Supplementary Materials: Stratifying Brain Tumour Histological Sub-Types: The Application of ATR-FTIR Serum Spectroscopy in Secondary Care

James M. Cameron, Christopher Rinaldi, Holly J. Butler, Mark G Hegarty, Paul M. Brennan, Michael D. Jenkinson, Khaja Syed, Katherine M. Ashton, Timothy P. Dawson, David S. Palmer and Matthew J. Baker

Figure S1. - Breakdown of the large brain cancer cohort with the number of patient samples used for the classifications.

Figure S2. (a) Principal component analysis scores plot of PC1 and PC2 displaying the variance between GBM (blue) and healthy control (red); (b) PC1 loadings and c) PC2 loadings describe which wavenumbers account for the most discrimination.

Figure S3. – Principal component analysis scores plots displaying the biggest separation between: healthy control (red) *versus*; **a**) meningioma (green), **c**) lymphoma (blue) and **e**) metastasis (bowel: orange rings, breast: pink rings, lung: green rings, melanoma: blue rings). Corresponding loadings plots for the principle component that describes which wavenumbers account for the separation of; **b**) meningioma, **d**) lymphoma and **f**) metastasis against control.

Figure S4. - Gini plot outlining the most important features for the Random Forest classification between primary (Pri) and metastasis (Met).

Figure S5. - Bar graph of balanced accuracies for the differentiation of brain tumour types with their associated standard deviations.

Table S1. – Age and sex information for each of the tested patient groups.

	Control	Primary	Glioma	PCNSL	GBM	Meningioma	Metastasis
Total	87	303	192	41	102	111	210
Sex (M/F)	39/48	163/140	123/69	27/14	62/40	40/71	84/126
Age Range	20-64	17-85	17-85	27-86	30-85	26-81	30-86
Average Age	35	54	53	60	61	56	61

Table S2. - Additional information on the classification tuning parameters.

Classification (positive class v negative class)	Tuning Parameters	Model + Sampling	
GBM v Control	ncomp 10	PLS-DA + no	
PCNSL v Control	ncomp 14	PLS-DA + up	
Meningioma v Control	ncomp 16	PLS-DA + up	

Metastasis v Control	ncomp 13	PLS-DA + up
Primary v Metastasis	ntree 500, nodesize 1, mtry 30	RF + up
Glioma v Meningioma	cost 0.019	SVM + down
GBM v Meningioma	ntree 500, nodesize 1, mtry 30	RF + no
Metastasis v GBM	cost 0.019	SVM + down
Metastasis v PCNSL	ncomp 10	PLS-DA + smote
Metastasis v Meningioma	ncomp 14	PLS-DA + up

Table S3. The top 15 wavenumbers from the Random Forest classification between primary and metastasis with tentative biochemical assignments. The column " Σ Gini" is a summation of the mean decrease in Gini for each wavenumber, over all nodes in all trees in the random forest ensemble, which suggests the regions of highest importance.

Wavenumbers (cm ⁻¹)	$\Sigma Gini$	Tentative biological Assignments	Vibrational Modes
1052.5	123.47	DNA and RNA	Symmetric PO ₂ ⁻ stretch
1060.5	107.86	Deoxyribose	C-O stretch
1692.5	107.74	Amide I of Proteins	C=O and C-N stretch, N-H bending
1708.5	99.96	Lipids/Fatty acid esters	C=O stretch
1700.5	85.15	Guanine/Thymine	C=O stretch
1068.5	66.56	Ribose/Nucleic acids	C-O stretch
1292.5	49.11	Amide III of Proteins	N-H in plane bend, C-N stretch
1044.5	46.36	Carbohydrate	C-O-C stretch and bending
1684.5	41.31	Amide I of Proteins	C=O and C-N stretch, N-H bending
1532.5	37.61	Amide II of Proteins	N-H bending, C-N stretching
1676.5	32.92	Amide I of Proteins	C=O and C-N stretch, N-H bending
1076.5	30.19	DNA and RNA	Symmetric PO ₂ stretch
1284.5	29.73	Phosphodiesters	Asymmetric PO ₂ stretch
1036.5	26.92	Carbohydrate/Glycogen	C-O and C-C stretch, C-OH deformation
1668.5	25.63	Amide I of Proteins	C=O and C-N stretch, N-H bending