reduction in MHC-I expression results in decreased T-cell cytotoxicity in patients [114].
The exact mechanism in which DUX4 downregulates JAK1/2 and STAT1 remains to be elucidated.
As DUX4 is studied in more detail in a disease called facioscapulohumeral dystrophy (FSHD),
knowledge on treatment strategies could be gained from this disease. Bosnakovski et al. [115] reported
that inhibition of p300, a histone acetyltransferase recruited by DUX4 to affect target gene expression, by
a specific inhibitor, counteracted the effect DUX-4 overexpression in vitro and in vivo. Others reported
before that p300 inhibition in multiple types of cancer led to suppressed proliferation [116]. However,
whether p300 inhibition also restores IFN signaling remains to be elucidated. DUX4 downregulation
was also observed when treated with p38 inhibitors in vitro and in vivo in FSHD models [117].
P38 inhibition has a favorable effect in cancer treatment, however, the wide variety of processes
in which p38 is involved, including tumor suppressive processes, is a clear disadvantage of this
inhibitor [118].

Lymphocyte adapter protein (LNK) has been reported to be able to negatively regulate IFN
signaling via the induction of dephosphorylation of STAT1 [119,120]. LNK has been shown to be
overexpressed in several solid tumors, including melanoma and ovarian cancer, and was found to be
significantly increased in patients who did not respond to CPI therapy [120]. LNK has been reported
to be targeted by miR-29b, miR-30-5p, miR-98, miR-181a-5p [121,122]. To date, no other therapeutic
LNK inhibitors have been reported.

The peptidyl-prolyl isomerase Pin1 has been reported to induce ubiquitination and degradation
of the type I IFN inducing transcription factor IRF3, which normally triggers a positive feedback loop
upon type I IFN pathway stimulation [123]. Pin1 has been demonstrated to be elevated in multiple
types of cancer, playing a role in stimulating several cancer-driving processes [124]. As Pin1 is involved
in downregulating type I IFN signaling, its suppression may lead to enhanced MHC-I expression,
thereby advancing T-cell-mediated cytotoxicity. Presently, several Pin1 inhibitors have been developed,
such as miR-200b, miR-200c, and miR296-5p, the small molecules all-trans retinoic acid (ATRA) and
KPT-6566, and the natural compound Juglone, which all showed anti-cancer activity in different types
of cancer [125–130].

Several protein tyrosine phosphatases (PTPs) have been described to downregulate tyrosine
phosphorylation in the JAK/STAT pathway, thereby interfering with induction of both type I and II IFN
signaling. For example, PTPN1 dephosphorylates TYK2 and JAK2 [131], PTPN2 dephosphorylates
JAK1, and PTPN11 (SHP2) has been demonstrated to inhibit phosphorylation of JAK1, STAT1, and
STAT2 [132]. Tyrosine phosphatases have been shown to be elevated in multiple types of cancer,
including breast, ovarian, gastric cancer, and glioma, in which they promote tumor growth, survival,
and metastases [133]. To date, several efforts have been attempted in the development of tyrosine
phosphatase inhibitors, including the PTPN11 inhibitor sodium stibogluconate, and the PTP1B inhibitor
MSI-1436C, which are now being tested in clinical trials for various cancer types [133–135]. In addition,
miR-155 has been reported to target several negative regulators of IFN signaling, including PTPN2,
which has been shown to result in increased IFNγ production by T-cells within the TME, thereby
promoting MHC-I expression [136]. In contrast, miRNA-155 has been demonstrated to be overexpressed
in multiple types of cancer, playing a pivotal role in oncogenesis, which may limit its use in cancer [137].

The ubiquitin ligases RING finger protein 2 (RNF2) and Smad ubiquitination regulatory factor-1
(Smurf1) and the protein inhibitor of activated STAT (PIAS) all function via inhibiting transcription
activation of STAT1 [138–140]. These proteins have been shown to be overexpressed in several types
of cancer, including melanoma, gastrointestinal tumors, lymphoma, and pancreatic cancer, thereby
playing an active role in cancer promotion [141–146]. Likewise, the ubiquitin ligase DCST1 is able to
induce ubiquitination and degradation of STAT2, which results in hampered type I IFN signaling and
has also been shown to be elevated in various cancers [147]. The small molecule inhibitors PRT4165
and A01 successfully inhibit, respectively, RNF2 and Smurf1 in vitro [148,149]. In addition, indirect
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inhibition of RNF2 was reported via inhibition of MEK-induced activation by the MEK-inhibitor
trametinib [143]. To date, no DCST1 inhibitors have been described.

Finally, the protein kinase D2 (PKD2) has been shown to dampen type I IFN signaling via
stimulating ubiquitination and endocytosis of IFNAR1, thereby causing rapid turnover of the type I
IFN receptor [150]. PKD2 has been associated with multiple types of cancer, functioning by promoting
tumor progression and blocking type I IFN signaling [151]. To date, several inhibitors of PKD2 have
been developed, for example the small molecule inhibitor CRT0066101 and the pyrazolopyrimidine
pan-PKD inhibitor SD-208, which both show anti-tumor activity in xenograft mouse models of various
cancers [152,153].

Taken together, several proteins have been implicated in impaired IFN signaling in cancer.
Accordingly, therapeutic intervention of these dysregulations may be beneficial when combined with
immunotherapy to increase MHC-I expression and enhance T-cell-mediated cytotoxicity. However,
many of these proteins have not been associated with MHC-I downregulation before, highlighting the
need to investigate their effect on MHC-I expression. In addition, as stated for NFkB, IFNs are also
reported to exert both pro- and anti-tumorigenic effects in various types of cancer [91,92], indicating
the need to closely study these effects.

6. NLRC5-Mediated Upregulation of MHC-I

Only recently, NLRC5 was discovered as a third key regulator of MHC-I transcription [154].
NLRC5 is expressed in response to IFN-mediated signaling, in particular via IFNγ, by binding of a
STAT1 homodimer to GAS in the NLRC5 promoter [154,155]. Interestingly, this STAT1 binding site in
the NLRC5 promoter was shown to partially overlap with an NFkB binding site, suggesting that NLRC5
expression may be induced by NFkB as well [156]. Moreover, it has been suggested that the NLRC5
promoter contains an ISRE site, which may allow transcriptional activation by IRF1. Upon its expression,
NLRC5 migrates to the nucleus, where it assembles with several proteins, including RFX, ATF1/CREB,
and the NFY complex, resulting in the formation of the MHC enhanceosome. This complex is able to
bind the SXY module in the MHC-I promoter, causing the induction of MHC-I expression. Additionally,
NLRC5 is able to recruit transcriptional initiation and elongation factors, and histon-modifying
enzymes, for example histon acetyltransferases and methyltransferases, which may further enhance
transcriptional activation of MHC-I [82,157]. (Epigenetic) downregulation of NLRC5 expression has
been observed as a mechanism of immune evasion in several types of cancer, including colorectal,
ovarian, breast and uterine cancers [158,159]. NLRC5 has been reported to elicit anti-tumor immunity
by enhancing antigen processing and presentation in melanoma [160]. In addition, NLRC5 expression
correlates with response to CPI in melanoma (https://pubchem.ncbi.nlm.nih.gov/patent/US2017321285,
US20170321285A1). Controversially, as also observed for NFkB- and IFN-mediated signaling pathways,
NLRC5 has been reported to exert both pro- and anti-tumorigenic effects in various types of cancer
(reviewed by Tang et al. [161]), indicating the need of careful evaluation of upregulation of NLRC5 in
cancer. To date, no specific NLRC5 targeting compounds have been described. Nonetheless, as NLRC5
activation pathways largely overlap with the above described pathways, compounds inducing these
pathways may also result in NLRC5 activation.

7. Inducing MHC-I Expression in Cancer via STAT3 Inhibition

As briefly touched upon in the section above, STAT3 becomes activated upon type I IFN signaling
to function as a negative feedback loop to inhibit expression of pro-inflammatory genes, thereby
contributing to balanced immune responses [98]. STAT3 is implicated in dampening a variety of
immune responses, including inhibition of both NFkB- and IFN-mediated pathways. STAT3 is able to
inhibit activation of the IKK-complex, thereby preventing phosphorylation and degradation of IkB,
which results in sequestering of NFkB transcription factors in the cytosol.

STAT3 has been shown to play a key role in the promotion of cancer by mediating proliferation,
survival, invasion, and metastasis [162]. STAT3 inhibition resulted in increased anti-tumor activity
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and superior responses to immunotherapy and immunogenic chemotherapy in several pre-clinical
studies and trials [163–172]. Combinations of CPI and STAT3 inhibitors are currently tested in clinical
trials [173]. STAT3 can be inhibited via upstream JAK inhibition as well as by direct inhibition of
STAT3. Several specific STAT3 inhibitors have been described, including JSI-124 (cucurbitacin I) [163],
static [166], indirubin [164], resveratrol [165], and the antibiotic nifuroxazide [170]. In addition, the
multitarget tyrosine kinase inhibitors sorafenib and sunitinib are also reported to specifically target
STAT3 phosphorylation and activation [167,168].

As STAT3 overexpression inhibits both NFkB- and IFN-signaling pathways, specific inhibition
of STAT3 may be an interesting strategy to target downregulation of these pathways and potentially
induce MHC-I upregulation. However, as is the case for other NFkB- and IFN-signaling pathway
inhibitors, these pathway inhibitors also exhibit favorable effects, as for example indicated by the fact
that STAT3 also elicits tumor-suppressive functions [174].

8. Inducing MHC-I Expression in Cancer via STING Induction

Stimulator of Interferon Genes (STING) is a DNA-sensing molecule which activates upon
encountering foreign DNA by cyclic dinucleotide recognition [175]. Upon cyclic dinucleotide
recognition, STING becomes activated and forms a complex with TANK-binding kinase 1 (TBK1),
which in turn is able to phosphorylate and activate both RelA and IRF3, thereby stimulating both
NFkB- and type I IFN-activation [176]. To date, several STING agonists have been developed to exploit
this response in cancer. One example is the STING agonist SB 11285, which is currently tested in
clinical trials in several solid tumors, including HNSCC and melanoma (ClinicalTrials.gov Identifier:
NCT04096638), and previously showed strong anti-tumor immunity induction in mouse models [177].

As STING induced both NFkB- and IFN-pathway activation, agonizing its activity may be an
interesting strategy to upregulate these pathways to potentially induce MHC-I upregulation. This is
further substantiated by the correlation between STING expression and HLA-associated genes in
neuroblastoma [178]. In addition, preclinical studies have reported superior effects of CPI therapy
in combination with STING agonists [179,180]. Combining CPI with STING agonists is currently
being tested in clinical trials [181]. The multi-facet involvement of STING in immune activation,
however, underlines the need to study its effect to improve therapy outcomes while not compromising
treatment safety.

9. Well-Known Oncogenic Pathways Affect MHC-I Expression

Various oncogenic pathways have been reported to affect expression of MHC-I, β2M, and other
APM components in cancer, including the MAPK-, epidermal growth factor receptor (EGFR), HER2,
c-MYC, and n-MYC pathway [182–187]. MAPK pathway activation is suggested to negatively
influence MHC-I expression via decreased IRF1 activity and STAT1 expression [188]. The MEK
inhibitors trametinib and cobimetinib have been demonstrated to enhance IRF1 expression and
increased STAT1 phosphorylation in human keratinocytes [188]. Watanabe et al. [189] reported that
treatment of a NSCLC cell line with trametinib also increased MHC-I expression in vitro. Another
MEK inhibitor, selumetinib, increased MHC-I expression in papillary thyroid cancer cell lines [2].
In addition, upstream inhibition of BRAF by vemurafenib and dabrafenib also induced MHC-I and
β2M upregulation in multiple melanoma cell lines [190].

Overexpression of the EGFR family member HER2/neu was shown to be inversely correlated
with MHC-I expression in different types of cancer, including breast cancer, esophageal squamous cell
carcinoma, and melanoma [191,192]. Additionally, overexpression of EGFR was associated with less
potent responses to cancer immunotherapy in NSCLC and neuroblastoma [193,194]. EGFR activates
PTNP11, which was mentioned above as a STAT1 inactivator [195]. PTNP11 also inhibits RAS
GTPase-activating protein, which normally functions in downregulating MAPK signaling, thereby
also contributing to impaired IFN signaling via the MAPK pathway [196]. A third mechanism in
which EGFR signaling impairs MHC-I expression is the promotion of STAT3 activation [197]. HER2 in
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turn also induces proteasomal degradation of the tumor suppressor Fhit, which normally upregulates
expression of MHC-I, APM components, and β2M via an as-yet unclear mechanism [142]. Hence,
targeting tyrosine kinase receptors, for example by the anti-EGFR antibodies nimotuzumab and
cetuximab, and the EGFR inhibitors afatinib, erlotinib, and gefitinib, results in enhanced expression of
MHC-I and APM components in different cancer cell lines as well as in cancer patients [185,198–202].

Finally, oncogenes c- and n-MYC have both been associated with MHC-I downregulation [186,187,203].
N-MYC has been shown to decrease MHC-I expression in rat neuroblastoma cell lines through the
inhibition of the NFkB transcription factor p50 [203]. On the contrary, Forloni et al. [204] showed that
that the downregulation of MHC-I in human neuroblastoma cells was not caused by n-MYC. In line
with this, we did not identify n-MYC as a negative regulator of NFkB [54]. However, one limitation
of our study was the use of an early phase CRISPR/Cas 9 library, which impairs the ability to fully
confirm the results found in previous studies. Recently, Yang and colleagues showed that c-MYC
expression induction by the Wnt/B-catenin pathway is responsible for MHC-I downregulation in
glioma [187]. This again hints towards involvement of MYC-family members in MHC-I expression
regulation in cancer.

Altogether, by targeting these oncogenic pathways, we potentially will not only be able to
impair tumor growth and proliferation, but also exhibit anti-tumor responses via increasing the
immunogenicity of the tumor.

10. Chemotherapy- and Radiation-Induced MHC-I Expression

Certain chemotherapeutic therapy regimens are known to induce anti-tumor immune responses
without inducing classical immunogenic cell death (ICD). Hodge and colleagues showed that
both docetaxel-induced ICD-sensitive and resistant tumor cells expressed increased levels of APM
components, including TAP2, calnexin and calreticulin [205]. In addition, immunochemotherapy
combining IFNα and 5-fluorouracil treatment resulted in increased MHC-I expression via STAT1/2
activation in murine pancreatic cancer models [206]. Besides this, several topoisomerase inhibitors (e.g.,
topotecan, irinotecan, and etoposide), microtubule stabilizers (e.g., paclitaxel and vinblastine), cisplatin,
and ionizing radiation elevate MHC-I surface expression, which is thought to be induced via NFkB
stabilization and IFNβ secretion [207–209]. These studies indicate that cytostatic drugs may, besides
direct induction of cell death, also be involved in decreasing tumor immune escape via upregulation of
antigen presentation, thereby making these drugs interesting candidates for combination therapy to
improve immunotherapeutic strategies in cancer.

11. Epigenetic Silencing Affecting MHC-I Expression

Another common reversible defect in MHC-I antigen presentation is the occurrence of epigenetic
modulation, which may impair the transcription of MHC-I, APM components, β2M, or MHC-I
regulatory proteins. Histon deacetylation (HDAC) has been reported to reduce expression of MHC-I
and key components of the APM, such as the proteasome subunits LMP-2 and LMP-7, and TAP in
multiple types of cancer, including neuroblastoma, glioma, Merkel cell carcinoma, cervical cancer,
and melanoma [187,210–212]. HDAC inhibitors, of which several already are FDA approved (e.g.,
Romidepsin, Vorinostat and Panobinostat), show increased expression of MHC-I and APM components
both in vitro and in vivo [187,210,211,213]. Multiple other HDAC inhibitors are currently tested in
clinical trials either alone or in combination with other drugs in various types of cancer, including
melanoma, breast cancer, and lung cancer [214].

Epigenetic modulation by DNA hypermethylation has also been reported to cause reduced
expression of MHC-I and related genes, which may be reversed by treatment with DNA
methyltransferase inhibitors (DNMTi). The DNMTis guadecitabine, 5-azacytidine, and decitabine
increased MHC-I expression in breast cancer, melanoma, and neuroblastoma cell lines [54,215–217].
Interestingly, combinatory treatment with TNFα, IFNγ, or knockout of known inhibitors of NFkB
signaling (TNIP and N4BP1) further exaggerated the effect of these epigenetic modulators [54,215,217].
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Additionally, increased MHC-I expression was observed in breast cancer patients treated with a
combination of DNMT and HDAC inhibitors [216], indicating the potential of epigenetic modification
to reintroduce MHC-I expression in tumors.

12. Discussion

MHC-I-mediated antigen presentation is crucial for CD8+ T-cell cytotoxicity and is one of
the key factors in endogenous adaptive immune response development as well as T-cell mediated
immunotherapy efficacy in cancer. The often intrinsically reversible nature of these dysregulations
provides an opportunity to restore MHC-I expression and therewith adaptive anti-tumor immunity.
In this review, we highlight that MHC-I-mediated antigen presentation is a complex, multi-faceted
process, which can be dysregulated at many levels. As APM players are often induced by the same set
of transcription factors, downregulation of APM players often coincides. To identify therapeutic targets
to increase immunotherapy efficiency in cancer, a better understanding of the underlying mechanisms
of MHC-I downregulation in tumors is required. A summary of regulators of MHC-I expression and
potential therapeutic strategies described in this review can be found in Table 1 and Figure 4.

Dysregulation of factors affecting the downstream signaling of MHC-I-inducing pathways makes
it questionable whether pathway activity can be restored by upstream pathway activation. As a result,
therapeutic intervention to inhibit negative regulators of these pathways, possibly combined with
stimulation of positive regulators of these pathways, may be the most promising strategy to explore.

Downregulation of MHC-I is an important factor contributing to the immune evasion of tumors.
However, as underlined by the observed resistance of solid tumors to CAR-therapy as well as by
IFNγ-mediated upregulation of PD-L1 [112,113], immune evasion of tumors is a multifaced process. As a
result, the authors hypothesize that combination therapy targeting several tumor-immunomodulatory
processes simultaneously will be necessary to avoid immune evasion of tumors. Several combinations
of immunomodulatory drugs, including combining CPI with STAT3 inhibitors or STING agonists,
show promising results in (pre-)clinical studies [171–173,179–181].

An important contradiction in enhancing NFkB-, IFN-, and NLRC5-mediated MHC-I expression
is the dual role of these pathways in cancer [37,91,92,161]. They have been described in both
tumor-promoting as well as tumor-suppressive mechanisms in several types of cancer. The authors
hypothesize that, depending on the activation status of these pathways, its function will either be to
promote or suppress tumor progression. Hence, it is important to study the effect of (pharmacological)
enhancement of these pathways in MHC-I lacking tumors, as overactivation might shift the balance
from immune evasion towards tumor progression. However, the observation that several NFkB/IFN
upregulatory drugs do show beneficial effects in the treatment of several types of cancer highlights the
potential of these drugs in improving immunotherapy outcomes in cancer.
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Table 1. Overview of described pathways and potential therapeutic strategies to boost MHC-I antigen presentation.

Regulation Pathway Effector Described Mechanism(s) Potential Therapeutic Strategy Clinical Status

Negative
Regulators

NFkB pathway

N4BP1
1. Cezanne-1 stabilization

2. Preventing recruitment of
NEMO to RIP1

miRNA-28-5p [65–67,70,71] Pre-clinical

Cezanne-1 Deubiquitination and
stabilization of TRAF3

Aspecific DUB inhibitors (e.g., Ubal) [87]
miR-1180 [69], miR-486 [68]
Cyanopyrrolidine derivates

(WO2017109488)

Pre-clinical

TNIP1

1. Preventing recruitment of
NEMO to RIP1

2. Preventing degradation of the
IkB p105 into p50

3. A20 stabilization

IL-17 [63]
miR-1180 [69], miR-486 [68] Pre-clinical

A20

1. Deubiquitination of NEMO
2. Deubiquitination of RIP-1 and

TRAF6
3. Degradation of RIP-1

Aspecific DUB inhibitors (e.g., Ubal) [87]
miR-1180 [69], miR-486 [68]

Pre-clinical

TAX1BP1 Itch recruitment to A20

Itch Controlling interaction between
A20 and RIP1/TRAF6

Clomipramine and norclomipramine [80]
1,4-naphthoquinone 10E [81]

FDA-approved antidepressants
Pre-clinical

CYLD 1. Deubiquitination of NEMO
2. Deubiquitination of TRAF2

miR-1288 [84], miR-186 [85],
miR-362-5p [86] Pre-clinical

Type I/II IFN
pathway

DUX4 1. JAK 1/2 downregulation
2. STAT2 downregulation

p300 inhibitors [115]
p38 inhibitors [117]

Pre-clinical
Several Phase II Trials (Rheumatoid
Arthritis, Asthma, LMNA-related

cardiomyopathy)

LNK (SH2B3) Dephosphorylation of STAT1 miR-29b [122], miR-30-5p [121],
miR-98 [121], miR181a-5p [121]

PTPN1 (PTP1B) 1. Dephosphorylation of TYK2
2. Dephosphorylation of JAK2 MSI-1436C [135] Phase I Trial, metastatic breast cancer

PTPN2 (TC-PTP) 1. Dephosphorylation of JAK1 miRNA-155 [136] Pre-clinical
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Table 1. Cont.

Regulation Pathway Effector Described Mechanism(s) Potential Therapeutic Strategy Clinical Status

PTPN11 (SHP2)
1. Dephosphorylation of JAK1

2. Dephosphorylation of STAT1
3. Dephosphorylation of STAT2

Sodium stibogluconate [134] Phase II Trial, Leishmaniasis, stage IV
melanoma, advanced solid tumor

RNF2 Polyubiquitination of STAT1,
resulting in release from DNA

Trametinib [143]
PRT4165 [148]

FDA-approved in several advanced-stage
cancers

Pre-clinical

Smurf1 Degradation of STAT1 A01 [149] Pre-clinical

PIAS Inhibiting STAT1 promotor
recruitment

Type I IFN
pathway

DCST1 Ubiquitination and degradation
of STAT2

PKD2 Stimulating ubiquitination and
endocytosis of IFNAR1

CRT0066101 [152]
SD-208 [153] Pre-clinical

Pin1 Ubiquitination and degradation
of IRF3

miR-200b [126], miR-200c [127],
miR-296-5p [128]

ATRA [129]
KPT-6566 [130]
Juglone [125]

Pre-clinical
FDA-approved in cancer

Pre-clinical
Pre-clinical

NFkB and type
I/II IFN pathway

STAT3
1. Negative feedback loop of

pro-inflammatory type I signaling
2. Inhibition of IKK activation

STAT3 inhibitors:
JSI-124 [169]

Indirubin [164]
Resveratrol [165]

Nifuroxazide [170]
Static [166]

Sorafenib [167]
Sunitinib [168]

Pre-clinical
Phase 3/4 trials in acute promyelocytic
leukemia, phase 2/3 in dermatitis and

psoriasis
Phase 2/3 in congestive heart failure,
Friedreich Ataxia, Gulf War Illness,
Lymphangioleiomyomatosis, and

infertility
FDA-approved antibiotic

Pre-clinical
Pre-clinical
Pre-clinical

EGFR receptor
family

(including
HER2/neu)

1. STAT1 inactivation
2. Stimulation of MAPK pathway

3. STAT3 activation
4. Fhit degradation

Tyrosine Kinase inhibitors:
EGFR inhibitors (e.g., nimotuzumab
[198], cetuximab [199], afatinib [185],

erlotinib [185], gefitinib [202]).

FDA-approved in cancer

NMYC Inhibition of p50
(although inconsistent)
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Table 1. Cont.

Regulation Pathway Effector Described Mechanism(s) Potential Therapeutic Strategy Clinical Status

MAPK pathway 1. Decreases IRF1 activity
2. Decreases STAT1 expression

Tyrosine Kinase inhibitors:
MEK-inhibitors (e.g., trametinib

[188,189], cobimetinib [188],
selumetinib [2])

BRAF inhibitors (e.g., vemurafenib
[184,190], dabrafenib [41])

FDA-approved in cancer, selumetinib in
phase 3

FDA-approved in cancer

NFkB pathway

NFkB-inducing
receptor

stimulation

1. TNFR superfamily stimulation
2. PRR Receptor stimulation
3. IL-1 receptor stimulation

TNFα [40] Phase I-III trials in cancer, all localized
infusions

IKK/IkBα 1. Boosting IKK-activity
2. Degradation of IkBα Betulinic acid [45] Phase I trial, Anxiety

IKK Boosting IKK-activity Calcium/calcineurin + prostratin [51] Pre-clinical

Nedd4 1. Degradation of N4BP1
2. Degradation of TRAF3

p50, RelA, and
LMP-2/-7/-10

1. Enhanced expression of p50
2. Enhanced expression of RelA

3. Enhances expression of
LMP-2/-7/-10

Retinoids [41,218] FDA-approved in several diseases,
including cancers

Type I IFN
pathway

IFN-inducing
receptor

stimulation

1. PRR Receptors stimulation
(e.g., RNF135, TRIM25, ISG15,

NAB2)
2. IFNA Receptor stimulation

IFNα [100,101]
IFNβ therapy [101]

FDA-approved in hepatitis B & high-risk
melanoma

Phase III trial in relapsing multiple
sclerosis, Phase I in refractory solid tumors

Type II IFN
pathway

IFN-inducing
receptor

stimulation
IFNG Receptor stimulation IFNγ-1b

NK cell therapy [19,33,103,106,107,219]

FDA approved as localized injection in
chronic granulomatous disease (CGD) and

severe, malignant ostepetrosis (SMO),
phase I-III in cancers

Phase I/II Trial in several cancer types

NFkB- and type I
IFN pathway STING

1. Phosphorylation and
activation of RelA

2. Phosphorylation and
activation of IRF3

STING agonists (e.g., SB 11285 [177]) Phase I Trial in patients with advanced
solid tumors
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Table 1. Cont.

Regulation Pathway Effector Described Mechanism(s) Potential Therapeutic Strategy Clinical Status

NFkB- and type I
IFN pathway

1. Increasing APM expression
(Calreticulin, TAP2, calnexin)

2. Enhancing type I IFN signaling
3. NFkB stabilization

4. IFNβ secretion

Docetaxel [205]
5-Fluorouracil [206]

Topoisomerase inhibitors (e.g., topotecan
[207,209], irinotecan [208], and

etoposide [207]
Microtubule stabilizers (e.g., paclitaxel

[207,209] and vinblastine [207])
Cisplatin [207]

All FDA-approved in cancer

Epigenetic
modification

NFkB and type
I/II IFN pathway

1. Histon acetylation to decrease
genome accessibility

2. DNA methylation to decrease
genome accessibility

HDAC inhibitors: (e.g., Romidepsin,
Vorinostat [212] and Panobinostat)

[1,211–214]
DNMTis (e.g., 5-azacytidine [212],

Decitabine [54], and Guadecitabine [216])

All FDA-approved in cancer
FDA approved, Guadecitabine phase II

trials in cancer).
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