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Abstract: The effect of comorbidities and the immune profiles of the kidney cancer microenvironment
play a major role in patients’ prognosis and survival. Using the National Health Insurance Research
Database (Taiwan), we identified patients aged >20 years with a first diagnosis of kidney cancer
between 2005 and 2014. Differences in demographic characteristics and comorbidities were examined
using the Pearson chi-squared test or the t test. The Cox regression model was used to construct the
nomogram. RNA-seq data were applied from The Cancer Genome Atlas database, and correlations
between immune metagenes and clinical characteristics were determined using a linear regression
model. In this nationwide cohort study, including 5090 patients with kidney cancer, predictors in
our prediction models included age, sex, chronic kidney disease, dialysis requirements, renal stones,
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cerebrovascular disease, and metastasis tumor. In the tumor tissue profiles, significant positive
correlations between immune metagenes and clinical stage or overall survival were observed among
Natural Killer (NK) cells (CD56−), CD4+ T-helper 2 (Th2) cells, and activated Dendritic Cell (aDC).
A negative correlation was observed between expression level of Dendritic Cell (DC) and overall
survival. Patients with kidney cancer exhibit high prevalence of comorbid disease, especially in older
patients. Comorbid disease types exert unique effects, and a particular comorbidity can affect cancer
mortality. Moreover, the expression of immune metagenes can be utilized as potentialbiomarkers
especially for further study of molecular mechanisms as well as microenvironments in kidney cancer.

Keywords: kidney cancer; renal cell carcinoma; comorbidity; immune metagenes; survival

1. Introduction

Renal cell carcinoma (RCC) is a common urinary malignancy that accounts for approximately
3% of all malignant tumors. The incidence rates vary substantially worldwide and are generally
high in Europe and North America and low in Asia and South America [1]. The incidence has been
steadily rising over the past three decades This may be attributed to the more liberal use of diagnostic
imaging and early diagnosis [2]. Despite early diagnosis, metastasis is found in approximately 15%
of patients with RCC at initial presentation [3]. The natural history of RCC is highly unpredictable.
Some small renal tumors, which have distant metastases through the early haematogenic dissemination,
are associated with a high risk of disease-specific mortality, whereas some patients with locally advanced
renal tumors experience long-term disease-free survival [4].

Comorbidity is defined as any coexisting disease or condition that may affect the diagnosis,
treatment, and prognosis of an index disease. The prognostic effect of comorbidity has been
demonstrated in various cancers, including colon, lung, and prostate cancers [5]. Several models for
the prediction of prognosis in patients with RCC have been reported [6–9]. Laboratory abnormalities,
tumor-node-metastasis (TNM) stage, nuclear grade, and histologic subtype have been assessed as
potential prognostic factors, but limited data are available on comorbidity as a prognostic factor for
kidney cancer. The effect of comorbidities is crucial for patients’ survival, and gaining an enhanced
understanding of how chronic conditions affect the overall survival of patients with RCC could aid in
determining a patient’s prognosis and help in guiding treatment decisions.

The aim of this study was to quantify comorbidities and associations with overall survival in
patients with kidney cancer. We created a prediction model for overall survival in patients with kidney
cancer by using a Cox model. The assessment of statistical prediction model performance is essential;
therefore, we demonstrated the performance of our prediction model through discrimination and
calibration. Furthermore, we explored correlations between the expression of immune metagenes and
clinical characteristics in patients with kidney cancer to understand the immune profiles of kidney
cancer microenvironments.

2. Results

Main Findings

Figure 1 shows the study design and participants. Patients exhibiting kidney cancer between
1 January 2005 and 31 December 2015 were identified (N = 8964). We excluded patients who had
been diagnosed with kidney cancer before 2006 or after 2014, whose age or sex information was
missing, whose age was <20 years, who did not receive nephrectomy, or who died before their
application for catastrophic illness was approved. This yielded 5090 patients with kidney cancer.
The basic characteristics, comorbid conditions, and Charlson comorbidity index were calculated [10,11].
Participants in this study are shown in Table 1. The mean age of patients with kidney cancer for
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the mortality group and the survival group was 65.89 ± 12.68 and 58.93 ± 13.05 years, respectively.
More men than women were identified. The most prevalent comorbidities were hypertension (58.9%
vs. 53.7%), diabetes mellitus (DM) (30.1% vs. 23.3%), metastatic tumor (26.2% vs. 5.1%), chronic kidney
disease (CKD) (24.5% vs. 14.7%), peptic ulcer disease (15.7% vs. 12.9%), dialysis requirements (12.5%
vs. 5.8%), chronic pulmonary disease (11.3% vs. 6.4%), and cerebrovascular disease (9.6% vs. 5.0%).

Figure 1. Selection criteria and process for eligible patients.

Clinical variables, namely, age, sex, DM, CKD, dialysis requirements, polycystic kidney disease
(PKD), renal stones, myocardial infarction (MI), congestive heart failure (CHF), cerebrovascular disease,
dementia, chronic pulmonary disease, peptic ulcer disease, and metastatic tumor were analyzed and
statistically significant variables, including age, male sex, chronic kidney disease, dialysis requirements,
renal stone, cerebrovascular disease, and metastasis tumor, were further selected and analyzed by
using the cox regression model.

From the Cox model with stepwise selection, age (hazard ratio [HR]: 1.04 [1.04,1.05]), male
sex (HR: 1.20 [1.06,1.36]), CKD [HR: 1.32 [1.10,1.58]), dialysis requirements (HR: 2.14 [1.70,2.71]),
renal stones (HR: 1.55 [1.24,1.93]), cerebrovascular disease (1.37 [1.12,1.67]), and metastasis tumor
(HR: 5.75 [5.04,6.57]) were statistically significant predictors for mortality in patients with kidney
cancer (Table 2). Moreover, a nomogram based on these predictors was constructed (Figure 2).
In clinical applications, the nomogram provides an easier means for calculating and interpreting
survival rates for kidney cancer. In the nomogram, the HR for each predictor was transformed into
point-based. Total risk scores were the sum of a patient’s individual risk score for each predictor,
and these were used to predict each individual’s 1-, 3-, and 5-year survival (Figure 2), e.g., using the
point scale in the nomogram, an 80 year-old (75 points) kidney cancer male patient (5 points) with
comorbidities of cerebrovascular disease (10 points), without renal stone (0 point), chronic kidney
disease (0 point), dialysis requirement (0 point), or metastatic tumor (0 point). The total sum of
points was 90. The predicted 1-, 3-, and 5-year survival rates were 85%, 70%, and 60%, respectively.
We examined the model performance through discrimination. The C-statistic is a widely applicable
measure of predictive discrimination [12]. The overall Harrell’s C-statistic and Uno’s C-statistic were
0.74 and 0.72, respectively. The time-dependent AUC of the prediction model is shown in Figure 3.
The integrated time-dependent AUC is 0.77. In addition, Figure 4 depicts the time-dependent receiver
operating characteristic (ROC) curves at 1, 3, and 5 years. The AUCs were 0.75, 0.72, and 0.73, for 1, 3,
and 5 years, respectively.
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Table 1. Demographic and clinical characteristics of patients with kidney cancer from National health
Insurance Research Database (Taiwan).

Death Survivor

N 1181 3909
Age, mean ± SD, y 65.89 ± 12.68 58.93 ± 13.05
Age group, N (%), y

20–39 38 (3.2) 327 (8.4)
40–59 337 (28.5) 1754 (44.9)
60–79 657 (55.6) 1628 (41.6)
80–99 149 (12.6) 200 (5.1)

Male, N (%) 795 (67.3) 2515 (64.3)
Comorbid conditions for 1 year prior to the kidney cancer, N (%)
Diabetes mellitus 356 (30.1) 910 (23.3)
Hypertension 696 (58.9) 2099 (53.7)
Chronic kidney disease 289 (24.5) 576 (14.7)
Dialysis requirements 148 (12.5) 228 (5.8)
Polycystic kidney disease 9 (0.8) 33 (0.8)
Renal Stone 87 (7.4) 220 (5.6)
Myocardial infarction 22 (1.9) 31 (0.8)
Congestive heart failure 86 (7.3) 152 (3.9)
Peripheral vascular disease 41 (3.5) 89 (2.3)
Cerebrovascular disease 113 (9.6) 195 (5.0)
Dementia 17 (1.4) 22 (0.6)
Chronic pulmonary disease 133 (11.3) 252 (6.4)
Peptic ulcer disease 185 (15.7) 504 (12.9)
Moderate or severe liver disease 5 (0.4) 11 (0.3)
Metastatic tumor 310 (26.2) 201 (5.1)
Charlson comorbidity index
0–1 17 (1.4) 60 (1.5)
2 269 (22.8) 1688 (43.2)
3 208 (17.6) 976 (25.0)
4 161 (13.6) 510 (13.0)
≥5 526 (44.5) 675 (17.3)
mean ± SD 5.03 ± 2.94 3.30 ± 1.87
The year for newly diagnosis of kidney cancer. N (%)
2006 124 (10.5) 217 (5.6)
2007 159 (13.5) 262 (6.7)
2008 178 (15.1) 354 (9.1)
2009 158 (13.4) 342 (8.7)
2010 135 (11.4) 372 (9.5)
2011 125 (10.6) 495 (12.7)
2012 119 (10.1) 549 (14.0)
2013 100 (8.5) 592 (15.1)
2014 83 (7.0) 726 (18.6)

Abbrevations: SD, standard deviation; N, number.

Table 2. Cox model-based analysis of significant prognostic factors, including age, gender,
and comorbidities of kidney cancer patients.

Risk factor Hazard Ratio P-Value

Age, y 1.04 (1.04,1.05) <0.0001
Male 1.20 (1.06,1.36) 0.0037

Chronic kidney disease 1.32 (1.10,1.58) 0.0023
Dialysis requirements 2.14 (1.70,2.71) <0.0001

Renal stones 1.55 (1.24,1.93) 0.0001
Cerebrovascular disease 1.37 (1.12,1.67) 0.0018

Metastatic tumor 5.75 (5.04,6.57) <0.0001
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Figure 2. Nomogram prediction for 1-, 3-, and 5-year survival of kidney cancer. This nomogram tool is
a direct representation of cox model given in Table 2. (Note: For a given patient profile, each predictor
has a corresponding risk score (0–100) on the top “Points” scale. The risk scores from each predictor
are summed to obtain a total point value. The total points are then indicated on the Total Points Scale
(forth from the bottom). Finally, the corresponding predicted 1-, 3-, and 5-year survival is determined
by drawing a vertical line down from the total points scale to the Predicted Survival Probability scale at
1, 3 and 5 years (the bottom three scales).

Figure 3. The integrated time-dependent area under receiver operating characteristic (ROC) curve and
the 95% confidence limits for the predication model.
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accuracy for overall survival. ROC, receiver operating characteristic; AUC, area under curve.

We also assessed the model performance through calibration, which describes the agreement
between observed outcomes and predictions. The calibration plots of the model for 1-, 3-, and 5-year
survival prediction demonstrated a reasonable fit, and the slope of the curve was close to 45-degrees,
indicating ideal performance (Figure 5). Finally, to understand the immune profiles of the kidney
cancer microenvironment, we explored correlations between the expression of immune metagenes
and clinical characteristics in patients with kidney cancer by using the TCGA database (Figure 6A).
As shown in Figure 6B, immune metagenes, including eosinophils, mast cells, and dendritic cells (DCs),
provided a negative correlation to several clinical characteristics such as disease stage (Figure 6B and
Supplementary Table S1); CD4+ Th1 cells, NK (CD56−) cells, CD4+ Th2 cells, NK cells, aDC, and pDC
showed positive correlations to several clinical characteristics (Figure 6B and Supplementary Table S1).
We revealed significant positive correlations of NK (CD56−) cells, CD4+ Th2 cells, and aDC with
overall survival (OS), whereas a negative correlation was identified between DC and overall survival.
These results suggest that immune profiles are involved in the development of kidney cancer. Thus,
immune metagenes expression might be utilized as potential biomarkers for the progression of
kidney cancer.
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Figure 5. Kidney cancer overall survival nomogram calibration plots: (A) 1-year, (B) 3-year and (C)
5-year nomogram calibration curve. Y axis represents observed probability. X axis represents predicted
probability. The predicted and observed probabilities of survival are graphed on the horizontal and
vertical axes, respectively. The grey line indicates the reference line, on which an ideal model would lie.
The black line represents observed, and blue line represents optimism-corrected, predictions.
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Figure 6. Correlation between immune metagenes and clinical characteristics. (A) Here is a schematic
to explain the steps for construction of immune metagenes. In brief, expression values of renal papillary
cell carcinoma (KIRP) patients were retrieved from The Cancer Genome Atlas (TCGA). For each
category of 23 immune metagenes, single sample GSEA (ssGSEA) algorithm was adopted to calculate
enrichment score (metagene score) of each patient/specimen. (B) Heatmap is the correlation results
between immune metagenes and several clinical features (depth of invasion, T; lymph node metastasis,
N; distant metastasis, M; pathological staging, stage; and overall survival). Color: red and blue for
positive and negative correlation, respectively (without *: p-value < 0.05; with *: p-value < 0.01); white
for nonsignificant (p-value > 0.05).

3. Discussion

In this nationwide cohort study, including 5090 patients with kidney cancer, we created a prediction
model and point-based nomogram for OS in patients with kidney cancer. The predictors in this
prediction model included age, sex, CKD, dialysis requirements, renal stones, cerebrovascular disease,
and metastasis tumor. Our model predicted that 1-, 3-, and 5-year OS with AUCs were 0.75, 0.72,
and 0.73, respectively. Moreover, calibration plots also showed a reasonable fit for the prediction of 1-,
3-, and 5-year survival.

Accurate prediction for kidney cancer survival is crucial for patient counseling, follow-up,
and treatment planning. The TNM-derived American Joint Committee on Cancer classification represents
the gold standard staging scheme for kidney cancer and is currently used for survival prediction [13,14].
However, several reports have highlighted the discrepancy between kidney-cancer-specific risk of death
and the competing risk from comorbidities. Not all patients with kidney cancer die as a result of kidney
cancer: Van Poppel et al. reported that 10.3% of patients with kidney cancer die as a result of kidney
cancer, compared with 89.7% from other causes [15]. Lane et al. reported that the most common causes of
death were cardiovascular (29%), rather than cancer progression (4%) [16]. Most comorbidities may be
assumed to increase mortality rates compared with individual diseases because of the combination of
multiple pathological processes simultaneously present. Therefore, comorbidities play a crucial role in
survival of patients with kidney cancer and may also alter the risk of kidney-cancer-specific mortality.

Previous studies have assessed the association of the Charlson Comorbidity Index (CCI) with
the OS of patients with kidney cancer [5,17], but this can be burdensome to compute and apply
clinically. Additionally because CCI is an index of multiple factors, it cannot be used directly to identify
which of the index components are associated with lower overall survival of an index disease. [18,19].
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Our study quantified the effects of individual comorbidities among patients with kidney cancer and
demonstrated the significant association of CKD, dialysis requirements, renal stones, cerebrovascular
diseases, and metastatic tumor with OS.

In current study, we found that renal stones, CKD, and dialysis exerted significant HR for mortality
in patients with kidney cancer. Renal stones are believed to increase the risk of cardiovascular events,
CKD, and end-stage renal disease; a higher mortality rate may also be expected [20,21]. The exact
mechanism driving the increased risk of cancer mortality resulting from renal stones is still unclear.
One speculated pathogenic mechanism is a contribution by local irritation and inflammation to chronic
systemic inflammation and cytokine release, which promote tumorigenesis [22]. CKD and cancer
have been established to affect each other positively and negatively: cancer can cause CKD either
directly or indirectly through the adverse effects of therapies, and CKD, conversely, may be a risk factor
for cancer; both may be associated because both diseasesshare common risk factors [23]. Moreover,
we demonstrated that patients with kidney cancer with CKD or dialysis requirements exhibited a
higher risk of mortality, as reported by other studies [24,25]. The association of CKD with higher rates
of cardiovascular diseases or other comorbid conditions may shorten survival and also directly impair
survival, as for patients without cancer.

Our study also found that cerebrovascular diseases exerted significant HR for mortality in patients
with kidney cancer. The association between an increased risk of cancer and increased thrombosis
is commonly known. Tumor cells promote a hypercoagulable state and activate a clotting cascade
through tumor procoagulants such as tissue factors, cancer procoagulants, and tumor mucins [26].
Hypercoagulability can also precipitate tumor growth or metastasis progression [27]. Therefore, venous
thromboembolism negatively affects survival in patients with cancer [28,29].

Because the prevalence of both cancer and noncancer comorbidities increases with age,
the integration of comorbidities into a competing-risk predictive model is essential [30,31]. Therefore,
the strength of this study is ito quantify the effects of individual comorbidities among patients with
kidney cancer. The large sample size (N = 8964) and high validity of cancer diagnoses gave more reliable
conclusion. However, several potential limitations to this studyshould be addressed: First, we could
not confirm the histological types and clinical stages of kidney cancer because the data from NHIRD
contains no information on histological types and cancer staging, and these potential confounders may
be associated with the risk of mortality. Second, comorbidity diagnosis based on ICD-9-CM codes
may be less accurate than that from a complete interview, laboratory data, and clinical information.
To validate comorbidity diagnoses in this study, we selected only patients who consecutively received
diagnoses with specific comorbidity from clinical physicians at least three times. However, the study
did not consider patients whose diagnoses were miscoded.

To address possible molecular mechanisms involved in the disease progression as well as in
patient survival, RNA sequencing data were used to analyze immune metagenes for the clinical
characteristics of patients with kidney cancer. We noticed a significant association between the
immune profiles of tumor tissues and patients’ clinical characteristics. In particular, the immune
infiltration of CD4+ Th2 cells and dendritic cells are associated with OS. Several studies have proposed
immune infiltration to play critical roles in cancer progression and therapeutic effects. Ghatalia et al.
showed higher aDC levels to be correlated with the recurrence of clear-cell RCC [32]. Consistent with
previous findings, we observed that high levels of DC and aDC expression were associated with poor
survival. In addition, Bindea et al., also suggested DC to be one of the risk prognostic factors in
patients with chromophobe renal cell carcinoma [33], which fits nicely to our findings. Furthermore,
we noticed that most studies addressing the roles of immune profiles are plagued with numerous
uncertainties. We attribute this to the limited clinical sample size and the complex network of tumor
microenvironments. Additional functional studies are required to evaluate the influence of DC in the
carcinogenesis of kidney cancer.
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4. Materials and Methods

4.1. Longitudinal Health Insurance Database

In this study, we obtained patient data from the National health Insurance Research Database
(NHIRD), derived from Taiwan’s National Health Insurance (NHI) program. The NHI program in
Taiwan was launched on 1 March 1995, and covered 99.9% of Taiwan’s population by 2014. The database
contains detailed patient information, including data on sex; date of birth; residential or work area;
dates of clinical visits; the International Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) codes; prescription details; expenditure amounts; and outcomes at hospital discharge
(recovery, death, or transfer). The NHIRD could also be linked to the database for cause of death to
obtain information regarding the main cause of the patient’s death.

4.2. Study Design and Patient Population

The study cohort comprised all patients diagnosed with malignant neoplasm of the kidney
(ICD-9-CM code: 189.0) between 1 January 2005 and 31 December 2014. Exclusion criterion were age
<20 years; kidney cancer diagnosis before 1 January 2006; and no surgical treatment or death before
approval of their application for catastrophic illness was obtained. Patients with missing variables,
such as birth date and sex, were also excluded from the study. We identified the outcome of all-cause
mortality, and each patient was then individually followed up from the index ambulatory visit until
death or 31 December 2015. The study was approved after full review by the Joint Institutional Review
Board of Taipei Medical University (TMU-JIRB N201912036). The study was conducted in accordance
with approved guidelines. The informed consent of study participants was not required, because the
dataset used in this study consisted of de-identified secondary data from Taiwan’s NHI program.

4.3. Measurement of Covariates and Comorbidities

Clinical variables, including age, sex, and date of kidney cancer diagnosis, were retrieved from the
NHIRD. We also selected common chronic diseases that are likely to be associated with kidney cancer,
for evaluation. Using ICD-9-CM codes, we identified all patients’ comorbidities at least three times
during visits to the outpatient clinic or emergency department or once during their admission to the
hospital one year prior to the index date. Comorbidities, including diabetes mellitus (DM) (ICD-9-CM
code 250.X), chronic kidney disease (CKD) (ICD-9-CM codes 580-589), dialysis requirements, polycystic
kidney disease (PKD) (ICD-9-CM codes 753.12 and 753.13), myocardial ischemia (MI) (ICD-9-CM codes
410 and 412), congestive heart failure (CHF) (ICD-9-CM codes 428, 398.91 and 402.x1), cerebrovascular
disease (ICD-9-CM codes 430-438 and 362.34), dementia (ICD-9-CM codes 290.X, 294.1 and 331.0-331.2),
chronic pulmonary disease (ICD-9-CM codes 490-496, 500-505 and 416.8.-416.9), peptic ulcer disease
(ICD-9-CM codes 531-534), and metastatic tumor (ICD-9-CM codes 196-199), were analyzed. We defined
renal stones in this study by using procedure codes for surgery one year prior to the index date.

4.4. Analysis of Immune Metagenes

RNA-seq data of 245 renal papillary cell carcinoma (KIRP) were downloaded from The Cancer
Genome Atlas (TCGA) database with expression values of genes quantified in transcripts per kilobase
million. The expression values of gene i were then transformed using Ei = log2(TPMi + 1) for
downstream analyses. Gene signatures for 23 immune metagenes were adopted from a publication
(Supplementary Table S1) [34], and the probe IDs were converted to gene symbols by using the R
hgu133a.db package. Each metagene was calculated from signature genes by using the single-sample
gene set enrichment analysis (ssGSEA) algorithm implemented in the R GSVA package. In details,
given a metagene, we used the expression values of corresponding signature genes to construct the
metagene score in KIRP samples. The expression values were input into ssGSEA algorithm, which
output a gene set enrichment score (i.e., metagene score) per sample. Notably, ssGSEA algorithm gave
the output value by calculating normalized difference of ECDFs (empirical cumulative distribution
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functions) of ranks of the genes that belong to and not belongs to given signature genes. The metagene
score was then treated as an inferred quantity of corresponding infiltrated immune cells in each KIRP
specimen. Correlation between (normalized) immune metagenes scores (as dependent variables)
and clinical characteristics (as independent variables), which included depth of tumor invasion (T;
n = 165 T1 vs. 25 T2 vs. 51 T3 vs. 2 T4), lymph node metastasis (N; n = 41 N0 vs. 20 N1 vs. 4 N2), distant
metastasis (M; n = 90 no vs. 9 yes), and pathological stage (n = 156 Stage I vs. 18 Stage II vs. 45 Stage III
vs. 14 Stage IV), was conducted using a linear regression model by adjusting age at diagnosis and
gender. The direction of correlation (positive or negative) was defined using beta-coefficients (>0 or
<0, respectively) from linear regression models. In addition, correlations between overall survival and
immune metagenes were inspected by conducting a Cox-proportional hazard model by including
age at diagnosis and gender of KIRP patients as covariates. The direction of correlation (positive or
negative) was defined using hazard ratios (>1 or <1, respectively) from Cox regression models.

4.5. Statistical Analysis

We compared demographic data and comorbidities between the survival and mortality groups.
Differences in demographic characteristics and comorbidities were examined using the Pearson
chi-squared test or the t test. Clinical variables, namely, age, sex, DM, CKD, dialysis requirements, PKD,
renal stones, MI, CHF, cerebrovascular disease, dementia, chronic pulmonary disease, peptic ulcer
disease, and metastatic tumor, were analyzed. The time between entry to a study and a subsequent
event and age were taken as continuous variables, and sex and the comorbidities, such as DM,
CKD, dialysis requirements, PKD, renal stones, MI, CHF, cerebrovascular disease, dementia, chronic
pulmonary disease, peptic ulcer disease, and metastatic tumor, were defined as categorical variables.
We used stepwise selection approach, and then we obtained the final model with statistically significant
variables as predictors for survival of kidney cancer. Finally, we used a Cox regression model to
construct the nomogram.

We next compared the performance of the proposed prediction model by using the following
measures from the Cox regression model. First, the time-dependent receiver operating characteristic (ROC)
curves and area under the curve (AUC) characterize how accurately the fitted model can distinguish
between individuals who experience an event and individuals who do not. Time-dependent ROC curves
and AUC summarize predictive accuracy at specific times. Second, the concordance statistic (C-statistic)
can be calculated as the proportion of pairs of individuals for which observed and predicted outcomes
agree (are concordant) among all possible pairs in which one individual experienced the outcome of
interest and the other did not. C-statistics provide overall measures of predictive accuracy. Finally,
calibration plots were generated to explore the performance characteristics of the nomogram at 1-, 3-,
and 5-year survival in patients with kidney cancer.

All statistical tests were two-sided, and P values less than 0.05 were considered statistically
significant. Analyses were performed using SAS (SAS System for Windows, Version 9.4, SAS Institute
Inc.,Cary, NC, USA) and R (R version 3.6.0 for Windows with packages Hmisc and rms, R Foundation
for Statistical Computing, Vienna, Austria).

5. Conclusions

In conclusion, patients with kidney cancer exhibit high prevalence of comorbid disease, particularly
older patients. Comorbid disease types exert unique effects, and particular comorbidities can affect
cancer mortality. We constructed a comorbidity-based model to predict the 1-, 3-, and 5-year kidney
cancer mortality, and this simple points-based tool may focus on specific comorbidities and their effects
in clinical treatment decisions and long-term surveillance of patients with kidney cancer and with
comorbid disease. Immune metagenes’ expression can also be utilized as potential prognostic and
predictive biomarkers for patients with kidney cancer.
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