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Abstract: One of the greatest challenges in the cancer immunotherapy field is the need to biologically
rationalize and broaden the clinical utility of immune checkpoint inhibitors (ICIs). The balance
between metabolism and immune response has critical implications for overcoming the major
weaknesses of ICIs, including their lack of universality and durability. The last decade has seen
tremendous advances in understanding how the immune system’s ability to kill tumor cells requires
the conspicuous metabolic specialization of T-cells. We have learned that cancer cell-associated
metabolic activities trigger shifts in the abundance of some metabolites with immunosuppressory roles
in the tumor microenvironment. Yet very little is known about the tumor cell-intrinsic metabolic traits
that control the immune checkpoint contexture in cancer cells. Likewise, we lack a comprehensive
understanding of how systemic metabolic perturbations in response to dietary interventions can
reprogram the immune checkpoint landscape of tumor cells. We here review state-of-the-art molecular-
and functional-level interrogation approaches to uncover how cell-autonomous metabolic traits
and diet-mediated changes in nutrient availability and utilization might delineate new cancer
cell-intrinsic metabolic dependencies of tumor immunogenicity. We propose that clinical monitoring
and in-depth molecular evaluation of the cancer cell-intrinsic metabolic traits involved in primary,
adaptive, and acquired resistance to cancer immunotherapy can provide the basis for improvements in
therapeutic responses to ICIs. Overall, these approaches might guide the use of metabolic therapeutics
and dietary approaches as novel strategies to broaden the spectrum of cancer patients and indications
that can be effectively treated with ICI-based cancer immunotherapy.
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1. Introduction

In 2011, Hanahan and Weinberg added the evasion of immune destruction as a new trait to the list
of cancer hallmarks [1]. Since then, the use of inhibitors targeting the specific mechanisms that cancer
cells employ to evade immune system detection, particularly the programmed cell death protein-1
(PD-1)/programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein-4
(CTLA-4) immune checkpoint axes, has revolutionized the therapeutic landscape of tumors previously
considered to be highly lethal [2–5]. Despite the unquestionable success of anti-PD-1 (pembrolizumab
and nivolumab), anti-PD-L1 (atezolizumab, durvalamab, and avelumab), and anti-CTLA-4
(ipilimumab) monoclonal antibodies for extending overall survival over standard chemotherapy
and genomically-targeted therapies in an ever-growing list of malignancies, the clinical gains of these
so-called immune checkpoint inhibitors (ICIs) are far from universal. Indeed, this ground-breaking
therapeutic modality does not benefit a majority (>80%) of cancer patients [6,7]. The ubiquity
of innate (primary) and adaptive resistance prevents the introduction of ICIs into the therapeutic
armamentarium for some of the major cancer types (e.g., breast, prostate, pancreas). One third of
patients with acquired (secondary) resistance relapse after initial response, pointing to the coexistence
of multiple, non-redundant tumor cell-intrinsic and -extrinsic mechanisms of cancer immunotherapy
resistance. The biggest challenge in the cancer immunotherapy field is now the need to biologically
rationalize and broaden the clinical utility of ICIs in a majority of unresponsive cancer patients across
multiple tumor types.

Much effort has been invested into the identification of response markers and the mechanisms
of tumor response to cancer immunotherapy, such as the expression of immune checkpoint proteins,
tumor mutational burden, and immune/inflammation gene signatures [6–10]. Although the predictive
value of these histological, genomic, and transcriptomic approaches remains limited, they are beginning
to provide key mechanistic insights into the clinical benefit of potentiating tumor T-cell infiltration
for boosting responses to ICIs via the incorporation of, for example, anti-cytokine (IL-1β, IL-6, TGFβ)
immunotherapeutics [11–15]. Intriguingly, there is a solid body of evidence suggesting that immune
evasion and metabolic reprogramming [16–19], which also attained the status of emerging cancer
hallmark in 2011 [1], are fundamentally linked. Indeed, the metabolic instruction of host immunity and
cancer immune evasion has crucial implications for the use of cancer metabolic traits to circumvent some
of the current weaknesses of cancer immunotherapy including its (lack of) universality and durability.

The past decade has witnessed the emergence of cancer immunometabolism as a flourishing
research area at the interface between the historically distinct disciplines of immunology and
metabolism [20–22]. Cancer immunometabolism continues to gain momentum through the realization
that metabolic remodeling underlies cancer immune responses, and that targeting immune and
cancer cells’ metabolism can bolster antitumor immunity and synergize with cancer immunotherapy.
There has been much focus on understanding how the immune system’s ability to kill tumor cells
requires a conspicuous metabolic specialization of T-cells (Figure 1, layer 1). We are also beginning to
appreciate how cancer cell-associated metabolic activities trigger shifts in the abundance of certain
metabolites with immuno-regulatory roles in the tumor microenvironment (TME) (Figure 1, layer 2).
Correspondingly, cancer metabolism research has entered a long-awaited therapeutic era in which a
novel category of immunometabolic drugs are being clinically tested to boost the metabolic demands of
immune cells and suppress the immunosuppressive metabolic features of the TME [23,24]. That being
said, very little is known about the specific tumor cell-intrinsic metabolic traits that control the immune
checkpoint contexture in cancer cells (Figure 1, layer 3). Likewise, we are lacking a comprehensive
understanding of how systemic metabolic perturbations in response to certain dietary approaches can
reprogram the immune checkpoint landscape of tumor cells.
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drive the composition of the immune checkpoint landscape in cancer cells and the responsiveness of 
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mechanisms and the efficacy of immune checkpoint inhibitors. The amount, type, and utilization of 
nutrients derived from the diet as well as diet-altered activity of gut and tumor microbiota may 
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tumor cells.  

Figure 1. A three-layer metabolic regulation of the interface between tumor immune evasion and
T-cell-directed immune checkpoint inhibitors. Layer 1: Metabolic specialization of T-cells. The activation,
proliferation, and differentiation of T-cells are governed by dynamic changes in metabolic pathways
involving glucose uptake/metabolism, mitochondrial function, amino acid uptake, and cholesterol/lipid
synthesis. Layer 2: Immunosuppressive tumor microenvironment (TME) metabolism. Cancer cells
compete with effector T-cells in the TME for the same pool of nutrients, leading to the strong inhibition
of T-cells; the immunosuppressive activity of certain immune compartments (e.g., M2-polarized
tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T
(Treg) cells) is highly dependent on the metabolic switches occurring in the TME. Layer 3: Cancer
cell metabolic state. Certain metabolic nodes might suffice to drive the composition of the immune
checkpoint landscape in cancer cells and the responsiveness of cancer cells to immunotherapy;
diet-mediated changes in nutrient availability/utilization by cancer cells could have a similar impact on
both the composition and/or functionality of the immune-escape mechanisms and the efficacy of immune
checkpoint inhibitors. The amount, type, and utilization of nutrients derived from the diet as well as
diet-altered activity of gut and tumor microbiota may influence not only the cell-autonomous metabolic
capacity of cancer cells to shape their immune checkpoint landscape, but also the immunosuppressive
metabolic features of the TME, and the metabolic specialization of T-cells. The pharmacological and
dietary modulation of metabolic pathways, metabolites, and/or metabolic enzymes responsible for
the antagonistic (e.g., tumor cells versus effector/cytotoxic T-cells) and symbiotic (e.g., tumor cells,
TAM, MDSC, and Treg cells) interplays of the TME and the microbiota might elevate the response rates
of cancer immunotherapy. Balancing the inhibition of layers 2 and 3 while boosting layer 1 remains
challenging without the delineation of the metabolic and dietary blueprints that shape the immune
checkpoint landscape of tumor cells.

In this perspective article, we first review how efforts made to better understand the metabolic
nature of the immunosuppressive TME has already led to various combinations of immunotherapies
with cancer metabolism-targeting drugs. We then present the notion that a comprehensive appreciation
of how cancer cell-intrinsic metabolic changes and -extrinsic dietary influences regulate essential
immune checkpoints for T-cell activation (and/or alternative mechanisms of immune escape) is urgently
needed to successfully target the complex immuno-metabolic interplays occurring between different
cellular compartments of the TME. We finally propose that a molecular-level understanding and
functional immunomonitoring of how cancer cell-autonomous metabolic traits and diet-mediated
changes in nutrient availability and utilization impact the immune checkpoint landscape might guide
the incorporation of anti-metabolic drugs and dietary approaches into frontline treatments with
ICI-based immunotherapy. While we acknowledge that immune checkpoint molecules expressed on
natural killer (NK) and tumor-infiltrating myeloid cells have recently emerged as promising therapeutic
targets in cancer immunotherapy [25–30], the influence of NKs and myeloid cell metabolism on their
immune checkpoint composition and on ICI efficacy is not considered in detail here.
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2. Metabolic Functions of Immune Checkpoints and the Metabolic Nature of
Immunosuppressive TME: Battling over Metabolic Resources

The ability of tumors to impose desert/exclusion patterns in the topography of cancer-associated
immune cells largely relies on the promotion of metabolic layers of defense (Figure 1). Such defensive
regulation closely relates to the immunometabolic regulatory actions of immune checkpoints on T-cells
and the metabolic specialization that is required to drive the differentiation, function, and trafficking of
T-cells into tumor sites [31–34].

The capacity of immune checkpoints to operate as potent inhibitors of anti-tumor T-cell responses
relies, at least in part, on their ability to impede the utilization of nutrients such as glucose and
glutamine and some specific species of fatty acids that, altogether, allow the activation, phenotypic
switching, and self-renewal of T-cells. Engagement of PD-1 with PD-L1 expressed on the tumor cell
surface drives a condition called immune metabolic anergy that prevents T-cells from meeting the
metabolic demands required to sustain anti-tumor responses [35,36]. Indeed, a restoration of the
metabolic preferences and mitochondrial fitness of tumor-infiltrating T-cells is recognized as a pivotal
mode of action of ICIs. The paradoxical association between obesity and increased anti-tumor efficacy
and the clinical outcomes of ICIs serves to illustrate how dynamic reprogramming of metabolism is
essential for T-cell functioning [37,38]. Obesity increases the metabolic activity and growth of tumors
and promotes immune dysfunction, in particular by the upregulation of PD-1, which in turn augments
the energy metabolism and mitochondrial biogenesis of T-cells. Obesity-driven constant changes in
the metabolic and activation status of T-cells could lead to a terminally differentiated exhausted T-cell
phenotype. This phenomenon amplifies the biological effects and clinical benefits that arise from the
metabolic reinvigoration of T-cells driven by anti PD-1/PD-L1 therapeutics.

Unrestrained tumor growth leads to the excessive consumption of the same set of nutrients
that are essential for effector T-cells, including glucose, amino acids, and fatty acids. Effector T-cells
entering the metabolically inhospitable TME face stressful constraints on the metabolic fitness required
for their optimal proliferation and anti-tumor functionality [37,39–46]. Such nutritional competition
phenomena are further amplified by the tumor-driven recruitment of immune suppressor cells such as
regulatory T-cells (Treg), M2 tumor-associated macrophages (TAMs), and myeloid-derived suppressor
cells (MDSCs). This immunosuppressive cell compartment depends on specific metabolic functions to
exert its functions, or can promote high expression of metabolic enzymes in dendritic cells, such as
arginase and indolamine 2,3-dioxygenase (IDO), thereby reducing the availability of key amino acids
required by T-cells such as arginine and tryptophan [37,46]. Kynurenine, the catabolic product of
IDO-driven tryptophan metabolization in tumor cells and TAMs, can further impede T-cell activation
and promote the development of immunosuppressive Treg [24]. Extracellular adenosine, which is
generated by the elevation of the ectonucleotidases CD39 and CD73 in the TME [47,48], is a potent
metabolic immunosuppressor that directly restricts antitumor responses by activating the adenosine
A2A receptor (A2AR) in T-cells. The TME can acquire additional immunosuppressive traits via tumor
cell-driven release of immune regulatory metabolic (by)products that can blunt T-cell activity while
promoting the differentiation of immunosuppressive cell subsets [39–45]. This is clearly illustrated
by the metabolic product lactate and the oncometabolite (R)-2-hydroxyglutarate (R-2HG), both of
them operating as bona fide immunosuppressive metabolites by promoting the proliferation of
immunosuppressive cell subsets while significantly limiting the tumor bed recruitment, proliferation,
and functionality of T-cells [49–52].

2.1. Metabolic Drugs Targeting the Immunosuppressive Nature of TME: A First-in-Class Success of the Cancer
Metabolism Pipeline

The ability of ICIs to relieve the inhibitory signals of immune checkpoints towards the metabolically
active immuno-phenotype of T-cells is expected to synergize with other therapeutic approaches aimed at
suppressing the metabolic quenching activity of the TME. Indeed, although the innate flexibility of cancer
cell metabolic pathways has been a thorn in the side of cancer metabolism drug developers, a remarkable
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exception is the rise of a novel category of metabolic drugs aimed to overcome immunotherapy resistance
by improving the metabolic competitiveness and functionality of T-cells in the TME [23,24]. Blocking
glucose metabolism with mammalian target of rapamycin (mTOR) and hexokinase II inhibitors,
oxidative phosphorylation with inhibitors of the mitochondrial electron transport chain, lactate
transport with monocarboxylate-transporter inhibitors, lipid metabolism with cyclooxygenase (COX)
inhibitors, adenosine metabolism with anti-ectonucleotidase antibodies, and preventing tryptophan,
arginine, and glutamine depletion with IDO-, arginase-, and glutaminase-inhibitors, are all examples of
the numerous preclinical approaches that have been proposed to rewire the metabolic fitness of T-cells
in the TME [24,53–55]. Numerous phase I/II trials are currently underway combining inhibitors of the
glutamine/glutamate pathway, arginine pathway, 2HG-producing mutant isocitrate dehydrogenase
(IDH), the adenosine pathway, cyclooxygenase 2 (COX2) and/or prostaglandin E2 (PGE2), and glucose
metabolism, with a wide variety of ICI partners [23,24]. Of note, first-in-human clinical trials of
agents targeting the adenosinergic signaling pathway as single agents and in combination with
anti-PD-1/PD-L1 therapies are demonstrating high rates of disease control [24,47,48]. On the negative
side, a phase III study combining an IDO1-selective competitive inhibitor with an anti-PD-1 monoclonal
antibody failed to provide significant therapeutic gain in patients with metastatic melanoma [56–59].
These clinical findings highlight the need for uncovering the metabolic flexibility dependencies of tumor
cells in responding or adapting to metabolic modulators [60–65], including dietary approaches [65–67],
aimed at overcoming resistance to ICIs.

2.1.1. Phosphatidylinositol 3-Kinase (PI3K) Inhibitors and Insulin Signaling

Despite clear molecular evidence of the PI3K cascade as one of the most frequently activated
metabolic drivers of cancer, small-molecule PI3K inhibitors have yielded disappointing results in
monotherapy trials [68–70]. Pan-PI3K inhibitors induce transient hyperglycemia and, consequently,
a compensatory increase in insulin production and secretion that can reactivate PI3K signaling in tumor
cells [70]. This metabolic nullification of the expected beneficial effects arising from the therapeutic
blockade of PI3K could be successfully overcome by limiting circulating glucose and insulin/insulin-like
growth factor-I (IGF-I) levels. Accordingly, a ketogenic (i.e., high-fat, very low-carbohydrate) diet
preventing hyperglycemia and lowering insulin release has been shown to efficiently reduce the
activation of insulin receptors in tumors and to restrict the re-activation of the PI3K pathway in
tumor-bearing mice, thereby enhancing the therapeutic response to PI3K inhibitors [18]. While it
might be argued that this approach exclusively holds promise for patients with tumors bearing
mutations in PIK3C genes being treated with PI3K inhibitors, the implications are wider and motivate
its consideration in ICI-based cancer immunotherapy. For instance, a ketogenic diet has been associated
with a reduction in the (PI3K-driven) expression of PD-L1 and an increase in tumor-infiltrating CD8+

T-cells [44,45,71], thus highlighting how systemic metabolic perturbations in response to dietary
interventions can reprogram the immune checkpoint landscape of tumor cells for anticancer immune
response activation (Figure 2, left).
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Figure 2. Metabolic flexibility and immune checkpoint inhibitors: learning from failures. The metabolic
traits underlying the clinical failure of phosphoinositide 3-kinase (PI3K) (left) and indolamine
2,3-dioxygenase 1(IDO1) inhibitors (right) provide two excellent examples of how an in-depth
understanding of the metabolic plasticity of tumors [64,65] can inform the use of metabolic and
dietary interventions for more efficient ICI-based cancer immunotherapy.

2.1.2. IDO Inhibitors and the Trypophan-Kynurenine Pathway

The IDO pathway mediates immunosuppressive effects through the metabolization of tryptophan
to kynurenine [24,46,58]. Two main enzymes, IDO and tryptophan-2,3-dioxygenase (TDO), regulate
the first and rate-limiting step of the kynurenine pathway (Figure 2, right). IDO operates as an immune
checkpoint in peripheral immune tolerance through its capacity to inhibit the proliferation of T-cells
and sensitize them to apoptosis via the starvation of tryptophan. In addition, other cells that reside
in the TME (e.g., dendritic cells and MDSCs) often express IDO and help tumor cells to accumulate
kynurenine, which signals through the aryl hydrocarbon receptor (AhR) to promote tumor tolerance
to tumor-infiltrating cytotoxic T-cells. While the combination of IDO inhibition and blockade of the
PD-1/PD-L1 axis has a strong rationale, as these immune checkpoints inhibit immune response via
complementary mechanisms, the ECHO-301/Keynote-252 trial failed to demonstrate a clinical benefit of
adding the IDO inhibitor epacadostat to the anti-PD-1 monoclonal antibody pembrolizumab in patients
with unresectable metastatic melanoma [57]. The inhibition of IDO could trigger the induction of the
co-expressed TDO as a compensatory immunosuppressive mechanism and, therefore, IDO inhibition
alone will likely not suffice to prevent kynurenine-mediated immunosuppression in most cancers.
The sequential or simultaneous inhibition of both IDO and TDO with IDO-specific and TDO-specific or
dual IDO/TDO inhibitors might be a preferable course of treatment to relieve the immunosuppressive
effect of kynurenine. Inhibitors of IDO/TDO downstream mediators where the pathway converges
(i.e., enzymes such as kynurerinase and small-molecule antagonists of AhR) would be an alternate
way of repressing kynurenine-mediated immunosuppression. Moreover, if suppression of kynurenine
is indeed the dominant mechanism, the ability of the ketogenic diet to target its metabolism [72,73],
may help IDO/TDO inhibitors to drive intratumoral levels of kynurenine sufficiently low to alleviate
the immunosuppressive effects of kynurenine-activated AhR (Figure 2, right).

These two examples serve to highlight that either pharmacological or dietary targeting of
metabolic compensatory mechanisms can improve the therapeutic outcomes of ICIs. The dependency
of immunotherapy-resistant states on certain metabolic traits might rationally determine the ability
of specific metabolic and/or dietary interventions to augment the tumoricidal effects of existing
cancer immunotherapies. Elucidating context-specific metabolic dependences and their connections to
immune checkpoints and immune-evasion programs in tumor cells represents a promising approach
to identifying new metabolic and dietary approaches for ICI-based cancer immunotherapy.
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2.2. Dietary Interventions/Modifications Impacting the Immunosuppressive Traits of TME

Diet-mediated changes in whole-body metabolism can locally alter access to and utilization of
nutrients by cancer cells, which could be exploited to bolster not only the tolerability but also the
efficacy of existing cancer therapies. Although originally assumed not to be relevant, certain dietary
interventions/modifications have been proposed as an integral part of anti-cancer regimens—as an
extrinsic metabolic means capable of impacting cancer patient outcomes [17–19]. The mechanistic ability
of starvation/calorie restriction (e.g., fasting/intermittent fasting or fasting-mimicking diets leading
to glucose restriction) and more targeted dietary approaches involving selective nutrient limitation
(e.g., deprivation of amino acids such as methionine or serine) or selective nutrient supplementation
(e.g., histidine, mannose) to enhance cancer therapy has been described in two recent excellent
reviews [66,67]. In the context of cancer immunotherapy, we are beginning to appreciate how certain
dietary interventions/modifications may alleviate the severe immunosuppressive metabolic traits of
the TME. Fasting-mimicking diets appear to target the link between the A2AR-related enzyme heme
oxygenase (HO-1) in T-cells and the production of immunosuppressive adenosine by cancer cells,
thereby inducing chemosensitization phenomena and tumor growth inhibition via the enhancement of
T-cell killing [74]. Ketogenic diets might overcome several immune-escape mechanisms by lowering the
expression of the immune checkpoints CTLA-4 and PD-1 on TILs and increasing cytokine production
and T-cell killing activity [71]. Similarly, low-protein diets or specific restriction of methionine have
been shown to improve the tumor-reactive response of T-cells and macrophages [75,76].

Certain amino acids that are depleted in the interstitial fluid of tumors and in the circulation of
cancer patients are required for an effective immune response [77,78]. Therefore, it might be argued
that dietary approaches further limiting the availability of these amino acids to prevent the growth
of cancer cells may also deprive immune cells of essential nutrients, thus having the detrimental
effect of suppressing anti-cancer immunity and hindering the anti-cancer activity of ICIs. Alanine
deprivation leads to metabolic and functional impairment during T-cell activation and memory T-cell
restimulation [79]. Likewise, diet-induced reduction of circulating serine, which supplies glycine and
one-carbon units for de novo nucleotide biosynthesis in proliferating T-cells, severely limits T-cell
expansion even in the presence of optimal glucose concentrations [80]. Whereas arginine-depleted
diets and arginine-degrading agents such as the PEGylated arginine deiminase (ADI-PEG20) synergize
with the anti-tumor effects of cancer therapies in different mouse tumor models [67,81,82], dietary
supplementation of arginine has been shown to limit the growth of cancers by enhancing innate and
adaptive immune responses [83,84]. Indeed, arginine depletion using a PEGylated form of the catabolic
enzyme arginase I (peg-Arg I) enhances tumor growth in mice by inducing MDSCs and blunting T-cell
responses [85], confirming that arginine can have a direct impact on the metabolic fitness and survival
capacity of T-cells crucial for anti-tumor responses.

While the abovementioned studies might raise concerns that the dietary restriction of certain
amino acids decreases the anti-cancer response to ICIs, it should be noted that the anti-tumor
efficacy of a serine-free diet has been demonstrated not only in T-cell-deficient (nude) mice but
also in immunocompetent mice [17]. These considerations highlight the need for employing
immunocompetent models in preclinical studies of metabolic therapies and/or dietary modifications
for enhanced cancer immunotherapy. It should be underlined, however, that while mice are the
experimental tools of choice for the majority of immunologists, there are notable discrepancies between
mice and humans not only in their innate and adaptive immunity (reviewed in [86–89]), but also in
the metabolism of immune cell populations (e.g., arginine metabolism and arginase expression in
macrophages and myeloid cells [90,91]). Because these “of mice and men” variables impact both
immunity and metabolism, they might also influence outcomes during immunotherapy and should
be carefully considered during the optimization of humanized animal models for the translation of
immuno-metabolic strategies to human clinical trials.

The composition of the gut microbiota is known to impact the efficacy of ICIs and changes in
host metabolism and microbiota can occur in tandem [92–94]. Dietary modifications could therefore
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alter not only the circulating composition of immunologically relevant metabolites (e.g., glucose,
ketone bodies) and immunological factors (e.g., inflammatory cytokines), but also gut microbiota
assets positively related to an improved efficacy of ICIs—Bifidobacterium and Faecalibacterium, among
others [95]. Accordingly, the ketogenic diet has been shown to increase the relative gut microbiota
abundance of Akkermansia muciniphila [96], a bacterium capable of restoring the response to immune
checkpoint blockade in cancer models [97]. Reduction in dietary methionine/cysteine intake might
increase immunotherapy efficacy, at least in part, via changes in gut microbiota [76,98]. Although
unlikely, it cannot be excluded that the ability of microbiota to synthesize specific nutrients (e.g., amino
acids, short-chain fatty acids) for the host might potentially circumvent the immunological effectiveness
of dietary interventions/modifications [99].

3. Cell-Intrinsic Metabolic Traits and The Immune Checkpoint Composition of Tumor Cells:
A Forgotten Dimension of Cancer Immunometabolism

There has been a paucity of studies examining how tumor cell-intrinsic and -extrinsic (e.g., dietary)
determinants of the metabolic features of cancer cells might alter their immune evasion strategies,
including the composition of the immune checkpoint landscape. The recently uncovered association
between mitochondrial metabolism and the antigen presentation machinery of tumor cells has
illuminated a largely unexplored dimension of cancer immunometabolism—namely the dependence
of tumor immunogenicity and immunotherapy responsiveness on the metabolic state of tumor
cells [100–103].

The most common metabolic changes occurring in cancer cells are closely intertwined with
aberrations in oncogenic and tumor-suppressive pathways that are known to contribute to the
expression status of immune checkpoints such as PD-L1 (e.g., Phosphatase and tensin homolog
(PTEN)/liver kinase B (LKB) deletions, PI3K/protein kinase B (AKT) mutations, MYC overexpression,
signal transducer and activator of transcription 3 (STAT3) activation, etc.) [104–107]. Dysregulated
activation of immune checkpoints might therefore be viewed as a general cancer cell-autonomous
mechanism of metabolism-driven tumor immune-tolerance. Oncogenic activation of the archetypal
PI3K-AKT-mTOR metabolic pathway, which coordinates the uptake and utilization of multiple nutrients
including glucose, glutamine, nucleotide, and lipids, promotes immune escape by driving PD-L1
overexpression in tumor cells. The fact that PD-L1 protects cancer cells from immune-mediated cell
death via activation of the PI3K/AKT pathway and mTOR [108] supports the notion that dysregulated
cancer cell-autonomous metabolism might represent a two-way barrier against antitumor immunity.
Also, pyruvate kinase muscle 2 (PKM2), the alternative splicing form of PKM that enables exacerbated
aerobic glycolysis in cancer cells, has been shown to directly promote the expression of PD-L1
in cancer cells [109,110]. Further, select metabolic activities and metabolites might enable cancer
cells to simultaneously drive immunologically relevant decisions on both immune and tumor cell
compartments. Tumor cell-derived oncometabolites such as R-2HG can be taken up by T-cells to
inhibit histone and DNA methylation, perturbing the epitranscriptional programs of T-cells and
ultimately resulting in suppressed T-cell proliferation and effector functions [52,111]. We and others
have recently shown that this very same ability of the oncometabolite R-2HG to influence chromatin
functioning also epigenetically alters the expression of PD-L1 in cancer cells themselves [112,113]
(Figure 3). Accordingly, the so-called “immunologically quiet” immune-cancer subtype, which is
highly enriched in tumor types bearing R-2HG-producing mutations in the metabolic enzyme IDH [41],
is characterized by fewer tumor-associated immune cells.

From a therapeutic perspective, tumor cell aerobic glycolysis associates with a reduced expression
of major histocompatibility complex (MHC) proteins [114,115], which are known to confer differential
sensitivity to CTLA-4 and PD-1 blockade [116]. Because MHC recovery approaches are expected to
synergize with complementary forms of immunotherapy [117], it is noteworthy that enhancement of
mitochondrial biogenesis with the mitochondrial complex I inhibitor metformin suffices to promote
MHC-I expression in cancer cells [118]. The potential synergy between immunotherapies and the
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metabolic ability of metformin to restore antigenicity and immunogenicity in tumor cells is currently
under investigation in a number of clinical trials [24,119]. Other cancer cell-autonomous metabolic traits
shaping tumor cell-intrinsic immune evasion mechanisms that may play a key role in immunotherapy
response are yet to be discovered.
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Figure 3. Oncometabolites can suffice to epigenetically regulate programmed death ligand 1
(PD-L1) expression in cancer cells. Beyond the well-recognized genetically-directed adaptations
in nutrient acquisition (e.g., uptake of glucose and amino acids) and reprogramming of intracellular
metabolic pathways (e.g., use of glycolysis/tricarboxylic acid cycle (TCA) intermediates for accelerated
biosynthesis and NADPH production, increased demand for nitrogen, etc.), select metabolic activities
and metabolites can directly affect the behavior and function not only of non-tumor cells residing
in the TME, but also of cancer cells themselves via modification of the epigenetic landscape.
Oncometabolites such as R-2-hydroxyglutarate (R-2HG), succinate, and fumarate are prototypes
of such a class of cancer-promoting metabolites sharing a common causal mechanism in malignant
transformation—namely the promotion of histone and DNA hypermethylation. Such rewiring of the
epigenome causally drives the accumulation of undifferentiated cells with tumor-initiating capacity that
might be accompanied by changes in the expression of immune checkpoints such as PD-L1. The ability
of oncometabolites to drive immune quiescence in the TME while promoting DNA methylation in the
regulation of immune checkpoint genes (PD-L1) might be of significance for the potential therapeutic
application of immunotherapies in certain cancer subtypes (e.g., low-grade gliomas). However, it is
also possible that the presence of abnormal proteins in isocitrate dehydrogenase 1 (IDH1)-mutated
cancer cells may boost immune responses in other cancers. The figure shows that the introduction of the
2HG-producing mutant IDH1 enzyme in an otherwise isogenic background suffices to downregulate
the expression of PD-L1 in MCF10A breast epithelial cells, a regulatory effect that can be specifically
reverted by R-2HG-inhibiting and hypomethylating drugs [113].

Combinations of dietary approaches including fasting, low-calorie fasting-mimicking diets,
and (high-fat low-protein/carbohydrate) ketogenic diets with chemotherapy, immunotherapy or other
cancer treatments might be promising strategies to reduce treatment-related adverse effects and
boost efficacy outcomes [19]. The ability of such dietary strategies that are capable of enhancing
the potency and durability of tumor-specific T-cells [120,121] to directly regulate the expression
of immune checkpoint and improve immune response in conjunction with anti-PD-1/PD-L1 drugs
is largely unexplored. Remarkably, we recently observed that mimicking caloric restriction- and
ketogenic diet-like milieus by decreasing available glucose and increasing blood ketones such as
β-hydroxybutyrate downregulated the content of cell membrane-associated PD-L1 in an experimental
model of highly aggressive basal-like breast cancer [122] (Figure 4). These findings, although
preliminary, support the notion that diet-mediated changes in nutrient availability/utilization could
impact the immune checkpoint composition of cancer cells and, as a consequence, the responsiveness
to ICIs.
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Figure 4. Ketogenic diet-mimicking culture conditions downregulate constitutive PD-L1
overexpression in biologically aggressive breast cancer cells. Tumor cells constitutively overexpressing
immunosuppressive cell surface ligands such as PD-L1 may actively suppress anti-tumor T-cell
functionality. To evaluate the impact of short-term fasting/ketogenic diet (KD)-like metabolic
conditions on the constitutive expression of PD-L1, we used the basal-like/HER2-positive breast
cancer cell model JIMT-1 which overexpress PD-L1 in 100% of the cells [122]. Although whether
such a constitutive PD-L1 expression results in decreased or increased likelihood of responding to
programmed death-1 (PD-1)/PD-L1-targeted immune checkpoint inhibitors remains to be determined,
PD-L1-overexpressing JIMT-1 cells are intrinsically unresponsive to T-cells (unpublished observations).
To mimic the physiological state of metabolites found in the circulation of patients treated with KD-like
dietary interventions, we performed experiments in the presence of 2 mmol/L of the ketone body
β-hydroxybutyrate (β-HB)—representing β-HB plasma concentration levels achieved under a KD or
short-term fasting conditions (range 2–6 mmol/L)—and low (2.5 mmol/L) glucose levels to avoid an
undesirable pathophysiological ketoacidosis. Such KD-mimicking physiological conditions reduced
the expression of cell-surface-associated PD-L1 by approximately half.

We are coming to appreciate the impact of tumor cell-intrinsic metabolism and the importance
of nutrient supply in determining immune surveillance and ICI therapy outcomes. Beyond the
aforementioned examples, however, the appraisal of the intrinsic metabolic dysregulation of cancer
cells as a bona fide driver of both constitutive and inflammation-inducible expression of immune
checkpoints’ composition and its association with the response to immunotherapy is a largely neglected
aspect of cancer immunometabolism. Such a limitation, which may also involve unforeseen metabolic
dependencies of tumor cell-intrinsic immune evasion mechanisms irrespective of the status of immune
checkpoints, may preclude the expected therapeutic potential of ongoing combination therapies with
metabolic agents and immunotherapies given the similar metabolic needs of cancer and immune cells.
We are also missing a detailed understanding of how diet-mediated extrinsic changes in whole body
metabolism and systemic nutrient availability can impact the immune checkpoint composition of tumor
cells, with potentially important consequences for the outcomes of currently existing ICIs. Indeed,
a rational combination of dietary approaches and immunotherapy will need a detailed understanding
of the genetic and non-genetic mechanisms that determine the metabolic dependencies of the immune
checkpoint contexture in tumor cells. Such a limitation might prevent scientific examination aimed to
unambiguously probe how the connections between diet and cancer metabolism could be exploited to
bolster the clinical efficacy of cancer immunotherapy. To circumvent such boundaries, we need to take
advantage of wide exploratory frameworks to examine how cancer cell-metabolic state and dietary
interventions drive cancer cell-intrinsic immune-evasion mechanisms—including the composition
of the immune checkpoint landscape—and consequently dictate the responsiveness of tumor cells to
cancer immunotherapies (Figure 5).
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Figure 5. Metabolic state- and systemic metabolism-driven immune evasion landscape in cancer cells.
Cancer cell metabolic states (which are determined by the tumor genetics, tissue of origin, and the cancer
cell utilization of the available nutrients at the tumor microenvironment (TME)) and changes in the
systemic metabolism of the host (which can be determined by the response to metabolic therapeutics and
dietary interventions/modifications) can both alter cancer cell-intrinsic immune-evasion mechanisms,
including the composition of the immune checkpoint landscape, and consequently dictate the
responsiveness of tumor cells to immune checkpoint-based cancer immunotherapies.

3.1. How Can We Examine the Cancer Cell-Autonomous Metabolic Dependencies of the Immune
Checkpoint Landscape?

The regulatory mechanisms of immune checkpoint (e.g., PD-L1) expression and activity in cancer
cells, which extend from gene amplification, chromatin modification, and transcription to translation
and post-translational modification (PTM) [123–126], are all amenable to metabolic regulation (Figure 6).

First, the ability of oncometabolite prototypes such as 2HG to epigenetically regulate PD-L1
expression exemplifies the likely existence of active metabolites capable of providing direct conduits
that connect the aberrant functioning of metabolic enzymes to the epigenetic regulation of immune
checkpoint genes in cancer cells. An increased generation of oncometabolites serving as epigenetic
modifiers is a key feature of cancer subtypes and cancer cell states enriched with characteristics of the
epithelial-to-mesenchymal transition (EMT) program [127–134], one of the major contributors to primary
and acquired resistance to PD-L1-targeted immunotherapy [135–138]. Such metabolo-epigenetic
regulatory mechanisms might be of relevance to molecularly understand and clinically capture the
heterogeneous and dynamic nature of PD-L1 expression within tumors and between different tumor
sites, which largely limits the clinical value of measuring PD-L1 expression status as a companion
diagnostic for the benefit-risk assessment of PD-1/PD-L1 inhibitors [139,140]. Beyond the potential
oncometabolites that can result from loss-/gain-of-function mutations in metabolic enzymes, major
metabolic pathways controlling the abundance of numerous “common” metabolites that act as
co-factors and co-substrates of chromatin-modifying enzymes could also influence the epigenome
structure and function to alter the expression of PD-L1 in cancer cells. Second, PTMs of PD-L1
such as glycosylation, phosphorylation, ubiquitination, sumoylation, and acetylation play key
roles in the regulation of PD-L1 protein stability, translocation, and protein–protein interactions,
suggesting the likely existence of metabolic chemical modifications of immune checkpoints. Because
the abundance of many of these metabolite-induced PTMs is directly dependent on the metabolic state
of cancer cells [141], such a powerful means of immune-phenotype modulation should be carefully
considered when evaluating the impact of cancer cell metabolism on the functionality of the immune
checkpoint landscape. Accordingly, we and others have shown that the AMP-activated protein kinase
(AMPK)-sensed energetic crisis imposed by the small-metabolic molecule metformin reduces the
stability and membrane localization of PD-L1 by inducing its endoplasmic reticulum (ER)-associated
protein degradation (ERAD) in cancer cells [119,142]. In response to metformin, the activated form
of AMPK directly phosphorylates PD-L1 in a manner that promotes its abnormal glycosylation,
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resulting in ER accumulation and ERAD, which contributes to enhanced cytotoxic T-cell activity against
metformin-treated cancer cells. We recently documented how the dietary polyphenol resveratrol
significantly reduces the immune evasion activity of PD-L1 by operating as a direct inhibitor of
the glyco-PD-L1-processing enzymes (α-glucosidase/α-mannosidase) that modulate N-linked glycan
decoration of PD-L1, thereby promoting the ER retention of a mannose-rich, abnormally glycosylated
form of PD-L1 and, consequently, increasing the susceptibility of cancer cells to T-cell-mediated cell
death [143]. Third, a completely unexplored layer of complexity in the immune-metabolic network
might involve the non-covalent modification of immune checkpoints via metabolite-driven assembly
of higher molecular proteins [141] and metabolite-controlled transcription and translation performed
by riboswitches [144,145]. Because metabolites that control riboswitches include lysine, glutamine,
cobalamin, thiamine, pyrophosphate, purines, and S-adenosylmethionine (SAM), this regulatory
mechanism, which can also extend to transcription factors, might provide a new means through which
the active metabolome determines the response of cancer cells to immune-regulatory cues via the
control of immune checkpoint expression.
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expression can be modulated through various mechanisms including epigenetic and transcriptional
regulation, post-translational, and non-covalent modifications. The metabolic regulation of these
processes can limit tumor-specific PD-L1 expression and functionality, which might render PD-1/PD-L1
targeting with immune checkpoint blockade redundant.
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Research designs involving metabolic gene-focused knockout and transcriptional activation
screening using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) system can be extremely helpful for deciphering tumor-intrinsic
metabolic traits capable of regulating the expression and/or functionality of PD-L1 (and other
immune checkpoints) in cancer cells. CRISPR/Cas9-based functional genomic screens have been
shown to provide a high-throughput means of functionally characterizing the essentiality and
context-dependent dispensability of central metabolic pathways for cancer cell growth under certain
metabolic conditions [146–148]. As such, they hold promise also for defining the cancer cell-autonomous
metabolic requirements not only of the expression of immune checkpoints, but also of unforeseen
metabolic dependencies of tumor cell-intrinsic immune evasion mechanisms irrespective of the immune
checkpoint landscape status. Because the plasticity and redundancy of metabolic networks might allow
these experimental systems to remodel around a single knock-out, combinatorial CRISPR metabolic
screens simultaneously targeting different metabolic genes could be employed to systematically map the
dispensability and interactions of whole groups of metabolic genes (e.g., those encompassing glycolysis,
gluconeogenesis, the pentose phosphate pathway, tricarboxylic acid cycle (TCA) cycle, etc.) to regulate
the expression of immune checkpoints in cancer cells. Improving the metabolic fidelity of in vitro
cancer models with recently developed culture media better representing physiological nutritional
features [149,150] could make the CRISPR-based screening of “metabolo-immune checkpoints” highly
informative and physiologically relevant.

3.2. How Can We Examine the Impact of Dietary Interventions on the Efficacy of Cancer Immunotherapy?

A better understanding of the interactions between the metabolic state of cancer cells and the
systemic macro- and local micro-environmental nutritional conditions is critical for considering how
dietary interventions might impact the metabolic dependences of the immune checkpoint landscape
and tumor responsiveness to ICIs.

First, diet-induced changes in nutrient availability (and utilization) within the TME may perturb
specific metabolic pathways that operate as drivers of immune checkpoints. Because the metabolic
requirements of commonly employed cell culture models and tumors in vivo are very different,
a disproportionate nutrient composition of commercial media might impose undesirable metabolic
artifacts when assessing the impact of dietary interventions in the efficacy of ICIs in vitro. Although our
capacity to successfully overcome this limitation is still extremely limited [151], functional screenings to
characterize the impact of dietary interventions on the efficacy of ICIs would be performed using more
physiological tissue culture conditions that recapitulate some metabolic features of the tumor interstitial
fluid [149,150,152,153], and simultaneously modifying those metabolites that are known to be affected
by specific diets. These so-called metabolite add-back or dropout experiments can be coupled to
transcriptomic and metabolomics/fluxomics platforms to identify the specific metabolic perturbations
responsible for changes in immune-escape mechanisms including the composition of the immune
checkpoint landscape. The targeting of these pathways with diet mimetics (e.g., rapalogs, biguanides,
sirtuin-activating compounds, and nicotinamide adenine dinucleotide (NAD+) precursors) could
also be explored to test their ability to drive the same immune-modulatory effects, and to clinically
replace non-appealing and/or difficult-to-adhere-to dietary interventions such as calorie restriction.
Second, the identification of metabolic pathways conferring resistance either to the immune-regulatory
effects of a given dietary modification and/or to cancer immunotherapy might provide evidence for
synthetic lethal metabolic vulnerabilities that can be therapeutically exploited in a clinical setting.
This maximal utility of dietary interventions based on the co-dependency of immunotherapy-resistant
states on certain metabolic traits might rationally determine whether certain diets will synergize with or
antagonize the tumoricidal effects of existing ICIs. Once the metabolic determinants of positive/negative
cancer cell responsiveness have been identified (e.g., by using metabolic gene-focused CRISPR-based
screenings) [154–156], small molecule metabolic inhibitors targeting glycolysis, glutamine metabolism,
lipid synthesis, or redox balance could be employed to rapidly interrogate the functional requirements
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of tumor cells for well-known metabolic enzymes or pathways to respond to diet-ICI combinational
strategies [157–159]. Dietary approaches can be matched with small-molecule metabolic therapeutics
pleiotropically enhancing the effects of cancer immunotherapy (e.g., the folate pathway inhibitors
pemetrexed and metformin [160–162]) based on the metabolic vulnerabilities of tumors, thereby
allowing a more customized approach to ICI-based immunotherapy.

Determining whether the system-level identification of signaling nodes essential for the metabolic
and dietary regulation of immune-escape mechanisms (e.g., immune checkpoint composition) actually
alter tumor cell responses to ICIs might be challenging. Over the past decade, there has been interest in
adopting new strategies for reproducibly assessing the strength of the cytotoxic function of T-cells both
in preclinical target evaluation and in immunomonitoring the efficacy of targeted immunotherapies.
For many years, the gold standard for this purpose has been the chromium release assay (CRA) [163],
an end-point assay that carries several disadvantages including the use of radioactivity, the choice of
target cells, and the impossibility to assess the lysis kinetics of T-cells. Recently, novel technical solutions
have permitted the dynamic detection of T-cell-mediated cytotoxicity by continuous assessment of
electrical impedance using the xCELLigence real-time cell analysis (RTCA) system® (Roche Applied
Science, Indianapolis, IN, USA and ACEA Inc., San Diego, CA, USA) [164–166]. The integration of
an impedance-based cytotoxic assay for the real-time and label-free assessment of T-cell-mediated
killing of cancer cells with CRISPR metabolic screens would be a valuable and highly sensitive tool to
enhance, in an unbiased high-throughput format, our presently limited in vitro capacity to infer the
metabolic dependences of the immune-escape machinery in cancer cells and the dietary influences on
the efficacy of currently existing ICIs.

4. Clinical and Molecular Monitoring of Tumor Cell-Intrinsic Metabolic Resistance to
Cancer Immunotherapy

Little is known about the association between the metabolic state of cancer cells and the tumor
response to ICIs in a clinical setting. The elucidation of tumor cell-intrinsic metabolic mechanisms of
resistance to immune checkpoint blockade might illuminate actionable strategies for improving the
efficacy not only of ICIs, but also of other modes of cancer immunotherapy.

There has been extensive genomic and transcriptomic research on the molecular definition and
clinical discrimination of responders and non-responders to immune checkpoint blockade. A rapidly
growing wave of research has (re)discovered numerous intrinsic mechanisms that can prevent a
cancer patient from ever responding to immunotherapeutics including the alteration of signaling
pathways (Mitogen-activated protein kinases (MAPK), PI3K, WNT, interferon (IFN)), lack of antigenic
mutations, de-differentiation with loss of tumor antigen expression, alterations in antigen processing
machinery, oncogenic/constitutive PD-L1 expression, and loss of human leukocyte antigens (HLA)
expression. We have also identified numerous mechanisms facilitating relapse after an initial response
such as the loss of T-cell functionality, loss of target antigen presentation, mutational loss of HLA,
and development of escape mutations in IFN signaling [167–169]. Beyond the currently performed
molecular analyses (e.g., mutational load, driver mutations, gene expression of immunosuppressive
factors) and immune profiling (PD-L1 expression, CD8+ T-cells, T-cell clonality), the so-called “absence
of inhibitory metabolism” (i.e., plasma lactate dehydrogenase levels, glucose utilization) is beginning
to be incorporated into immunogram models to better understand the interaction between the tumor
and immune cells in the TME [170]. However, there are limited studies assessing in depth the tumor
cell-intrinsic metabolic dependences of primary (i.e., no active response), adaptive (i.e., initial response
rapidly turned off by checkpoints or other resistance mechanisms), and acquired (i.e., response for a
period of time and later progression) resistance to ICIs (Figure 7).
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Figure 7. Monitoring metabolic mechanisms of resistance to immune checkpoint blockade therapy.
The evaluation of longitudinal tissue and serum metabolomics at pretreatment, early-treatment,
and progression time points and its integration with molecular, immune, and microbiome analyses
might unveil potential metabolic mechanisms of therapeutic resistance to immune checkpoint
blockade therapy. In vitro and in vivo validation of emerging clinical data and de novo
discovery of cancer cells’ dependency on metabolic genes/networks that dictate responsiveness
and resistance to immune checkpoint inhibitors using clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) screen-based screenings, metabolism-targeting
therapeutics, and/or precision nutrition approaches, could provide a strong rationale for metabolically
overcoming resistance to cancer immunotherapy.

Unbiased systems biology approaches involving the integration of metabolomics with other
omics platforms (e.g., genomics, transcriptomics, proteomics) in longitudinal tumor samples
throughout the course of ICI-based treatments certainly represent the most powerful schema for
identifying novel tumor cell-intrinsic metabolic mechanisms of response and resistance to immune
checkpoint blockade. Alternatively, the integration of metabolomics with another omic platform
at a simpler level (e.g., metabolo-transcriptomics, proteo-metabolomics) might suffice to provide
an incremental discriminative/predictive capacity to currently employed histological and genomic
approaches (e.g., expression of checkpoint proteins, mutational and neoepitope loads, immune gene
signatures) [171,172], which can correlate with response rate but might overlap between responders
and non-responders [173]. Thus, a longitudinal evaluation of metabolic changes/responses in fresh
serial human specimens (e.g., tumor tissue, blood/plasma/serum, and microbiota) at pretreatment,
early-treatment, and progression time points as well as a pairwise comparison of metabolic traits in
pre- to in-treatment samples of responders versus non-responders [174,175], might identify dynamic
metabolic biomarkers of response to ICIs as well as novel metabolic mechanisms of ICI resistance
(Figure 7). With an ever-growing appreciation of the importance of monitoring treatment responses in
the peripheral blood, circulating metabolites might be viewed as phenotypes serving as intermediates
between genes and clinical end-points, which might facilitate the design of non-invasive liquid
biopsy blood tests in the course of clinical decision making to replace conventional analyses of
baseline/pretreatment metabolic markers using static unpaired biopsies.
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Acknowledging the unique challenges that advanced computational analysis of multi-omic data
sets per single-study subject can pose in daily clinical practice [176], such integration of metabolomic
analyses into systems biology approaches hold great potential in the identification of plausible and
testable metabolic networks controlling resistance to ICI-based cancer immunotherapy. Beyond the
clinical correlation between the metabolic profiles in real-life biospecimens and the response to ICIs,
we can functionally validate and directly associate the metabolic state of cancer cells with their immune
response (Figure 7). Batteries of small anti-metabolic molecules could be employed to broadly assess the
functional role of central metabolic pathways (e.g., the one-carbon (1C) cycle, glycolysis, the TCA cycle,
and oxidative phosphorylation) on the immunogenicity of cancer cells. Single-gene and combinatorial
CRISPR/Cas9-based metabolic screenings would be performed for the system-level identification of
new metabolic nodes essential for maintaining the expression of immune checkpoints, regulating
anti-tumor immunity, and dictating responsiveness to ICIs [177]. Real-time immunomonitoring of
T-cell-mediated killing of cancer cells in CRISPR-edited isogenic cancer cell models engineered for single
or combinational transcriptional interference and/or activation of metabolic genes in physiological-like
tissue culture conditions [178,179] would be performed to rapidly infer dependencies on metabolic
genes and networks of tumor cell responses to T-cells and/or ICIs. The preclinical uncovering of
metabolically-driven immunosuppressive signatures might generate hypotheses for clinical validation
not only in publicly available transcriptomic data from comprehensive genomic approaches [180,181],
but also in longitudinal tumor samples of patients on immune checkpoint blockade (Figure 7).

5. Gaps and Limitations of Immunotherapy-Boosting Metabolic and Dietary Approaches

ICI-based cancer immunotherapy is associated with unpredictable immune-related adverse
events (irAEs), whose mechanisms are likely to be similar to those promoting anti-tumor responses
in the context of a generalized expansion of the immune response triggered by ICIs. Thus, irAEs
can be mainly attributed to the exacerbation of autoimmunity (e.g., autoimmune type 1 diabetes
mellitus) [182,183], but particularly to the central role of inflammation associated with checkpoint
inhibitor treatments [184]. The unresolved meta-inflammation occurring in an obese state serves to
illustrate how chronic, low-grade inflammation overlaps with metabolism to operate as a risk factor for
a dampened anti-tumor immune response and increased risk of irAEs while simultaneously promoting
improved outcomes with ICIs [185,186]. Accordingly, the association between excess weight in cancer
patients receiving ICIs and significantly improved clinical outcome is especially marked when body
mass index and irAEs are considered in combination [187,188]. If we aim to incorporate metabolic and
dietary interventions to create more personalized cancer immunotherapy, it is necessary to take into
account how important metabolic networks that sense and manage nutrients closely integrate with the
activation of inflammatory pathways in immune cells to influence the physiological and pathological
metabolic states [189–192]. Thus, more mechanistic research is needed before immunotherapy-boosting
metabolic and dietary approaches can be incorporated into clinical practice to maximize anti-cancer
responses while minimizing anti-self-responses to ICIs.

Combinatorial metabolic and/or dietary approaches to lower the risk of compromising ICI
efficacy while preventing exacerbation of irAEs should consider also that the local cross-talk between
microbes and cancer cells at the tumor site can provoke cancer-related inflammatory processes via
the activation of immune cells [193]. Indeed, cancer-associated microbiota’s ability to modulate
antitumor immune activation and therapy response might involve the direct provision to tumor cells
of nutrients derived from microbial sources not only at the primary tumor sites but also at metastatic
localizations [194–197]. This scenario adds even more complexity to the systemic (e.g., insulin-lowering
effects of the ketogenic diet) versus cell-autonomous effects (e.g., restriction of serine/glycine or
methionine) of dietary interventions [198], especially when considering recent evidence showing that
diet-microbe interactions can alter the host response to drugs without altering the drug or the host [199].
Nonetheless, the extent of inter-patient variability in normal metabolism further highlights the need
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for controlled studies with metabolic therapies and/or dietary interventions in varied populations
before new developments in combination with ICIs could be carried out.

6. Conclusions

Immunotherapy has had unprecedented success in halting even advanced cancer, and prolonging
life in patients with highly aggressive tumors such as melanoma and lung cancer. Certainly, the growing
arsenal of drugs unleashing the body’s immune system against tumors has captured the attention of
society. However, although the percentage of cancer patients eligible to receive ICIs has increased
in recent years to more than 40%, less than 15% of patients will respond to these treatments.
The population-level effect of ICIs may be more limited, as only one in eight cancer patients would
actually be expected to obtain a benefit from immunotherapeutics, even assuming that all eligible
patients are treated. Therefore, although a greater percentage of cancer patients are becoming eligible
for immune checkpoint blockade, the ratio of those benefiting is decreasing. These data reinforce
the importance of identifying which patients are likely to benefit from immunotherapy, and which
are going to be treated without any demonstrable benefit. This is critical, as these medications
are exceedingly expensive, and so we need to rationalize which patients are most likely to benefit.
Many scientists are engaged in tackling these crucial issues for the future of cancer immunotherapy
by developing and testing a variety of biomarkers mostly involving tumor genomics, host germline
genetics, and immune checkpoint levels. However, it is noteworthy that only half of all the variation
in therapeutic efficacy of ICIs might be explained in terms of some of the most widely accepted
determinants of immunotherapy response including the tumor mutational burden. A new wave of
research into the molecular mechanisms of tumor-intrinsic resistance to immune checkpoint blockade
has shed new light on the immunological implications of biological processes and signaling pathways
such as interferon signaling, antigen presentation, WNT-β-catenin, cell cycle regulation, MAPK
activation, and PTEN loss [167–169]. Here, we propose that the intercrossing of immune evasion and
metabolic reprogramming cancer hallmarks at the tumor cell-intrinsic level should be viewed as a
crucial dimension of cancer immunotherapy resistance that might guide the incorporation of new
anti-metabolic drugs and dietary approaches to overcome primary, adaptive, and acquired resistance
to ICIs. A deeper mechanistic understanding using clinical cancer metabolomics with stable isotope
tracers has yet to be fully developed before tumor cell-intrinsic metabolic and dietary regulation of
the immune checkpoint landscape could be successfully incorporated as a novel strategy capable
of broadening the spectrum of cancer patients and indications that can be effectively treated with
ICI-based cancer immunotherapy.
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