Supplementary Materials:

The Intermediate Filament Synemin Regulates NonHomologous End Joining in an ATM-Dependent Manner

Sara Sofia Deville, Anne Vehlow, Sarah Förster, Ellen Dickreuter, Kerstin Borgmann and Nils Cordes

Supplementary Materials and Methods

Total Protein Extraction, Western Blotting
Cells were lyzed with lysis buffer supplemented with protease inhibitor (Complete protease inhibitor cocktail from Roche, Mannheim, Germany) and phosphatase inhibitors (Na3VO4 and NaF from Sigma-Aldrich, Taufkirchen, Germany). The lysates were then incubated for 30 minutes on ice; the cell membranes where then broken using a syringe and 1 h later centrifuged at $13,000 \times \mathrm{g}$ for 20 min to remove debris. Since in 3D lysates it is not possible to quantify protein levels with common protein quantification kits, a gel for β-actin was necessary to evaluate the protein levels. After β-actin quantification using imageJ, proper dilutions were prepared. The chemiluminescent detection was preformed using ECL ${ }^{\text {TM }}$ Prime Western Blotting System (Sigma-Aldrich).

Foci Assay

Twenty-four hours after irradiation, cells were isolated using trypsin/EDTA, fixed with 3\% formaldehyde/phosphate-buffered saline (Merck, Darmstadt, Germany) and permeabilized with 0.25% Triton-X-100/phosphate-buffered saline (Roth, Karlsruhe, Germany). Staining was accomplished with specific antibodies and Vectashield/4'-6-diamidino-2-phenylindole (Alexis, Lörrach, Germany) was used as mounting medium. Foci were counted microscopically with an AxioImager A1 plus fluorescence microscope (Carl Zeiss, Jena, Germany) under a $\times 40$ objective. Immunofluorescence images were sustained using LSM 510 meta (Carl Zeiss) or AxioImager M1 (Carl Zeiss). For testing the impact of chemotherapy and radiochemotherapy, cells were transfected with esiRNA and next day embedded into $0.5 \mathrm{mg} / \mathrm{ml} \operatorname{lrECM}$ in 24 -well plates. Twenty-four hours after $1.7 \mu \mathrm{M}$ of Cisplatin or DMSO was added to the cells. After 1 h , cells were exposed to 6 Gy Xrays or left untreated. On the next day, cells were fixed and stained for residual foci (residual $=24 \mathrm{~h}$ after irradiation). For foci kinetics, cells were seeded, transfected with esiRNA on the following day and fixed at $0.5,1,2,6$ and 24 h after irradiation. The staining was performed as published Dickreuter et al., 2016.

Proximity Ligation Assay (PLA)

4×10^{5} cells were irradiated with 6 Gy one day after plating. At 1 h post irradiation, cells were fixed with cold methanol for 15 min at $-20^{\circ} \mathrm{C}$ and incubated with primary antibodies (Desmuslin, \#211630 and DNA-PKcs S2056 \#ab18192 from Abcam, Cambridge, UK) overnight. PLA was accomplished using ligation and amplification buffers as recommended by the manufacturer and as published [2]. Samples were analyzed with Axioimager M1 (Carl Zeiss) with a magnification of 40×.

Immunoprecipitation

4.5×10^{6} SAS cells stably transfected with mCherry-C1 and mCherry-Synemin were harvested using cell lysis buffer (Cell Signaling, Frankfurt a. M., Germany) supplemented with $40 \mu \mathrm{~L} / \mathrm{mL}$ Complete protease inhibitor cocktail. The total protein amount was measured by BCA assay. Cell lysates were pre-cleared using $50 \mu \mathrm{~L}$ of Protein A/G sepharose slurry ($50 \% \mathrm{v} / \mathrm{v}$). To do this, the lysate-
bead solution was rotated at $4{ }^{\circ} \mathrm{C}$ for 1 h using a laboratory rotator. Following pre-clearing, lysates were centrifuged at $500 \times \mathrm{g}$ for 5 min and the supernatant was transferred to a new reaction tube. Primary antibodies (IgG as isotype control) were added to 1 mg protein lysate and rotated for 1 h at $4^{\circ} \mathrm{C}$. Subsequently, $50 \mu \mathrm{~L}$ of Protein A/G sepharose slurry ($50 \% \mathrm{v} / \mathrm{v}$) was added and rotated overnight at $4{ }^{\circ} \mathrm{C}$. Immunoprecipitates were washed once with $600 \mu \mathrm{~L}$ of ice cold lysis buffer. Whole cell lysates and immunoprecipitated proteins were boiled in $50 \mu \mathrm{~L}$ sample buffer, separated by SDS-PAGE, transferred, and blotted. Protein precipitates were analyzed with specific primary antibodies as indicated previously.

Supplementary Figures

Figure S1. UTSCC15 cells stably expressing EGFP-53BP1. (A) Western blot of EGFP-53BP1 in whole cell lysates from UTSCC15 EGFP-53BP1 cells. Fold changes of 53BP1 expression are shown. β-actin was used as loading control. (B) Immunofluorescence images of cells expressing the exogenous construct after sham or 6 Gy X-ray exposure (time point $=24 \mathrm{~h}$ post irradiation). Nuclei were stained with DAPI.

Figure S2. Identification of focal adhesion proteins (FAP) affecting cell survival and radiosensitivity. (A) Plating efficiency of 3D lrECM cell cultures with indicated knockdowns ($n=4$). (B) Surviving fraction of 3D lrECM cell cultures with indicated knockdowns and 6 Gy X-rays $(n=4)$. Data are presented as mean \pm SD.

Figure S3. Identification of focal adhesion proteins (FAP) affecting cell survival and radiosensitivity. (A) Normalized plating efficiency of 3D lrECM cell cultures with indicated knockdowns ($n=4$). (B) Normalized surviving fraction of 3D lrECM cell cultures with indicated knockdowns and 6 Gy X-rays $(\mathrm{n}=4)$. Data are presented as mean $\pm \mathrm{SD}$ (two-sided t -test; ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$).

Figure S4. Identification of focal adhesion proteins (FAPs) affecting DNA repair. (A) Residual 53BP1 foci numbers (24 h after irradiation) in unirradiated cells upon indicated FAP knockdowns. (B) Residual 53BP1 foci numbers in 6-Gy irradiated cells upon indicated FAP knockdowns. Data are presented as mean \pm SD ($\mathrm{n}=4$; two-sided t-test; ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$).

Figure S5. Identification of focal adhesion proteins affecting cell survival, radiosensitivity and DNA repair. (A) Scatter plot displaying the $-\log 10$ (p-value) of 53 BP 1 residual foci/cell (FA, foci assay) and surviving fraction (SF) upon FAP knockdown and 6 Gy irradiation in UTSCC15 expressing EGFP53BP1. Main selected candidates with high p-values are indicated. (B) Cluster analysis of screen results after x-ray exposure by K-means algorithm showed silenced genes are clustered in 5 groups with similar responses.

A

		DNA copy number alterations	
	Amplification	Deletion	
	Total Dataset	+	-
HNSCC	HPV +	-	-
	HPV-	+	-
LUSC		+	-
CESC		+	-

B

Figure S6. Altered expression of synemin expression in HNSCC. (A) DNA copy number alterations from TCGA data (Comprehensive genomic characterization of head and neck squamous cell carcinomas, HNSCC, The Cancer Genome Atlas Network; HPV, human papilloma virus), LUSC (lung squamous cell carcinoma), and CESC (cervical squamous cell carcinoma). (B) Interactome map of synemin using Cytoscape software (https://cytoscape.org/) with reactome plugin. (C) Fiji analysis of confocal images showing synemin distribution in all used HNSCC cell lines. (D) Graphs representing synemin distribution in the cell. Ratio of mean fluorescence intensity of nuclear to cytoplasmic localization was determined using the Intensity Ratio Nuclei Cytoplasm Tool plugin (NIH, USA).

Figure S7. Synemin functions in NHEJ but not HR. (A) Schematic structure of the HR and NHEJ substrates DRGFP and pimEJ5GFP, respectively. The DRGFP presents two non-functional GFP copies and, when DBS are repaired, it results in a functional GFP. The pimEJ5GFP has an insertion between the CMV promoter and GFP preventing its translation. Once the endonuclease I-SceI cuts in the proper sites it generates a DSB that can be repair by NHEJ. (B) Representative dot plot figures of DNA repair reporter assay to evaluate homologous recombination (HR) and non-homologous end joining (NHEJ) activity in Cal33 transfectants. pN 1 is the empty vector (pEGFP-N1) serving as positive control and I-SceI is a plasmid expressing an endonuclease used to generate the DSBs. Cells with proficient conduction of DNA repair express a GFP fluorescent protein.

Figure S8. Synemin functions in non-homologous end joining. (A) Fold changes from synemindepleted and 6-Gy irradiated SAS cells showing total forms of DNA-PKcs and ATM as detected by Western blotting on whole cell lysates. β-actin served as loading control ($n=4$). (B) Normalized kinetics of DNA-PKcs S2056, 53BP1 and $\gamma \mathrm{H} 2 \mathrm{AX}$ foci insynemin knockdown cell cultures relative to controls at different time points post 1-Gy X-rays $(\mathrm{n}=3$).

Figure S9. Function of synemin in cell cycling. (A) Cell cycle distribution of SAS cells upon synemin knockdown was measured by flow cytometry at 24 and 48 h post transfection (B) and at 12 and 24 h post 6 Gy X-ray irradiation. Data are presented as mean \pm SD ($\mathrm{n}=3$; two-sided t -test).

Figure S10. Synemin/DNA-PKcs co-control DSB repair and co-interact with each other. (A, B) Densitometries of knockdown efficiencies of single and double esi/siRNA transfections of SAS cells as detected by Western blotting on whole cell lysates. β-actin served as loading control ($\mathrm{n}=3$). (C) Interaction of synemin and DNA-Pkcs S2056 in unirradiated and irradiated SAS cells defined by proximity ligation assay (bar, $10 \mu \mathrm{~m}$). (D) Quantification of PLA puncta in nucleus and cytoplasm using Fiji ($\mathrm{n}=3$; One-way ANOVA followed by post hoc test (Tukey multiple comparisons); ${ }^{* * * * ~} p<$ 0.0001 ; n.s., not significant ($p \geq 0.05$)).

Figure S11. Expression of different Synemin constructs. (A) Western blotting of lysates from SAS cells expressing mCherry, mCherry-Synemin wildtype, mCherry-Synemin_Head, mCherrySynemin_Tail. (B) Western blotting of lysates from SAS cells expressing mCherry, mCherry-Synemin wildtype, mCherry-Synemin_301-961, mCherry-Synemin_962-1565, mCherry-Synemin_S1114A and mCherry-Synemin_S1159A. Colored arrows indicate the synemin construct with the corresponding molecular weight. (C) 53BP1 foci after 1 h post 1-Gy X-ray exposure in SAS transfectants expressing mCherry-Synemin wildtype, mCherry-Synemin_301-961, mCherry-Synemin_962-1565, mCherrySynemin_S1114A and mCherry-Synemin_S1159A (mCherry was used as control) ($\mathrm{n}=3$; One-way ANOVA followed by post hoc test (Tukey multiple comparisons); ${ }^{* * * *} p<0.0001$; n.s., not significant ($p \geq 0.05$)).

Figure 2J

Figure 3F

Figure 4A

Figure 5A

Figure 5B

Figure 5C

Figure 6F

Figure S12. Compilation of uncropped immunoblots for all the figures. The corresponding main figures where the cropped versions are displayed are specified on top of the blots. The red rectangles highlight the areas of the plots that were used. The molecular weight standard [kDa] per blot is located on the left. The protein detected is written nearby the blots.

Supplementary Tables

Table S1. List of focal adhesion proteins selected for the screen library according to the Integrin Adhesome described by Horton et al., 2015.

ACTB	FBLIM1	ITGA9	KIF11	PARVA	SSH3BP
ACTN1	FERMT3	ITGAD	KTN1	PARVB	SVIL
ARPC2	FHL2	ITGAE	LASP1	PFN1	SYNM
BCAR1	FLNA	ITGAL	LDB3	PKD1	TENC1
C20orf42	GAB1	ITGAM	LIMS1	PLEKHC1	TES
CALR	GNB2L1	ITGAV	LIMS2	PPFIA1	TGFB1I1
CASS4	GRB2	ITGAX	LPP	PVR	THY1
CAV1	GRB7	ITGB1	LPXN	PXN	TLN1
CD151	HAX1	ITGB1BP1	LRP1	RDX	TNS1
CD47	IRS1	ITGB2	MSN	RLUC	TRIP6
CEACAM1	ITGA1	ITGB3	NCK2	SDC4	TRPM7
CFL1	ITGA10	ITGB3BP	NDEL1	SDCBP	VASP
CORO1B	ITGA11	ITGB4	NEDD9	SH2B1	VCL
CORO2A	ITGA2	ITGB5	NEXN	SH3KBP1	VIL2
CRK	ITGA3	ITGB6	NF2	SHC1	ZFYVE21
CRKL	ITGA4	ITGB7	NRP1	SLC3A2	ZYX
CSRP1	ITGA5	ITGB8	NRP2	SMPX	
CTTN	ITGA6	JUB	NUDT16L1	SORBS1	
ENAH	ITGA7	KCNH2	OSTF1	SORBS2	
ENG	ITGA8	KEAP1	PALLD	SORBS3	

Table S2. Enhancement ratios of the plating efficiency of cells under FAP library knockdown. The table contains the mean and the p-value for each silenced protein.

Enhancement Ratio (0 Gy)								
FAP	Mean	p-value	FAP	Mean	p-value	FAP	Mean	p-value
ACTB	0.218787	0.296738	ITGAL	0.620638	0.344969	PPFIA1	0.485256	0.077743
ACTN1	0.890437	0.663467	ITGAM	0.666169	0.474556	PVR	0.842457	0.381801
ARPC2	0.723471	0.505013	ITGAV	1.287555	0.242222	PXN	0.450333	0.089756
BCAR1	1.092557	0.826502	ITGAX	0.451351	0.086505	RDX	0.379812	0.121085
C20orf42	1.00201	0.994049	ITGB1	0.535977	0.203078	RLUC	1	1
CALR	0.760815	0.402756	ITGB1BP1	1.378742	0.407063	SDC4	1.630541	0.191021
CASS4	0.540939	0.342177	ITGB2	0.61205	0.333057	SDCBP	0.542153	0.368684
CAV1	0.771447	0.30279	ITGB3	0.370594	0.115324	SH2B1	0.963286	0.909822
CD151	0.532127	0.250045	ITGB3BP	0.419493	0.045849	SH3KBP1	0.71892	0.42389
CD47	0.527273	0.108184	ITGB4	0.684614	0.164357	SHC1	0.870773	0.750854
CEACAM1	0.614071	0.386168	ITGB5	0.399693	0.201343	SLC3A2	0.744613	0.646514
CFL1	0.417186	0.063205	ITGB6	0.524212	0.166341	SMPX	0.407986	0.245538
CORO1B	0.762593	0.593817	ITGB7	0.623462	0.307414	SORBS1	0.562458	0.390378
CORO2A	0.431972	0.394586	ITGB8	0.709589	0.380879	SORBS2	0.807714	0.436095
CRK	0.732059	0.49421	JUB	1.246845	0.448609	SORBS3	0.633079	0.45497
CRKL	0.427692	0.131564	KCNH2	0.680588	0.333257	SSH3BP	0.551018	0.410779
CSRP1	0.156499	0.127136	KEAP1	0.774654	0.496029	SVIL	0.481987	0.208234
CTTN	0.58211	0.420259	KIF11	1.895178	0.026392	SYNM	0.282682	0.137298
ENAH	0.591132	0.251234	KTN1	0.510572	0.144869	TENC1	0.819651	0.647319
ENG	0.592445	0.505988	LASP1	0.56644	0.359162	TES	0.950824	0.375272
FBLIM1	1.189644	0.610917	LDB3	1.047985	0.759712	TGFB1I1	1.000344	0.998213
FERMT3	0.908059	0.750284	LIMS1	0.725507	0.256389	THY1	0.518769	0.090723
FHL2	0.740103	0.035586	LIMS2	0.619887	0.194736	TLN1	0.96443	0.891472
FLNA	0.787682	0.532634	LPP	0.722871	0.432133	TNS1	0.531372	0.272214
GAB1	0.728582	0.236164	LPXN	0.508352	0.122459	TRIP6	0.567396	0.024664
GNB2L1	1.684106	0.216224	LRP1	0.451535	0.15179	TRPM7	0.866785	0.726025
GRB2	1.023914	0.94941	MSN	2.135581	0.28631	VASP	0.90681	0.785223
GRB7	0.846479	0.629825	NCK2	0.932307	0.852757	VCL	0.811571	0.491124
HAX1	0.563375	0.233459	NDEL1	0.697475	0.354876	VIL2	0.700898	0.460385
IRS1	0.531866	0.320151	NEDD9	0.461269	0.208131	ZFYVE21	0.674791	0.15892
ITGA1	0.710938	0.332908	NEXN	0.325041	0.195018	ZYX	0.391948	0.002819
ITGA10	0.770097	0.446204	NF2	0.694538	0.494403			
ITGA11	0.844503	0.437838	NRP1	0.603221	0.267625			
ITGA2	0.595777	0.229198	NRP2	0.622675	0.278972			
ITGA3	1.021058	0.912004	NUDT16L1	0.538864	0.157145			
ITGA4	0.449399	0.310329	OSTF1	0.402063	0.011891			
ITGA5	0.294663	0.310628	PALLD	0.690447	0.232747			
ITGA6	0.663847	0.385743	PARVA	0.774387	0.562635			
ITGA7	0.630924	0.286633	PARVB	0.858168	0.610493			
ITGA8	0.516808	0.217457	PFN1	0.785057	0.584705			
ITGA9	0.637579	0.328443	PKD1	0.937738	0.747646			
ITGAD	0.497173	0.397707	PLEKHC1	0.486399	0.002196			
ITGAE	0.750931	0.268299	PLEKHC1	0.605436	0.268174			

Table S3. Enhancement ratios of surviving fraction of cells upon FAP knockdown and 6 Gy X-Ray exposure. The table contains the mean and the p-value for each silenced protein.

Enhancement Ratio (6 Gy)								
FAP	Mean	p-value	FAP	Mean	p-value	FAP	Mean	p-value
ACTB	4.044148	0.00285	ITGAL	2.642642	0.049733	PPFIA1	1.956009	0.016185
ACTN1	1.81123	0.077887	ITGAM	1.687302	0.167701	PVR	1.575727	0.086803
ARPC2	2.573264	0.017091	ITGAV	2.182184	0.012616	PXN	2.639696	0.046944
BCAR1	1.737145	0.037327	ITGAX	1.616834	0.089632	RDX	2.22631	0.086487
C20orf42	2.263046	0.06362	ITGB1	2.09506	0.018522	RLUC	1	1
CALR	1.721035	0.087917	ITGB1BP1	2.619569	0.005127	SDC4	2.760266	0.020976
CASS4	2.137935	0.018984	ITGB2	1.795348	0.06032	SDCBP	2.665955	0.009358
CAV1	2.380232	0.0129	ITGB3	2.483497	0.010183	SH2B1	2.324003	0.010252
CD151	2.217147	0.029769	ITGB3BP	2.344994	0.022192	SH3KBP1	1.875269	0.038054
CD47	1.842779	0.033364	ITGB4	1.66912	0.08802	SHC1	2.051661	0.021981
CEACAM1	2.23503	0.047882	ITGB5	1.971374	0.060857	SLC3A2	0.517665	0.62181
CFL1	2.147715	0.189955	ITGB6	1.915353	0.085165	SMPX	2.758955	0.014706
CORO1B	2.334509	0.028761	ITGB7	1.872167	0.044907	SORBS1	2.447648	0.042133
CORO2A	1.975312	0.043732	ITGB8	1.912818	0.03554	SORBS2	3.074549	0.009055
CRK	2.145052	0.039019	JUB	1.709387	0.038637	SORBS3	2.215941	0.02644
CRKL	2.166548	0.028248	KCNH2	2.122255	0.014384	SSH3BP	2.546005	0.037913
CSRP1	0.479178	0.564995	KEAP1	2.582338	0.012831	SVIL	1.787962	0.1016
CTTN	2.472528	0.006822	KIF11	1.402887	0.14792	SYNM	3.433697	0.015989
ENAH	2.341327	0.017542	KTN1	2.136976	0.018346	TENC1	1.137676	0.623733
ENG	2.992243	0.010865	LASP1	1.318115	0.597581	TES	2.171149	0.012378
FBLIM1	1.633571	0.184407	LDB3	2.003155	0.138989	TGFB1I1	2.132824	0.017184
FERMT3	2.152705	0.014594	LIMS1	1.738436	0.309606	THY1	2.364349	0.012103
FHL2	2.258673	0.024298	LIMS2	2.43107	0.009139	TLN1	2.663803	0.010139
FLNA	2.115305	0.026057	LPP	2.202217	0.028634	TNS1	1.82747	0.030197
GAB1	1.008874	0.875554	LPXN	1.892749	0.035443	TRIP6	1.226288	0.408417
GNB2L1	1.122442	0.376171	LRP1	2.043618	0.042298	TRPM7	1.917565	0.039823
GRB2	2.48485	0.026327	MSN	0	0.00048	VASP	2.270053	0.045936
GRB7	3.769021	0.002237	NCK2	2.280599	0.073647	VCL	3.743628	0.007878
HAX1	1.949069	0.147178	NDEL1	3.358212	0.004183	VIL2	1.731482	0.099372
IRS1	2.741913	0.009604	NEDD9	1.777788	0.09752	ZFYVE21	1.776298	0.19275
ITGA1	3.030718	0.008654	NEXN	3.289021	0.008161	ZYX	1.695661	0.083168
ITGA10	2.378205	0.008409	NF2	2.628556	0.105819			
ITGA11	2.25142	0.029782	NRP1	2.367223	0.015286			
ITGA2	2.374183	0.012622	NRP2	1.763388	0.034822			
ITGA3	2.454615	0.051182	NUDT16L1	1.738727	0.144331			
ITGA4	2.388571	0.048194	OSTF1	2.016447	0.182003			
ITGA5	1.566164	0.060344	PALLD	2.645041	0.023753			
ITGA6	1.784018	0.042916	PARVA	1.562069	0.318587			
ITGA7	2.482874	0.020138	PARVB	3.86016	0.011911			
ITGA8	2.301613	0.031814	PFN1	1.803768	0.150091			
ITGA9	2.641605	0.022245	PKD1	2.650614	0.02794			
ITGAD	2.241082	0.037898	PLEKHC1	1.911817	0.033548			
ITGAE	2.090224	0.032749	PLEKHC1	2.476154	0.023976			

Table S4. Primary antibodies.

Antibody	Application	Dilution	Company
ATM, rabbit, monoclonal	Western blot Immunoprecipitation	$\begin{gathered} 1: 1000 \\ 10 \mu \mathrm{l} \end{gathered}$	Abcam, Cambridge, UK
ATM S1981, mouse, monoclonal	Western blot	1:500	Rockland, Pennsylvania, USA
β-Actin, Klon AC-15, mouse, monoclonal	Western blot	1:10000	Sigma Aldrich, Taufkirchen, Germany
DNA-PKcs, rabbit, polyclonal	Western blot Immunoprecipitation	$\begin{gathered} \hline 1: 1000 \\ 10 \mu \mathrm{l} \\ \hline \end{gathered}$	Cell Signaling, Frankfurt a. M., Germany
DNA-PKcs S2056, rabbit, polyclonal	Western blot Immunofluorescence PLA	$\begin{aligned} & 1: 500 \\ & 1: 200 \\ & 1: 100 \end{aligned}$	Abcam, Cambridge, UK
Ku70, mouse, monoclonal	Western blot	1:1000	Abcam, Cambridge, UK
γ H2AX S139, mouse, monoclonal	Western blot Immunofluorescence	$\begin{gathered} 1: 1000 \\ 1: 200 \end{gathered}$	Millipore, Massachusetts, USA
53BP1, rabbit, polyclonal	Immunofluorescence	1:200	Novus Biologicals, Colorado, USA
Desmuslin, mouse, monoclonal	Western blot PLA	$\begin{aligned} & \hline 1: 500 \\ & 1: 100 \\ & \hline \end{aligned}$	Abcam, Cambridge, UK
Desmuslin, rabbit, polyclonal	Western blot	1:500	Abcam, Cambridge, UK
Desmuslin, mouse, monoclonal	Immunoprecipitation Immunofluorescence	$\begin{gathered} 3.5 \mu \mathrm{~g} \\ 1: 100 \\ \hline \end{gathered}$	Santa Cruz, Dallas, USA
BrdU, mouse, monoclonal	FACs Analysis	1:50	BD, Heidelberg, Germany
PARP1, rabbit, polyclonal	Western blot	1:1000	Cell Signaling, Frankfurt a. M., Germany
Synemin	Western blot zebrafish	1:1000	Sigma-Aldrich, Taufkirchen, Germany
mCherry	Western blot Immunoprecipitation	$\begin{gathered} 1: 1000 \\ 5 \mu \mathrm{l} \\ \hline \end{gathered}$	Abcam, Cambridge, UK
Phosphoserine	Western blot	1:250	Abcam, Cambridge, UK

Table S5. Secondary antibodies.

Antibody	Application	Dilution	Company
Anti-mouse IgG, HRP conjugated	Western blot	$1: 5000$	Pierce, Bonn, Germany
Anti-rabbit IgG, HRP conjugated	Western blot	$1: 5000$	Pierce, Bonn, Germany
Anti-mouse IgG, HRP conjugated	Immunoprecipitation	$1: 1000$	GeneTex, Irvine, USA
Anti-rabbit IgG, HRP conjugated	Immunoprecipitation	$1: 1000$	GeneTex, Irvine, USA
Alexa Fluor®488 Anti-mouse IgG	Immunofluorescence	$1: 200$	Life Technologies GmbH, Darmstadt,
Alexa Fluor®488 Anti-rabbit IgG	Immunofluorescence	$1: 200$	Life Technologies GmbH, Darmstadt,
Germany			
Alexa Fluor®594 Anti-mouse IgG	Immunofluorescence	$1: 200$	Life Technologies GmbH, Darmstadt,
Germany			
Alexa Fluor®594 Anti-rabbit IgG	Immunofluorescence	$1: 200$	Life Technologies GmbH, Darmstadt,
Alexa Flour®594 Phalloidin	Immunofluorescence	$1: 800$	Life Technologies GmbH, Darmstadt,
Germany			

Table S6. RNAi sequences and morpholinos.

RNAi	Sequence (Sense)	Company		
esiRLUC	ATTTATTAATTATTATGATCAGAAAAACATGCAG			
AAAATGCTGTTATTTTTTTAC-3'			\quad	Eupheria Biotech, Dresden,
:---:				
Germany				

Table S7. Primers.

Primer	Sequence (Sense)	Company
Synemin Δ Linker-Tail-F	$5^{\prime}-$ AGCTTcgATGCTGTCCTGGCGGCTGCAGACGG GCCCCG-3'	MWG Eurofins, Ebersberg, Germany
Synemin Δ Linker-Tail-R	5'- AgcTACGACAGGACCGCCGACGTCTGCCCGG GGCCTAG-3'	MWG Eurofins, Ebersberg, Germany
Synemin \triangle Head-Linker-F	5'-cccAAGCTTcg- GTGAAGACCGGCCTCAGTCTGG-3'	MWG Eurofins, Ebersberg, Germany
Synemin \triangle Head-Linker-R	5'-cgcGGATCC- TTAAAACCAATGCCCATCATTCTC-3'	MWG Eurofins, Ebersberg, Germany
Synemin_S1114A-F	CCACAGGCTTTGCCCAGTCACAGGTGCTGGA GGATG-F	MWG Eurofins, Ebersberg, Germany
Synemin_S1114A-R	CCACAGGCTTTGCCCAGGCACAGGTGCTGGA GGATG-R	MWG Eurofins, Ebersberg, Germany
Synemin_S1159A-F	GCGGGAGGTGACCTAGCTCAGGCAGCGAGC CCGACC-F	MWG Eurofins, Ebersberg, Germany
Synemin_S1159A-R	GGTCGGGCTCGCTGCCTGAGCTAGGTCACCT CCCGC-R	MWG Eurofins, Ebersberg, Germany

Supplementary References

1. Dickreuter, E.; Eke, I.; Krause, M.; Borgmann, K.; van Vugt, M.A.; Cordes, N. Targeting of $\beta 1$ integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 2016, 35, 1353-1362. doi:10.1038/onc.2015.212.
2. Eke, I.; Deuse, Y.; Hehlgans, S.; Gurtner, K.; Krause, M.; Baumann, M.; Shevchenko, A.; Sandfort, V.; Cordes, N. $\beta 1$ Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. J. Clin. Invest. 2012, 122, 1529-1540. doi:10.1172/JCI61350.
3. Horton, E.R.; Byron, A.; Askari, J.a.; Ng, D.H.J.; Millon-Frémillon, A.; Robertson, J.; Koper, E.J.; Paul, N.R.; Warwood, S.; Knight, D.; et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 2015, 17, 1577-1587, doi:10.1038/ncb3257.
