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Abstract: Due to its high morbidity and mortality, gastric cancer is a topic of a great concern 

throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately 

they are not always successful. In a search for more efficient therapy strategies, viruses and their 

potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed 

in the case of gastric cancer, making the positive treatment even more advantageous, but on the 

other, viruses exist with a potential therapeutic role in this malignancy. 
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1. Introduction 

Gastric cancer is, according to different sources, the 5th most common cancer in the world [1]. 

According to the GLOBOCAN 2018 database, over 1 million cases were reported in 2018, including 

781,631 deaths [1]. However, using this database, one can notice a downward trend in the incidence 

of this particular type of cancer [2]. Tumors are caused not only by accidental errors in the process of 

DNA replication and repair, but also by the body’s exposure to harmful physical and chemical 

factors. Diet and activity have a significant impact on morbidity. All these factors affect a number of 

cytogenetic changes leading to uncontrolled cell proliferation and, as a result, the formation of tumors 

[1]. Viruses are known to possess oncogenic function, meaning that they are suspected of causing 

cancer in about every 10th case [3]. The most prominent and frequent pathogens related to cancers 

are human papillomavirus (HPV; associated with 640,000 cases), hepatitis B virus (HBV; 420,000 

cases), hepatitis C virus (HCV; 170,000 cases) and Epstein–Barr virus (EBV; 120,000 cases) [3], but the 

oncogenic role of several others have also been confirmed in different types of cancer (Table 1). 

Nevertheless, viruses have two faces—apart from being a cancer factor, viruses can also kill 

malignant cells, simultaneously sparring the healthy ones [4]. This oncolytic feature is interesting, as 

it potentially may be translated into clinical/therapeutic advantage, showing, that viruses have a 

double-sword role in gastric cancer. 
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2. Oncogenic Viruses 

Several viruses are known to have a confirmed oncogenic role in different types of malignancies 

(Table 1). Nevertheless, there are also viruses, with only a potential oncogenic role, where studies are 

limited or ambiguous (Table 2). 

Table 1. Human oncogenic virus. 

Family Virus Cancer Type References 

1. DNA viruses 

Hepadnaviridae HBV 
Hepatocellular carcinoma, cholangiocarcinoma *, non-

Hodgkin lymphoma *, gastric cancer * 
[5–12] 

Herpesviridae 

EBV/HHV-4 

Nasopharyngeal carcinoma, Burkitt lymphoma, 

immune-suppression-related non-Hodgkin lymphoma, 

extranodal natural killer/T-cell lymphoma (nasal type), 

posttransplant lymphoproliferative disorder, Hodgkin 

lymphoma, breast cancer *, gastric cancer *, 

leiomyosarcomas *, AIDS-associated lymphomas * 

[5–15] 

KSHV/HHV-

8 

Kaposi sarcoma, primary effusion lymphoma, AIDS-

related lymphoproliferative disorder *, multicentric 

Castleman’s Disease * 

[5–12] 

Papillomaviridae HPV 

Cervical cancer, oropharyngeal cancers, anal cancer, 

penile cancer, vaginal cancer, vulvar cancer, larynx 

cancer *  

[5,6,8–

13,16,17] 

2. RNA viruses 

Flaviviridae HCV 

Hepatocellular carcinoma, 

non-Hodgkin’s lymphoma, 

cholangiocarcinoma *, 

[5–12] 

Retroviridae HTLV-1 Adult T-cell leukemia/lymphoma (ALT) [5,6–12] 

HBV: Hepatitis B virus; EBV/HHV-4: Epstein–Barr virus/Human herpesvirus 4; KSHV/HHV-8: 

Kaposi’s sarcoma-associated herpesvirus/Human herpesvirus 8; HPV: Human Papillomavirus; HCV: 

Hepatitis C virus; HTLV-1: Human T-lymphotropic virus-1. * Cancer sites with limited evidence. 

Table 2. Potentially oncogenic human viruses. 

Family Virus Cancer Type References 

1. DNA viruses 

Adenoviridae 

HAdV-A 12, 

18, 31 

HAdV-D 9 

Various solid tumors in rodents [5,9] 

Papovaviridae 
MCV/MCPyV Merkel cell carcinoma [5–7,11,16] 

JCV, BKV Solid tumors in rodents and primates [5,9,11] 

2. RNA viruses 

Retroviridae 

HIV-1 

Kaposi’s sarcoma, non-Hodgkin lymphoma, Hodgkin’s 

lymphoma, cervical cancer, anal cancer, conjunctival 

cancer, vulvar cancer *, vaginal cancer *, penile cancer *, 

non melanoma skin cancer *, hepatocellular carcinoma  

[5,11] 

HIV-2 Kaposi’s sarcoma *, non-Hodgkin’s lymphoma * [11] 

HERV-K Breast cancer [11] 

XMRV Prostate cancer [11] 

HAdV-A: Human Adenovirus A; HAdV-D: Human Adenovirus D; MCV/MCPyV: Merkel cell 

polyomavirus; JCV: JC polyomavirus; BKV: BK polyomavirus; HIV-1: Human immunodeficiency 

virus 1; HIV-2: Human immunodeficiency virus 2; HERV-K: Human endogenous retrovirus K; 

XMRV: Xenotropic murine leukemia virus-related virus. * Cancer sites with limited evidence. 
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Oncogenic Viruses and the Immune System 

The invasion of virus into the host caused a cascade of immune system actions [18]. It is worth 

remembering, that oncogenic viruses generally maintain chronic infections, not acute states, while 

the first resembling the state of carcinogenesis [19]. There are two ways of targeting the host cell 

ensuring cellular replication—virus may be either maintained as genetic element and viral genomes 

form episomes or it can integrate into the host genomic DNA [19]. In both mechanisms, a specific 

interaction is seen between the virus and the host cell, while oncogenic virus nurture infection of a 

controlled number of cells [19]. If the cancer cell dies, it will be also the end of the virus, so in a way 

the replication of the virus keeps both sides of the contract running. Over all, carcinogenesis is 

increasing, when antiviral immune responses are impaired [20]. Oncogenic viruses are also 

manipulating several signaling pathways, what severely interferes the actions. Main pathways are 

Pi-3K-AKT-mTor, MAPK, Notch, WNT-𝛽-catenin and NK-𝜅𝐵 [21]. 

Direct tumorigenesis is mediated by carcinogenic agents helping to keep the tumor phenotype 

and help the virus maintain as a genetic element (commonly retroviruses), while indirect 

transformation is conditions by two mechanisms—one is triggering chronic infection, and the second 

is immunosuppression (mostly presented by HBV, HVC and HIV). It is worth mentioning, that EBV, 

but under the same conditions also HBV and HCV, are viruses using both direct and indirect 

mechanism of carcinogenesis [19]. 

Summing up, several mechanisms are enumerated as viral oncogenic mechanisms (Figure 1), 

and all those mechanisms are directly or indirectly connected to different stages of the viral life cycle 

[19], like genomic instability, the cell proliferation, resistance to apoptosis, alterations in DNA repair 

mechanisms and cell polarity changes [10,19]. Viral agents also indirectly contribute to the 

development of cancer mainly through immunosuppression or chronic inflammation, but also 

through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant 

properties of an established tumor [19]. Moreover, one of the strategies to avoid antiviral immunity 

by oncogenic viruses (DNA and RNA) is the ability to regulate host DNA methylation [20]. Inducing 

hypermethylation of immune genes is leading to viral replication and persistence and is a common 

mechanism to potentiate virus-induced cancer progression [20]. An important factor impacting 

oncogenesis may also by miRNA, participating in cell transformation, by inhibiting mRNA 

translation [19,22].  

 

Figure 1. Mechanisms of oncogenesis and the involvement of viral oncoproteins in gastric cancer. All 

virus-associated tumors result from the cooperation of many oncogenic mechanisms. In gastric 

cancer, viral oncoproteins are triggering all (1–10) of the described oncogenic scenarios. 



Cancers 2020, 12, 1680 4 of 24 

 

3. Oncogenic Viruses in Gastric Cancer 

3.1. Epstein–Barr Virus 

The Epstein–Barr virus is one of the human herpesviruses with a proved oncogenic potential [1]. 

It belongs to the Herpesviridae family in the Herpesvirales order [23]. It has linear double-stranded 

DNA 168–184 kbp long, which consists of 85 genes [24]. Due to the difference in the EBNA gene, 2 

subtypes of EBV 1 and 2 were distinguished [1,24,25]. 

EBV, like all herpesviruses, has a latent and lytic phase [26]. The infection of B lymphocytes with 

EBV in cell culture results in the establishment of an immortalized B cell line [27]. There are several 

proteins encoded in the EBV genome that have transformational potential. One of them is LMP1 

(latent membrane protein), which has the ability to transform equal types of cells, including 

fibroblasts in rodents [28]. In addition, the LMP1 gene is necessary for the virus to kill B lymphocytes, 

since its removal causes a lack of transformation [28]. 

LMP1 has many transmembrane spanning domains and its carboxyl terminus may interact with 

several tumor necrosis factor receptor associated factors (TRAF) [26,29]. The interaction between 

LMP1 and TRAF results in high expression of the nuclear factor kB (NF-kB) in LMP1-expressing 

epithelial and B cells [26]. LMP1 also upregulates the expression of some genes responsible for 

apoptosis and adhesion, including A20, bcl2 and ICAM-1 [26]. In addition, it activates the expression 

of interferon regulatory factor 7 (IRF-7) [30], matrix metalloproteinase 9 (MMP-9) and fibroblast 

growth factor-2 (FGF-2) [31]. 

Another viral gene, LMP2, has been shown to inhibit B-cell receptor (BCR) signaling [32]. It 

works by sequestering the Src family members Fyn and Lyn, preventing their translocation into lipid 

rafts with BCR, thereby inhibiting BCR activity [33]. 

Other viral genes that encode transforming potential include EBV nuclear antigen 2 and 3 

(EBNA2 and EBNA3). EBNA2, like LMP1, is necessary for the transformation of B cells, because the 

removal of this gene from the wild type EBV makes the virus unable to kill B cells [26,34]. Among the 

genes encoding EBNA3, EBNA3A and EBNA3C, they are necessary for the transformation of B cells, 

while EBNA3B is unnecessary [35]. All three EBNA3 proteins can interfere with EBNA2 activation, 

interfering with its intercalation with RBP-Jk DNA-binding protein, thereby suppressing its EBNA2-

mediated transactivation [26]. EBNA3C may therefore promote cell proliferation and cross the G1-S 

phase checkpoint and may also work with EBNA2 and EBNA3A to modulate cell gene expression in 

EBV infected lymphocytes. 

In general, the oncogenic mechanism of EBV relies on coding LMP1 and LMP2, EBNA1-3, leader 

protein (LP), BamHI A reading frame 1 (BARF1) and BamHI A rightward transcript miRNAs, which 

their role is to promote transformation of B cells and epithelial cells and block pro-apoptotic proteins 

in host cells [20]. Lately it was also confirmed [20] that stimulation of DNA hypermethylation of host 

genes might contribute to carcinogenesis. 

It is widely believed that EBV contributes to the development of many diseases, including 

Burkitt’s lymphoma, Hodgkin’s lymphoma, diffuse large B-cell lymphoma, lymphoproliferative 

disorder in people with immunodeficiency [24,36,37], post-transplant lymphoproliferative disease, 

central nervous system lymphoma, non-Hodgkin lymphoma, oral hairy leukoplakia [38] and gastric 

cancer [24,38–44]. 

Many different independent studies confirm the presence of EBV virus in cancer cells, among 

others, in lymphoepigastric adenocarcinomas [40], lymphoepithelioma-like gastric carcinoma with 

marked lymphocytic stroma [41]. In general, EBV is detected in approximately 10% of gastric cancer 

cases [42,45]. Its existence in gastric cancer was first discovered in 1990, by the means of a polymerase 

chain reaction (PCR) [46]. The EBV-encoded small RNA 1 (EBER1) gene is used to confirm the 

presence of the virus in cancer cells. It is a viral protein attributed to the function of combining viral 

DNA with host chromosomes, which enables its replication by host DNA polymerase [24]. The 

presence of this gene can be confirmed by carrying out both the polymerase reaction and in situ 

hybridization (ISH) [44]. When the ISH method is used, EBER1 signals are detected in the nuclei of 
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gastric cancer cells [41,42,47]. In EBV positive stomach cancer (EBVaGC), all cancer cells carry the 

EBER1 gene [43]. 

Published in 2014, the Cancer Genome Atlas (TCAG) study, presented the gastric 

adenocarcinomas division into four groups: 1. EBVaGC; 2. microsatellite instability (MSI); 3. 

chromosomal instability (CIN) and 4. genomically stable (GS) tumors [48]. It has been reported that 

EBV 16 positive tumors are characterized by the transmission of recurrent mutations in the PIK3CA 

gene, DNA hypermethylation and overexpression of the JAK2, PD-L1 and PD-L2 genes [38,43,48,49]. 

In 2015, Chen et al. [44] published a systematic review in which they focused not only on studies 

showing the presence of the EBER1 gene in cancer cells and also in non-tumor tissues adjacent to the 

stomach in cancer patients, in the non-tumor mucosa of healthy patients, patients with mild stomach 

diseases and in the deceased individuals and studies comparing anti-EBV antibodies in the serum of 

healthy and sick patients. They analyzed 47 studies; in total 9909 patients were examined, including 

8069 patients and 1840 healthy people. The EBER1 positivity tested by the ISH method was 

significantly higher and ranged from 5% to 17.9% in the tumor tissue than in the adjacent mucosa in 

the same patients or biopsies from all control groups—almost 0%. They also noted that some cases of 

confirmation of the presence of EBER1 by PCR were not confirmed by ISH. They concluded that the 

ISH method makes it possible to effectively determine the relationship between gastric cancer and 

EBV infection, and the PCR method is not efficient enough. 

3.2. HHV-8 

Human herpesvirus 8, like EBV, belongs to the Herpesvirales family, to the subfamily 

Gammaherpesvirinae [23]. It was first discovered in AIDS-related Kaposi’s sarcoma in 1994, which 

owes its second name: Kaposi sarcoma herpes virus (KSHV) [50]. KSHV is also involved in the 

development of primary effusion lymphoma, multicentric Castleman’s disease (MCD) [24,51,52] and 

B-cell lymphoproliferative disorders that can be converted to KSHV-associated non-Hodgkin’s 

lymphoma and also primary effusion lymphoma (PEL) [39,53]. 

The KSHV genome contains a variety of genes responsible for transformation, signaling, 

prevention of apoptosis and avoidance of immunity. Researchers believe that HHV-8 transforms cells 

through a paracrine mechanism because several studies have shown high levels of cytokines and 

growth factors in KS and MCD changes [26]. 

KSHV can immortalize primary bone marrow endothelial cells and induce cell proliferation, 

anchoring independence and survival of these cells. Researchers also found that only a subset of 

transformed endothelial cells contained viral DNA, which firmly said that adjacent uninfected cells 

survived due to a mechanism involving cytokines secreted by infected cells [54]. On this basis, it has 

been suggested that transformation of KSHV is dependent on paracrine factors [26]. 

The KSHV K1 genes and viral G-protein-coupled receptors (vGPCR) have oncogenic potential. 

The K1 protein is able to transform rodent fibroblasts in vitro, and when injected into nude mice, 

these cells induce numerous and widespread tumors. In addition, K1 has the ability to functionally 

replace the saimiri transforming protein (STP) of herpesvirus saimiri (HVS) in vitro and in vivo to 

induce lymphoma in marmoset monkeys [26]. Transgenic animals expressing K1 develop sarcomas 

and lymphomas [55]. In addition, K1 can induce B cell signaling and proliferation through an 

immunoreceptor tyrosine-based activation motif (ITAM) and blocking Fas-induced apoptosis of 

these cells [56,57]. In addition, Wang et al. found that K1 can activate the NF-kB and PI3K paths. In 

the endothelial cells, researchers showed that K1 upregulates the expression and secretion of vascular 

endothelial growth factor (VEGF) and MMP-9 [58,59]. 

Similarly to the K1 protein, the KSHV vGPCR protein works, which has the ability to transform 

NIH 3T3 cells in vitro. vGPCR can also activate phospholipase C (PLC) and PI3K pathways [60]. This 

protein also immortalizes primary endothelial cells and transgenic mice expressing vGPCR develop 

angioproliferative changes similar to Kapossi sarcoma-like lesions [61]. In addition, expression of 

vGPCR in various cell types leads to upregulation of many cytokines and paracrine factors. Thus, 

this specific viral protein may be involved in the development of KSHV-related cancer by inducing 

and supporting cell proliferation. 
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In addition to the two proteins mentioned above, the KSHV genome also encodes: interferon 1 

regulatory factor (vIRF-1) and the Kaposin/K12 gene. Both of these proteins have in vitro 

transformation potential [26]. In addition, researchers have shown that LANA (latency-associated 

nuclear antigen) immortalizes endothelial cells and induces B cell and lymphoma hyperplasia in mice 

[62,63]. 

Despite learning about many models of KSHV transformation and oncogenesis, the origin of KS-

related tumor cells remains controversial [64]. In order to understand the exact mechanism of KSHV 

oncogenesis, further research is needed, both in human and animal models, because more 

transformation pathways than presented may exist. 

KSHV cannot transform any cells in culture and does not sustain its own persistence without 

EBV co-infection [39,65]. In the case of the PEL, the researchers found that KSHV/EBV co-infection 

occurred in most of the cases [66]. The role of EBV in this disease is not fully understood. It is believed 

that in this very case EBNA1 gene expression increases KSHV virus load and an increase in the extent 

of LANA [66]. It is possible that the function of the EBV in KSHV/EBV co-infection in other cases is 

also to enhance the virulence and the KSHV genome expression in the host cells. 

This virus has a long dsDNA chain (over 140 kbp) [24]. Unlike EBV, KSHV does not connect to 

chromosomes, but connects to genomic DNA indirectly, due to the LANA1 protein with histones 

H2A and H2B [67]. 

3.3. Human Papillomavirus 

Human papillomavirus (HPV) belongs to the Papillomaviridae family [23]. Among the many 

distinguished types of HPV, type 16, 18, 33, 45, 52 and 58 are associated with various types of cancer, 

including cervical, anogenital, penile and nasopharyngeal cancers [24,68–70]. Research on the 

potential role and development of HPV-16 and HPV-18 viruses in cervical cancer was initiated by 

zur Hausen et al. in the 1970s [71–73], for which he was awarded the Nobel Prize in Medicine and 

Physiology in 2008 [74]. This shows how important it is to study the role of oncoviruses, not only 

HPV, in order to fully understand their mechanisms of action, develop methods for their detection 

and discover effective treatment methods. 

The HPV genome is built of 7–8 kbp circular double-stranded DNA [75]. After many studies, it 

has finally been determined that the most common route of transmission of this virus is the sexual 

route [76]. However, HPV is a very stable virus and can survive on surfaces for up to several days. 

The virus is also resistant to some disinfectants [76–78]. For this reason, the virus can also be 

transmitted through by non-sexual means: either by way of mother to child, fomites, self-inoculation 

or nosocomial infection [76]. It is very possible that all the HPV transmission routes have not yet been 

discovered. For this purpose, long-term prospective studies should be undertaken. Although the 

sexual route is the most common way it is very necessary to spread among the public about alternate 

modes of transmission [79]. 

Primary HPV infection occurs in basal epithelial stem cells [26]. Then the virus traverses 

upwards and replicates in finally differentiated keratinocytes, and is shed from the stratum corneum 

[26,80]. The HPV genome lacks an enzyme necessary for replication—DNA polymerase—and 

therefore the replication of the viral genome depends on the stimulation of cellular DNA synthesis in 

infected cells [26]. 

In the vast majority of cervical cancers, HPV integrates with the host genome, resulting in loss 

of expression of the E2 viral gene, which is the transcriptional repressor of the E6 and E7 genes. As a 

result, there is an increased expression of oncoproteins encoded by these two genes [80]. E6 and E7 

proteins from high-risk virus strains have strong transformational abilities. It has been shown 

[26,81,82] that these proteins immortalize cells in vitro and induce skin tumors in transgenic animals. 

HPV viral oncoproteins attack tumor suppressors. The overall result is cell cycle and cell growth 

dysregulation and the inhibition of the apoptosis. E6 binds the p53 transcription factor and induces 

its degradation [83]. E6 binds to ubiquitin ligase forming the E6-AP complex, binding p53 and 

causing ubiquitination and proteosomal destruction of proteins [84]. In addition, E6 may induce 

telomerase activity and lead to cell immortalization [85]. 
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E7 binds members of the retinoblastoma (Rb) family [86]. This protein hinders Rb function and 

allows cells to enter the S phase of the cell cycle. E7 binds to the hypophosphorylated form of Rb and 

prevents its binding to E2F transcription factor. Free E2F transcription factors promote the expression 

of genes required for cell DNA synthesis, thereby pushing the cell into the cell cycle [26,87]. In 

addition, E7 stimulates cyclin-A and cyclin-E dependent kinase activity and deactivates p21/WAF1 

and p27/KIP1 kinase inhibitors. E7 may also be the cause of the synthesis of abnormal centrioles and 

aneuploidy at an early stage of the oncogenic process [26]. 

Treatment of the effects of his infection is possible due to the discovery of HPV vaccines. 

Available vaccines protect against two, four or nine types of HPV, but each of them is directed at least 

to HPV-16 and HPV-18—the types of virus whose infection causes the greatest risk of developing 

cervical cancer [88]. 

In 2018, de Souza et al. conducted studies aimed at demonstrating correlations in co-infection 

with HPV, EBV and Helicobacter (H.) pylori in gastric cancer [13]. Three hundred and two samples 

were tested, most of which (55%) were classified as an enteric subtype. All three pathogens were 

found in the samples tested, including H. pylori in 87%, EBV in 20% and HPV in 3%. Interestingly, 

among HPV-positive samples, researchers found only viruses of Types 16 and 18. Based on the 

research, they concluded that human papillomavirus is not involved in the development of gastric 

cancer [13]. 

No other studies were found that clearly and undeniable confirm the correlation between HPV 

infection and gastric cancer. 

3.4. Hepatitis B Virus 

The hepatitis B virus (HBV) is a human, partially double-stranded DNA virus with a diameter 

of 42-47 nm and a genome of about 3.2 kbp [19,89]. It belongs to the family of Hepadnaviridae of the 

genus Orthohepadnavirus [23]. It is replicated in hepatocytes via indirect RNA using viral reverse 

transcriptase [90]. The virus has a natural tropism to the liver and in most cases, the infection leads 

to liver damage, with the consequence that hepatocellular carcinoma develops [91,92]. 

The HBV genome has a small HBx region that plays an important role in oncogenesis [93]. The 

HBx is a relatively small 17kDa polypeptide [94,95]. The HBx activates many different promoter 

elements. It is responsible for activating transcription of viral and cellular genes. It changes signal 

transduction, disrupting the signaling cascade above the transcription complex. These signaling 

cascades trigger the activation of many factors such as AP-1, NF-kB, SP1 and Oct-1 [96]. The HBx 

protein stimulates entry into the cell cycle by activating selected cyclins and cyclin-dependent kinase 

pathways, as well as pathways such as Wnt, ras, PI3K, JAK/STAT, NF-kB and Hedgehog, which 

promote survival and growth [97,98]. Nuclear HBx affects transcription regulation by activating 

CREB, ATF-2, ATF-3, NFAT, C/EBPβ and SMAD4 complexes and facilitates the introduction of 

epigenetic changes that affect the expression of the host cell gene [99,100]. Changes in HBx-mediated 

miRNA levels both modulate the expression of oncogene and the suppressor gene [101]. Hepatitis B 

virus avoids both growth suppression and immune destruction by blocking the process of apoptosis. 

Internal apoptosis is caused by the occurrence of oxidative stress caused by the virus itself, while 

external apoptosis is activated through the immune system [98]. The HBx blocks the activation of the 

key mediator of congenital antiviral signaling, which is the MAVS (mitochondrial antiviral signaling 

protein), while the prevention of external apoptosis is caused by TNFα, TGFβ and Fas by blocking 

caspases 8 and 3 and activating NF-kB, the latter being responsible for liver protection [98]. The HBx 

protein replaces the negative regulation of TGFβ growth and converts it into a tumor promoter [100]. 

Mitochondrial-associated HBx causes an increase in reactive oxygen species (ROS). High levels of 

ROS, combined with the progression of the cell cycle, increase the risk of occurrence and spread of 

mutations many times over [100]. The HBx promotes cell division by directly interacting with the p53 

protein by suppressing binding and transcriptional down regulation, in addition it promotes Rb 

inactivation and down regulates some cdk inhibitors [96,98]. HBx also inhibits DNA 1 binding protein 

(DDB1) damage during repair of nucleotide excision, and also promotes the appearance of 

multinucleated cells, chromosome rearrangement and micronucleus formation [100]. In cell culture 
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experiments, indeed, HBx expression significantly inhibited the ability of cells to repair damaged 

DNA [102]. The HBx can also cause increased angiogenesis and metastasis, through the transcription 

factor HIF1α, which activates Ang-2 (angiopoietin-2) and VEGF (vascular endothelial growth factor) 

[100]. The HBx protein influences the development of all key features of cancer and does not have to 

interact with other viral oncogenes [96]. 

Chronic HBV infection is associated with EHC (extra-hepatic cancers) such as pancreatic cancer, 

non-Hodgkin’s lymphoma and gastric cancer. Hepatitis B virus, through the bloodstream, can lead 

to infection of tissues of organs other than the liver. HBV antigens outside the liver are also often 

detected in the stomach, gastrointestinal tract, pancreas and kidney [92,103,104]. It is possible that 

HBV can replicate in extra-hepatic tissues and plays an oncogenic role [92]. Over the past several 

years, there have been many independent studies showing the relationship between HBV surface 

antigen (HBsAg) and gastric cancer [91,92,103–107]. 

Chen et al. [106] in 2004 noticed that very often a co-infection of the hepatitis B virus and 

Helicobacter (H.) pylori was observed in patients. The study involved 72 patients of Jiangsu Province 

in China, including 28 patients with diagnosed chronic hepatitis B and 44 patients with advanced 

hepatic cirrhosis caused by hepatitis B who were the study group. Thirty patients with gastritis but 

no liver disease was included in the control group [106]. There was no significant difference between 

the cirrhosis group and the group with chronic hepatitis. It was observed that HBV antigen 

expression in the gastric mucosa with positive H. pylori infection was 69.8% and with negative 73.7% 

(p > 0.005) [106]. It has been concluded that HBsAg and HBcAg overexpression coexist with H. pylori 

antigen expression in the gastric mucosa of persons with H. pylori infection, thus early treatment of 

H. pylori infection may be beneficial for the prognosis of patients with chronic liver disease [106]. In 

2011, research was carried out in China in which ten commonly occurring extrahepatic tumors were 

assessed. The tests evaluated the presence of HBsAg in cancerous tissues. Approximately 14% of 

patients with confirmed gastric cancer received a positive result for the presence of the hepatitis B 

surface antigen (HBsAg) [92,107]. In contrast, in the Republic of Korea, the presence of HBsAg was 

confirmed in 3.4% of women and 4.7% of men with stomach cancer [92,103]. 

Ghasemi et al. [104] in 2012 presented their research, in which they examined the effect of HBV 

on gastric cancer in the population of Northern Iran. Researchers collected 100 biopsy blocks with 

paraffin fixed in formalin and gastric cancer was confirmed in all trials [104]. In the study group, 69% 

of patients with gastric cancer were middle-aged men and 31% were women. The authors did not 

show the presence of the HBV genome in gastric cancer in their studies, which indicates that HBV is 

not correlated with the development of gastric cancer in the inhabitants of Northern Iran [104]. 

The first studies that showed the actual relationship between hepatitis B virus infection and 

gastric cancer appeared in 2015. Wei et al. [105] conducted a retrospective follow-up study with 580 

cases and 580 controls that matched each other by age, gender and year of diagnosis. The relationship 

between gastric cancer and HBV infection was investigated using one- and multi-dimensional 

unconditional logistic regression analysis. The results obtained show that the HBsAg antigen is 

positively associated with gastric cancer (AOR (95% CI): 1.49 (1.06–2.10)) [105]. However, the 

relationship remained significant in patients with no family history of cancer (AOR (95% CI): (1.06–

2.11)). In the group with negative HBsAg, which are anti-HBc positive/anti-HBs negative, which 

probably suggested latent HBV infection, also shows some association with gastric cancer. Besides, 

some synergistic effects have been demonstrated between HBV infection and blood group A in 

gastric cancer. Studies directly show that HBV infection is positively associated with the development 

of gastric cancer, especially in a group of patients who have no confirmed family history of gastric 

cancer. Wei et al. stated that further prospective studies are needed to finally confirm the association 

of HBV with gastric cancer [105]. 

In 2019, the latest research appeared that aimed to confirm the relationship between HBV 

infection and gastric cancer [92]. The correlation between gastric pathology and hepatitis B virus 

infection in patients with positive or negative H. pylori infection was evaluated. The study involved 

728 patients who underwent endoscopy in 2017–2018. Histopathological analysis of tissues was 

performed on samples taken from the stomach [92]. The presence of HBsAg in the serum of the 
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examined patients was confirmed by the immunoenzymatic method (ELISA). The relationship 

between gastric cancer and HBV infection was examined using logistic regression analysis. From the 

results obtained, it appears that among 728 patients, HBsAg infection was detected in 83 (11.4%), 

while H. pylori infection was confirmed in 408 (56%) patients. Co-infection with H. pylori/HBV was 

confirmed in 69 (9.5%) patients [92]. Helicobacter pylori infection was significantly more frequently 

detected in patients with positive HBsAg than negative (p = 0.029) [92]. Not a single patient co-

infected with H. pylori/HBV had normal stomach tissue. There was a significant histopathological 

difference in gastric tissue between patients with HBsAg positive and no H. pylori infection (p 

<0.0001). The hepatitis B surface antigen (HBsAg) was associated with histopathological changes in 

stomach tissue (OR = 21.56, 95℅CI = 7.070 − 65.741, p < 0.001) and may be a potential risk factor for 

gastritis (OR = 12.457, 95℅ CI = 3.007-51.614, p = 0.001) [92]. The effect of HBsAg infection on the 

development of stomach cancer was not confirmed (OR = 2,127, 95℅CI = 0.242–18.704, p = 0.496). 

Baghbanian et al. [92] concluded that HBV infection alone may be associated with some precancerous 

lesions, but is not correlated with gastric cancer. In contrast, the hepatitis B virus, in the case of people 

with Helicobacter pylori infection, can significantly affect the severity of precancerous conditions or 

the development of gastric cancer [92]. 

3.5. Hepatitis C Virus 

Hepatitis C virus (HCV) is a human, single-stranded, linear RNA virus with positive (+) ssRNA 

polarity and a length of about 9.6 kbp [108–110]. The virus belongs to the family Flaviviridae of the 

genus Hepacivirus [23]. It is estimated that around 171 million people worldwide are constantly 

infected with HCV, which causes a number of chronic liver diseases [110,111]. Hepatitis C virus, like 

hepatitis B virus, has a natural tropism to the liver and contributes to hepatocellular carcinoma (HCC) 

and gallbladder cancer [8,110]. 

In the case of HCV, both the core and the unstructured protein 5A (NS5A) and NS3 directly 

promote the development of hepatocellular carcinoma, by altering the expression of the host gene, 

and inflammation caused by the immune system indirectly affects the formation of tumors [112,113]. 

The HCV core and the NS3 and NS5A proteins promote the proliferation of liver cells through the β-

catenin pathway. The core protein affects the expression of cyclin-dependent kinase 2 (cdk2) and 

cyclin E [100,114]. 

The HCV, as with the HBV, avoids growth suppression and immune destruction by inhibiting 

the apoptosis process [114]. HCV infection induces innate immunity, but viral proteins effectively 

block signaling that triggers IFNβ (interferon beta) as well as IFNα (interferon alpha) signaling by 

targeting JAK/STAT [100]. The HCV core and NS3 protein inactivate many suppressor genes [100]. 

The core blocks the process of apoptosis by inhibiting caspase 8 using the host’s immune system 

[100,112,114]. Binding of NS5A to signaling cellular molecules inhibits the immune response, 

suppressor genes and apoptosis [98,115]. The HCV virus up-regulates miR-181, which causes the 

appearance of “stemness” markers in hepatocellular carcinoma [100]. One of the features of HCV-

associated cancers is replication immortality. In the case of hepatitis C virus, stable transfection of 

human hepatocytes with the HCV core promotes differentiation, continuous growth and increased 

expression of telomerase, which can largely promote immortality [100]. 

The HCV has the ability to trigger an angiogenesis process. This process is caused by the 

production of a large amount of ROS, which affect the activation of a number of HIF1α stabilizing 

signaling pathways [115]. 

Malignant strains of HCC have a predisposition to invade and metastasize. This is caused by 

elevated levels of the HGF receptor (hepatocyte growth factor) and c-met. These factors can lead to 

diffusion, angiogenesis, proliferation and increased cellular motility, eventually to invasion and 

metastasis [100]. The HCV core causes EMT (epithelial–mesenchymal transition) and tumor invasion. 

By activating JNK/pSmad3L signaling, the core protein abolishes TGFβ-dependent tumor 

suppression [115]. 



Cancers 2020, 12, 1680 10 of 24 

 

DNA repair and apoptosis are also regulated by poly (ADP-ribose) polymerase 1 (PARP-1). The 

NS5A protein stabilizes PARP-1 levels by blocking caspase 3-mediated cleavage. These processes 

may allow mutation reproduction and genetic instability in cells infected with HCV [100,115]. 

Patients infected with HCV have a higher risk of developing hepatocellular carcinoma compared 

to those who are not infected. Unlike HBV, which has the ability to integrate into the host genome, 

thereby causing direct carcinogenic activation, it is known that HCV is an RNA virus that has limited 

ability to integrate its genetic information into the host genome. Therefore, hepatitis c virus 

carcinogenicity is associated with indirect mechanisms [116]. In total, HCV and HBV caused 433,186 

new liver cancer cases and 406,779 deaths in 2012, which is 77.61% of liver cancer cases and 76.6% of 

deaths [8]. There are no data to date regarding the impact of HCV on the development of gastric 

cancer. 

3.6. HTLV-1 

Human T-lymphocytes lymphoma virus-1 is a member of Retroviridae [23]. The association of 

human T-cell lymphotroptic virus 1 with cancer is controversial, and positive correlation was 

confirmed in case of human leukemia [117,118]. Transmission of the virus is possible through sexual 

intercourse, breastfeeding and contaminated blood [119]. First line of infection with the virus are DCs 

(dendritic cells), afterwards HTLV-1 may be transmitted to CD4+ T cells and, to a lesser extent, CD8+ 

lymphocytes, B cells and monocytes [119]. It is worth mentioning that viral spread of HTLV-1 is 

dependent on cell-to-cell contact, but also forming a viral biofilm or virological synapse [120,121]. 

Other possible spreading mechanisms may include nanotubes [122]. The latest data show that the 

promotion of cell-to-cell contact may be influenced by the formation of extracellular vesicles, to elicit 

adverse effects on recipient uninfected cells [123]. 

Oncogenic mechanisms are not evident for HTLV-1, nevertheless, a crucial role may be 

performed by the regulatory proteins Tax and HBZ with oncogenic properties [119,124]. Tax is a 

trans-acing viral protein being a major target of CTLs (cytotoxic lymphocytes), and its mechanism of 

transformation is related to reprogramming cell cycle and the inhibition of DNA repair [19], while 

HBZ is a leucine zipper factor with low immunogenicity, suppressing major HTLV-1 genes, 

possessing a role in cell proliferation, apoptosis, T-cell differentiation and immune escape [125]. 

Moreover, the differences in oncogenic mechanism may also result from the alterations of the infected 

cell microenvironment [123]. Additionally, similarly to other oncogenic viruses, the infection favors 

chronic infection, leading to immunosuppression and cancer development [124]. In blood 

malignancies it was confirmed, that one of the oncogenic mechanisms involving HTLV-1 infection is 

the dysregulation of gene expression, leading to abnormal chromatin looping, changing the position 

of HTLV-1 promoter-enhancer position [126]. 

Studies have been performed in the association of HTLV-1 with gastric cancer, leading to the 

conclusion, that the prevalence of HTLV-1 infection in patients with gastric cancer appears to be 

significantly lower than that in control patients [127–129]. Additionally, HTLV-1 reduces the risk of 

Helicobacter pylori infection, thus indirectly, influences the lower rate of gastric cancer, as H. pylori 

infection is known to be a frequent risk factor of this type of cancer [128]. 

3.7. Human Immunodeficiency Virus 

Human immunodeficiency virus (HIV) is single-stranded RNA virus with positive (+) ssRNA 

polarity [130], belonging to the family Retroviridae of the genus Lentivirus [23]. So far, two types of 

HIV have been distinguished—HIV-1 and HIV-2 [130]. Both types of virus evolved from two different 

viruses attacking monkeys—SIV (Simian immunodeficiency virus) [130]. 

HIV infection leads to serious changes that disrupt the immune system of the host, making it 

extremely susceptible to other viral, bacterial and fungal infections. This condition was called 

acquired immune deficiency syndrome—AIDS [131]. Most often, HIV infection occurs through 

sexual contact, but also this virus can get into the bloodstream through contaminated needles or 

perinatally from an infected mother [131]. In most cases, untreated HIV infections lead to death 

[130,131]. The HIV virus, by weakening the host’s immune system, reduces the body’s ability to 
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defend itself effectively and combat viral infections leading to the development of cancer [132]. An 

organism without defense becomes an excellent environment that allows the free development of 

other oncogenic viruses such as KSHV, EBV, HPV, HBV, HCV and HTLV-1 [133]. 

The HIV virus may have oncogenic potential through direct cellular mechanisms mediated 

primarily by the HIV Tat protein [134]. The Tat protein is an early unstructured protein, essential for 

viral replication [135]. Tat HIV is released from HIV-1 infected cells. The protein can bind to 

uninfected cells, including endothelial cells, and infiltrate through the domain of protein transduction 

[136]. The Tat HIV protein can affect the blocking of the tumor suppressor gene function as well as 

activate proto-oncogenes, inhibit apoptosis and affect cell cycle progression [134]. 

People infected with HIV have a higher risk of certain types of cancer than people of the same 

age who have not been found to be infected with HIV [137]. The HIV virus mainly contributes to the 

development of Kaposi’s sarcoma, aggressive B-cell non-Hodgkin’s lymphoma and cervical cancer 

[132]. These cancers are referred to as “acquired immunodeficiency syndrome (AIDs)-defining 

cancers” or “AIDS-defining malignancies”. Diagnosing each of these three cancers in people who are 

positive for HIV confirms the diagnosis of AIDS [132]. 

In addition, it has been observed that HIV infection can lead to the development of other cancers 

known as non-AIDS-defining cancers, such as cancers of the anus, penis, liver, oral cavity/pharynx 

and lung, and Hodgkin lymphoma [137–140]. 

To date, no confirmed involvement of HIV-1 in gastric cancer has been reported. In 2012, Perrson 

et al. presented the study, which showed that the risk of gastric cancer was significantly increased 

among patients with confirmed AIDS (SIR = 1.44; 95% CI, 1.17–1.76) [141]. For the general population, 

the incidence rate for stomach cancer was 5.00 per 100,000 person-years [141]. Unfortunately, in 2016, 

this article was withdrawn due to irregularities in statistical surveys. As a result of errors, 

standardized incidence ratios (SIRs) were too high. SIR corrected results are lower than the authors 

reported, and corrected SIR for gastric cancer is no longer significantly increased [142]. 

4. Adenovirus—Oncogenic or Oncolytic? 

The role of adenoviruses in gastric cancer is mysterious. On one hand, adenoviruses 

(Adenoviridae) [23] are known to be oncogenic in many malignances [143,144], but the oncolytic 

properties of the virus also exist. In the case of gastric cancer, only oncolytic properties have been 

used in several studies in order to improve the possibilities of therapies. For effective oncolytic 

activity, adenoviruses must specifically infect and replicate within cancer cells, but unfortunately, 

many malignant cells do not express the CAR receptor (coxsackie and adenovirus receptor), resulting 

in decreased transduction of serotype 5 Ad (Ad5), which is commonly used for Ad-based vectors 

[145]. Therefore, efforts are made, to modify Ad5 fibers, the capsid moiety responsible for virus–cell 

surface receptor interaction, in order to increase their transduction to cancer cells [145]. It is also 

known, that adenovirus vector has a capacity to produce high titers and is genomically stable, with 

a low rate of DNA integration into the host’s genome [146]. On the other hand, adenovirus vectors 

may induce potent immunogenic toxicities, followed by the inhibition of the expression of transgene 

mediated by the vector itself, leading to several limitations of this kind on cancer therapy, so the good 

and the bad face of the virus treatment is here also as an issue [147]. In gastric cancer, adenovirus 

vectors have also been used [148]. There are reports about oncolytic adenoviral vectors, in which 

modification has been made, by replacing E1a and E1b promoters of adenovirus with human 

telomerase reverse transcriptase (hTERT) and hypoxia response element (HRE) promoters, leading 

to creation of recombinant oncolytic adenovirus KGHV [148]. The study by Wang at al. [148] shows 

that the infection of normal cells may be decreased by the combination of KGHV500 adenovirus, 

targeted at CIK (cytokine-induced killer cells), with a known anticancer potential [148]. This leads to 

the conclusion, that such way of delivering oncolytic viruses to tumor targets are a promising 

method. 

Additionally, tumor-specific midkine and cyclooxygenases (Cox2M and Cox2L) promoters were 

tested in gastric cancer, and high activity was noted with oncolytic effect was confirmed for Cox2CR-

Ad complex and fiber-modified vector Ad5/3 [149]. 
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There is also a study showing, that adenovirus bound as a vector with Arg-Gly-Asp peptides in 

the fiber knob, allowed the virus to utilize integrins, which is a very promising target, while integrins 

are highly expressed in gastric cancer [143]. 

In another study, a CEA promoter was introduced into an adenovirus vector, and this method 

was also a successful attempt at decreasing the number of gastric carcinoma cells [150]. 

A broad study was also conducted on the role of adenovirus and the correlation of it with TIPE2 

expression. TIPE2 is tumor necrosis factor-alpha induced protein 8-like 2 downregulating innate 

immunity via impacting on TLR signaling, macrophages and dendritic cells [151]. It was shown that 

TIPE2 is reduced or absent in several tumors, including gastric cancer [144,152]. TIPE2 is an inhibitor 

of gastric cancer cell growth, and might promote a p27-associated signaling cascade that leads to 

control the cell cycle and cell division, leading to the conclusion, that TIPE2 may regulate proliferation 

of gastric cells [152]. Moreover, according to Zhu et al. [146], TIPE2 may be a novel potential 

therapeutic target for human gastric cancer, on the basis of the results achieved in a panel of human 

gastric cells (AGS, HGC-27 and SGC-7901), where expression of TIPE2 was lost. Adenovirus-

mediated human TIPE2 overexpression significantly inhibited AGS and HGC-27 gastric cancer cell 

growth and induced AGS and HGC-27 tumor cell apoptosis in vitro [146]. Further investigations 

showed [151], that adenovirus-mediated TIPE2 upregulate E-cadherin epithelial marker in AGS and 

HGC-27 in in vitro and in vivo model, leading to the conclusion, that TIPE2 not only inhibits gastric 

cancer cell migration, but also stating that invasion and metastasis in gastric cancer in probably via 

reversal of epithelial–mesenchymal transition, which may be crucial in further therapeutic 

approaches [151]. 

Adenovirus vector was also targeted at cancer associated fibroblasts (CAF), being the crucial 

microenvironment of tumor growth, invasion and metastasis [147]. CAFs contribute to cancer growth 

and metastasis by secreting cytokines, growth factors and adhesion molecules, leading to 

enhancement of radio and chemotherapy resistance, that is why CAFs seem to be a potentially 

successful target for cancer therapy via adenovirus vectors [147]. Such studies have been also 

performed in relation to gastric cancer, and it was concluded, that fiber-modified hexon-chimeric 

recombinant oncolytic adenovirus targeting CAFs can kill gastric CAFs and inhibit gastric cancer 

growth in vivo [147]. 

On the basis of the fact, that most cancer cells are characterized with an increased telomerase 

activity, studied have been performed with telomerase-specific oncolytic adenovirus, which can 

suppress tumor cells, not influencing the healthy ones [153]. This was also confirmed in studies on 

gastric cancer cells in vitro, by combining tumor-specific TRAIL (tumor necrosis factor-related 

apoptosis-inducing ligand) with adenovirus vector [146]. Moreover, this type of novel therapeutic 

approach was noted to be successful even in advance stage of gastric cancer with peritoneal 

dissemination [146]. 

5. Oncolytic Viruses 

Oncolytic viruses are promising cancer gene therapy agents, as they have the ability to 

selectively replicate in cancer cells, causing cancer cell lysis and inflammation, leading to the 

stimulation of host immune responses to cancer cells [4]. 

Oncolytic viruses are successfully used in cancer immunotherapy, as they target multiple steps 

within the cancer-immunity cycle [154,155]. The ability of viruses to attack cancer cells was 

discovered in the mid-20th century [156,157], but the first clinical trials documenting the actual 

clinical benefits of using oncolytic viruses have been carried out over the last 15 years [154]. 

Currently, with increasing knowledge about viruses in general and the constant development of 

research and therapeutic techniques, the interest in viruses as factors used in cancer immunotherapy 

is constantly growing. Many research teams are working on the development of optimized therapy 

with viruses. At this point in time, the only oncolytic viruses approved for cancer therapy are: 

Talimogene laherparepvec (T-VEC) approved by the FDA in 2017 [158] and genetically modified 

adenovirus H101 approved in 2006 in China [159]. The former was approved as immunotherapy for 

patients with advanced melanoma, the latter for treating head and neck cancer. These are huge 
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successes in cancer therapy and are likely to significantly contribute to the development of this field 

of immunotherapy. Some other trials are still ongoing, like the one using the measles virus TMV-018 

(ClinicalTrials.gov.NCT04195373), or vaccinia viral oncolytic vector (GL-ONC1; 

ClinicalTrials.gov.NCT01443260). 

The mechanism of action of oncolytic viruses may be different. They may lead to direct lysis of 

cancer cells, leading to the release of soluble antigens, danger signals and type I interferons, which 

drive antitumour immunity. Furthermore, some oncolytic viruses may be created artificially to 

express therapeutic genes. They can also alter tumor-related endothelial cells, which increases the 

recruitment of T lymphocytes into excluded or immunocompromised tumor microenvironments. 

Ultimately, oncolytic viruses can also be used as a source of in situ neoantigenic vaccinations through 

their cross-presentation, which leads to distant uninfected tumors [155]. 

These features make scientists willing to study the efficacy of oncolytic viruses. However, 

further studies are necessary to develop better therapies using them. 

There are several oncolytic viruses (Table 3), and they are divided into two classes—firstly viruses 

that naturally replicate in cancer cells and are usually mild in human infection, such as parvoviruses, 

myxoma virus (MYXV), Newcastle disease virus (NDV), reovirus and Seneca valley virus (SVV) 

[160]. Second class contains viruses that are genetically changed and used as vectors, including 

measles virus (MV), poliovirus (PV) and vaccinia virus (VV) [160]. In this group, also genetically-

engineered viruses are included, characterized by mutations in genes required for replication in 

normal conditions, and among such viruses, adenovirus, herpes simplex virus (HSV) and vesicular 

stomatitis virus (VSV) are enumerated [160]. The last group seems to be of special interest, not only 

due to the potential in cancer therapies, but also because of being a double-edged sword in this 

matter, and those viruses will be discussed, excluding adenovirus, placed as a puzzle between 

oncogenic and oncolytic viruses in gastric cancer. 

Table 3. Oncolytic viruses. 

Family Virus References 

1. DNA viruses 

Adenoviridae Adenovirus 1 [161–168] 

Herpesviridae Herpes simplex virus 2 [161–164,167,168] 

Parvoviridae Parvovirus [163,168–170] 

Poxviridae 
Myxoma virus [168,171] 

Vaccinia virus [161–164,167,168,171] 

2. RNA viruses 

Orthomyxoviridae Influenza virus [168,172] 

Paramyxoviridae 

Measles virus [161–164,167,168,171,172] 

Mumps virus [161,167,172,173] 

Newcastle disease virus [161–164,166,168,170,172] 

Picornaviridae 

Coxsackievirus [161,163,166–168,171] 

Echovirus [161,166,167] 

Encephalomyocarditis virus and Mengovirus [167] 

Enterovirus [166,167] 

Seneca valley virus [163,165–167] 

Theiler’s Murine Encephalomyelitis Virus [167] 

Reoviridae Reovirus [161–164,166–168,170–172] 

Retroviridae Retrovirus [161,162,172] 

Rhabdoviridae 
Maraba virus [161,163,169] 

Vesicular stomatitis virus [161–164,167,168,172] 

1—approved in China; 2—approved in USA. 

Oncolytic Viruses and the Immune System 

During the infection with an oncolytic virus, a panel of immune cells is recruited, from both 

innate and adaptive immune signaling (Figure 2). After recognition by anti-viral PRRs (mainly TLRs 
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and RIG-1), the production of pro-inflammatory cytokines and interferons takes place. Neutrophils 

and macrophages release several inflammatory mediators, cationic proteins, lipid mediators, 

metalloproteinases and components of oxygen burst [18]. Additionally, DC and NK (natural killer) 

are triggered and the virus is presented to the panel of T cells—T helper cells responses are induced, 

followed by CTL killing of the virally infected cells and causing tissue damage. Additionally, TH17 

contribute to an inflammatory response. The process is impaired by Treg. Finally, B cells are activated 

to antibodies production [18]. 

 

Figure 2. The impact on oncolytic viruses on the immune system. 

6. Oncolytic Viruses in Gastric Cancer 

6.1. Herpes Simplex Virus 

HSV, a member of Herpesviridae [23], is an enveloped ds linear DNA virus, with genes classified 

into three groups by the regulation of their expression—immediate early (IE), early (E) and late (L) 

[174]. The IE gene products regulate gene transcription and include the US12 gene product, which is 

ICP47—responsible for silencing MHC I expression in infected cells via inhibition of TAP (transporter 

associated with antigen presentation) [174]. The E genes promote viral DNA synthesis and the L 

genes are coding capsid proteins, tegument proteins and envelope glycoproteins [174]. 

One of the advantages of using HSV in oncolytic virotherapy is the fact, that this virus can bind 

only to a single receptor, which gives the opportunity to use it in treatments of many malignancies, 

due to the existence of four cellular receptors on HSV [174]. Moreover, HSV, due to its large genome, 

is able to incorporate a large size of a foreign DNA, the infection may be quite easily controlled with 

anti-herpetic drugs and can kill target cell faster and more effectively comparing to adenovirus 

[174,175]. Among genes important for effective oncolysis, ICP0, ICP4 and ICP47 are enumerated, but 

it is worth adding, that some of this data is more than ten years old now [174]. 
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There are several HSV strategies to avoid the host’s immune response, including complementing 

immunoglobulins via viral glycoproteins, inhibition of cytokine production, blocking the maturation 

of APC (antigen presenting cells), expression of MHC II, inhibiting apoptosis and cell death induced 

by CTL (cytotoxic lymphocytes) [175]. 

Several oncolytic mutants of HSV are in different stages of clinical trials on solid tumors with a 

high level of success [176]. However, their efficacy depends on the extent of both intratumoral viral 

replication and induction of a host antitumor immune response [175]. Such an immune response may 

induce the upregulation of angiogenic factors and downregulation of antiangiogenic factors, such as 

thrombospondin-1 (TSP-1), but some moderations are made to increase the oncolytic action of the 

virus [176]. In studies of Tsuji et al. [176], replication-competent oncolytic HSV was constructed as a 

vector to deliver TSP-1 to a gastric cancer microenvironment, and this enhanced antitumor efficacy 

in vitro and in vivo via direct antitumor and antiangiogenic mechanisms. Moreover, in gastric tumor 

cell line SGC7901, the synergistic antitumor effect of herpes virus thymidine kinase (HSV-TK) with 

TNF-α and IL-2 gene expression was evaluated, but with no significant effect [177]. On the other 

hand, other studies on mice model showed a therapeutic effect of HSV-TK expression [178], so further 

studies are needed in this matter. 

Additionally, in gastric cancer, two multimutant oncolytic herpes simplex viruses of the second 

generation—G207 and NV1020—have been shown to kill in vitro human gastric cancer cells [179]. 

With the use of a murine xenograft model of peritoneally disseminated gastric cancer, it was 

registered, that with lower viral dose NV1020 was more effective comparing to G207, but 

intraperitoneal administration was crucial for the positive effect [179]. Those safe for animal pre-

clinical trials are a promising pathway for successful treatment of gastric cancer. Additionally, studies 

were conducted in which G207 was combined with mitomycin C (MMC) and significant synergism 

was observed [180]. This combination upregulated GADD34 in tumor and thus may complement the 

gamma134.5 gene deletion in gastric human cells in vitro [180]. 

Moreover, preclinical trials have been conducted with the use of third generation oncolytic HSV-

1–G47∆, which is a triple mutated virus developed by adding another deletion mutation to the 

genome of a second-generation HSV-1—G207 [181]. The use of this virus in GC (gastric cancer) 

decreased the level of M2 macrophages and increased the level of M1 macrophages and NK cells 

[181]. Interestingly, a strong antiviral response was reported leading to a controversial conclusion 

that innate immunity stimulated by oncolytic virus treatment may facilitate the priming of antitumor 

immunity [181]. 

6.2. Vesicular Stomatitis Virus (VSV) 

Vesicular stomatitis virus, a member of the Rhabdoviridae family [23], is known to be replicating 

to induce apoptosis of many types of cells, including cancer cells, but only one report exists on the 

role of VSV in gastric cancer [182]. In gastric carcinoma cell line MKN28, the expression of vesicular 

stomatitis virus matrix protein (MP) was confirmed to inhibit proliferation and induce apoptosis on 

this type of cancer cell [182]. 

6.3. Vaccinia Virus 

Vaccinia virus, a member of the Poxviridae family [23], may also be an attractive potential 

oncolytic virus for GC treatment, as stated above, even a clinical trial is ongoing—phase I and II 

completed, with the use of this virus (NCT01443260). Among the advantages of this virus, as far as 

genetic engineering is concerned, one can enumerate the ability to incorporate large amounts of 

foreign DNA without losing the replication efficiency and high safety in humans [183]. GLV-1 h153, 

which is a genetically engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) 

gene, was tested as a potential and novel therapy against GC [183]. It was shown [183] that GLV-1 

j153 is an effective oncolytic virus giving successful results in five human gastric cancer lines, giving 

over 90% cytotoxicity. This promising result may also be enhanced by the combination of treatment 

with GLV-1 h153 and radioiodine, which needs to be further studied [183]. 
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7. Conclusions 

Searching for an efficient and effective cancer treatment is one of the key interests in today’s 

world. Gastric cancer, no matter the downward trend, is still a major concern, and expanding 

treatment possibilities is a pivotal issue. Oncolytic virotherapy is surely one of the options. On the 

other hand, oncogenic role of viruses has been also known and is proven in gastric cancer. Showing 

a double-edge sword face of viruses in gastric cancer aimed at drawing the attention to a cautious 

choice of cancer treatment. 
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