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Abstract: Epithelial–mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced
ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly,
EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to
their heterogeneity. Here, we review major EMT-driven properties that may help hybrid
Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic
colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help
refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
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1. General Background

Circulating tumor cells (CTCs) contain the physical entities that cause metastases and therefore
hold a special place in the era of liquid biopsies [1–4]. Although tumor biopsy is still the gold standard
for cancer diagnosis of solid tumors, it is an invasive act both at the primary and metastatic sites, and it
represents a snapshot during the progression of the disease. Analyzing CTCs through successive liquid
biopsies may thus provide important additional clinical information.

The first observation of CTCs actually dates back to 1869, when Thomas Ashworth reported the
presence of cells “with similar characteristics than those of the primary tumor” in the blood of a cancer
patient [5]. Enumeration and characterization of CTCs may improve precision oncology through
predicting metastases, monitoring recurrence, guiding treatment decisions and patient stratification,
and assessing therapeutic efficacy [6,7].

Progressively understanding that CTCs represent a very heterogeneous population has urged
researchers to examine epithelial–mesenchymal transitions (EMTs) and to characterize metastatic
founders within the CTC population.

Nevertheless, although the clinical validity of analyzing CTCs as prognostic and predictive
biomarkers is currently supported by many studies, they have still not been examined in clinical
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practice [8]. The technical challenge behind the isolation of these extremely rare cells may contribute to
hampering their exploitation in the clinic [9–12].

2. CTC Enrichment, Identification, and Isolation Techniques

CTC enrichment/detection/isolation methods have been reviewed elsewhere [9–12]. We here
recapitulate the general principles behind these techniques (Figure 1). Very schematically, one may
distinguish enrichment systems based on biological characteristics of CTCs and those based on their
physical properties. Methods combining both approaches are also frequently used.
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Figure 1. Circulating tumor cell (CTC) enrichment techniques. Current devices/methods used to 
enrich and isolate CTCs exploit biological or biophysical properties to differentiate CTCs from blood 
cells. CTC enrichment methods based on biological properties take advantage of biological markers 
differentially expressed in CTCs and blood cells. Positive selection of CTCs and/or depletion (negative 
selection) of blood cells may thus be achieved using a specific antibody (such as EpCAM) or cocktails 
of antibodies. Immunomagnetic separation is used in many systems and kits (CellSearch®, EpCAM 
PlusCellectTM Kit, EasySepTM human EpCAM positive kit, EpCAM positive CELLectionTM beads or 
AdnaTest) but an abundance of microfluidic devices (CTC-Chip, CTC-iChip, HB-Chip or GEM Chip) 
has also been developed. CTC enrichment methods based on physical characteristics use the 
following criteria to separate tumor cells from blood cells: Size (filter-based methods: ISET®, 
ScreenCell®, VyCap, CanPatrolTM), deformability/size (microfluidic devices: ParsortixTM, Labyrinth 
chip, microcavity array system), density (ficoll-type density gradients: OncoQuick®, Ficoll-PaqueTM, 
LymphoprepTM or RosetteSepTM that combines an immune-depletion of white blood cells), and electric 
charge (Apostream®). 

The prominent place progressively taken by microfluidics in the CTC field within the last decade 
is worth highlighting [19–23]. Microfluidics has indeed emerged as an innovative approach to 
directly process whole blood, to use small amounts of reagents, and to reduce cost. By controlling the 
flow rate and the design of the chip in a coordinated manner, the capture efficiency and purity may 
eventually be improved. Microfluidic chips may also be optimized to particularly favor the isolation 
of viable label-free CTCs and to facilitate various specific downstream applications. An impressive 
number of microfluidic devices have been/are being designed to dispose obstacles (channels, pillars, 

Figure 1. Circulating tumor cell (CTC) enrichment techniques. Current devices/methods used to
enrich and isolate CTCs exploit biological or biophysical properties to differentiate CTCs from blood
cells. CTC enrichment methods based on biological properties take advantage of biological markers
differentially expressed in CTCs and blood cells. Positive selection of CTCs and/or depletion (negative
selection) of blood cells may thus be achieved using a specific antibody (such as EpCAM) or cocktails
of antibodies. Immunomagnetic separation is used in many systems and kits (CellSearch®, EpCAM
PlusCellectTM Kit, EasySepTM human EpCAM positive kit, EpCAM positive CELLectionTM beads
or AdnaTest) but an abundance of microfluidic devices (CTC-Chip, CTC-iChip, HB-Chip or GEM
Chip) has also been developed. CTC enrichment methods based on physical characteristics use
the following criteria to separate tumor cells from blood cells: Size (filter-based methods: ISET®,
ScreenCell®, VyCap, CanPatrolTM), deformability/size (microfluidic devices: ParsortixTM, Labyrinth
chip, microcavity array system), density (ficoll-type density gradients: OncoQuick®, Ficoll-PaqueTM,
LymphoprepTM or RosetteSepTM that combines an immune-depletion of white blood cells), and electric
charge (Apostream®).

Enrichment techniques based on CTC biological properties assume that CTCs express or do
not express specific markers that can be used to separate them from normal cells. This is achieved
either by positively selecting cells expressing a specific marker or a combination of markers, or/and
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depleting populations of blood cells (negative selection). The CellSearch® is the only system that
has been approved by FDA for CTC enumeration in metastatic breast, prostate, and colorectal
cancer patients [13–16]. Based on an EpCAM immunomagnetic enrichment and a keratin+/CD45−

identification, it is still considered a gold standard in CTC research. Aside the CellSearch®, other
EpCAM-based immunomagnetic enrichment kits are also commonly used. It was nevertheless rapidly
appraised that EpCAM is not a universal CTC marker, and that EpCAM-negative CTC populations
may encompass metastatic precursors that will not be detected by such methods, particularly those
derived from EMTs [17,18]. Several studies have indeed reported that EMTs decrease EpCAM levels in
many, although not all, examined cellular backgrounds [17]. Systems using cocktails of antibodies
have thus been developed to enrich more CTC populations. Conversely, negative selection approaches
have also been developed. If many of these systems use immunomagnetic sorting, microfluidic-based
enrichment technologies have also emerged, in which different supports coated with specific antibodies
are precisely disposed in the flow so as to favor cell–antibody interactions [19–30]. Interestingly,
aptamers are gaining major interest as an alternative to antibodies in positive selection-based CTC
enrichment, and have for instance been exploited in magnetic bead separation assays or in microfluidic
devices [31,32]. Aptamers are short DNA/RNA molecules with unique tertiary structures that bind
specific targets, including proteins, with high specificity and affinity, and that may additionally be
easily removed from their targets. Aptamers against EpCAM, EGFR, or MUC1 have for example been
successfully generated.

As mentioned above, a general drawback of these techniques based on biological characteristics is
their inability to enrich CTC subsets that do not express the examined biological markers. To circumvent
this problem and improve the capture of EMT+ CTCs, and to enable the isolation of label-free CTCs
that may facilitate downstream applications, an abundance of enrichment devices using biophysical
parameters have been engineered. Size, density, deformability, and electric charge are most commonly
at the basis of these assays. Thus density-based approaches often involve a centrifuged Ficoll-type
density gradient [33–37]. Several filter-based assays exploit the knowledge that most hematopoietic
cells are smaller (<10 µm) than CTCs (>10 µm) [38–45]. A profusion of recently conceived microfluidic
devices also uses the size and/or the deformability parameters [46–58]. Finally, CTC isolation devices,
many also being microfluidic-based [59–63], use dielectrophoresis (DEP) to differentiate tumor cells
from normal cells by their electric charges [64].

The prominent place progressively taken by microfluidics in the CTC field within the last decade
is worth highlighting [19–23]. Microfluidics has indeed emerged as an innovative approach to directly
process whole blood, to use small amounts of reagents, and to reduce cost. By controlling the flow rate
and the design of the chip in a coordinated manner, the capture efficiency and purity may eventually
be improved. Microfluidic chips may also be optimized to particularly favor the isolation of viable
label-free CTCs and to facilitate various specific downstream applications. An impressive number of
microfluidic devices have been/are being designed to dispose obstacles (channels, pillars, labyrinths,
spirals, weirs, layers, filters, ratchets) in flow chambers so as to efficiently separate CTCs from normal
cells contained in the blood [28,50,56–58,65–67].

Thus far, spiking experiments, the gold standard for evaluating the efficiency of CTC isolation
devices, have revealed important differences in capture efficiency among all these biological or
biophysical property-based devices. If these discrepancies are certainly in part inherent to the
technology used in each device, it also appears that the phenotype and the specific characteristics of
tumor cells influence the recovery rate. CTC enrichment systems are thus still being optimized to
increase isolation efficiency and purity but also to broaden the capture to different CTC phenotypes.

The engineering of a single CTC isolation device that addresses all the technical challenges
currently seems unlikely. It may be more realistic to select an appropriate CTC isolation device with
respect to the downstream application envisaged and the clinical question asked.
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3. Epithelial–Mesenchymal Transitions: Impact on CTC Phenotypic Heterogeneity

EMTs have long been known as crucial actors in metastasis. The examination of EMT actors in
CTCs has thus logically gained rapidly growing interest in the past decade [68–74].

The generally accepted view [75–81] is that EMTs generate various hybrid phenotypes along
the epithelial (E) to mesenchymal (M) differentiation axis, thereby contributing importantly to
tumor heterogeneity. If most epithelial and mesenchymal states are believed to harbor limited
metastatic potential, certain E/M hybrid phenotypes are considered to harbor high degree of
epithelial–mesenchymal plasticity (EMP), enabling them to undergo timely and spatially regulated
dynamic and reversible interconversions within a “plasticity window”. These phenotypical adaptations
are crucial for tumor cells to survive/develop in the different microenvironments encountered during
the metastatic spread. After an eventual period of dormancy, a switch towards more epithelial
proliferative states (mesenchymal–epithelial transitions, METs) is further suspected to occur during
metastatic outgrowth. EMTs would therefore rather be involved in the initial steps of the metastatic
spread: entry in the circulation, survival in the bloodstream, arrest on the vasculature, and early phases
of metastatic niching [68,75–83]. Whether the same hybrid tumor cell is able to overcome all obstacles
of the metastatic cascade through phenotypic adaptations or whether further genetic alterations occur
during the metastatic cascade that empower some tumor cells to form metastases is still a subject of
debate. Cooperative processes between different phenotypes may also occur, by which EMT-shifted
cells would help more epithelial phenotypes (with higher competence for metastatic outgrowth) to
gain and survive in the circulation, and niche in secondary organs [84,85].

Adding to the heterogeneity generated by this phenotypic plasticity occurring throughout the
metastatic spread, EMTs are molecularly complex, diverse, and context-dependent.

Several EMT-associated genes have nevertheless been commonly examined in CTC studies.
Among EMT target genes frequently examined in CTCs is certainly vimentin. This mesenchymal
type III intermediate filament is considered a canonical marker of EMT and has been extensively
examined both in tumors and CTCs over the years. More than being a marker, vimentin has also
been functionally implicated in pro-metastatic functions including tumor cell migration or CTC
survival [68]. In addition, EMTs are known to modulate the expression of several epithelial adhesion
molecules, consequently altering cell–cell interactions. A cadherin switch characterized by a decrease
of E-cadherin expression and an enhanced expression of N-cadherin has accordingly been associated
with EMTs [86], and both molecules are frequently analyzed in CTCs. The adhesion molecule EpCAM,
which, as discussed underneath, has been used in pioneer studies to enrich CTCs, has also been
identified as an EMT target gene examined in many CTC studies [17]. EMT core transcription factors
which finely regulate EMT target genes [87–89] are also commonly assessed in CTCs, particularly
those of the ZEB (ZEB1 and ZEB2) and Snail (Snail and Slug) families, and Twist. Several membrane
receptor and Receptor Tyrosine Kinase (RTK) signaling pathways, transmitting signals from the
microenvironment, are key regulators of EMTs [90] and have been analyzed in many CTC studies.
These include TGF-β, EGFR, c-Met, Notch, and Wnt pathways. The availability of targeted drugs
against specific RTKs or their signaling molecules has also stimulated this axis of investigations.
A growing interest in the EMT–associated RTK Axl, for which commercial inhibitors are being assessed
in clinical trials [91–93], may be underlined. Although herein we will not debate the exact nature of
the relationships linking EMT and Cancer-Stem Cells (CSCs) [94,95], it is important to note that EMT
induces the expression of stem cell attributes [96,97] and that certain EMT and CSC markers are often
coexpressed in tumor cells. Stem cell markers including CD44 (considered a marker of both EMT and
CSC [98,99]), ALDH1 or CD133 (promin 1) are thus frequently appraised in CTCs, often in association
with canonical EMT markers. As we detail underneath, many of these EMT-associated molecules
analyzed in CTCs functionally impact CTC survival and metastatic potential.

As shown in Table 1 (for studies published before 2016, please refer to Table 1 in [68]), a profusion
of studies has revealed EMT-associated heterogeneity in the CTC population, and the presence of CTCs
encompassing hybrid E/M phenotypes in most types of epithelial cancers.
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Table 1. Detection of epithelial–mesenchymal transition (EMT) and stem-cell markers in CTCs from cancer patients.

EMT and Stemness Markers
(+Other Associated) Type of Tumor Method of

Separation/Characterization Method of Detection No. of Patients Correlation between EMT Markers and
Clinical Parameters Ref.

EpCAM, CK8, CK19, CDH1, Vimentin,
CDH2, ZEB1, CD24, CD44, ALDH1,

MCAM, SPARC
Pancreatic Cancer Lymphoprep™ + MINDEC IF and single-cell

multiplex RT-qPCR 21 Presence of M+ CTCs and E+ CTCs [100]

EpCAM, CK8, CK18, CK19,
Vimentin, Twist Colorectal Cancer CanPatrol system™ RNA-FISH 1203

CTC count and M+ CTCs correlate with
clinical stages, and lymph node and

distant metastasis
[101]

CK19, Twist, Snail1, Snail2, ZEB1,
FOXC2, tPA Breast Cancer RosetteSep™ RT-qPCR, ELISA

(tPA) 110
- Presence of E+ and M+ CTCs.

- No higher tPA levels in CTCs compared
with healthy donors

[102]

EpCAM, CK8, CK18, CK19, Vimentin,
Twist, OCT4 Lung Cancer CanPatrol system™ RNA-FISH 37 M+ CTCs associated with distant metastasis

and correlated with high total CTC counts [103]

EpCAM, Muc-1, PI3Kα, AKT-2, Twist Ovarian Cancer AdnaTest (OvarianCancer
Detect + EMT Detect) RT-qPCR 95

- EMT+ CTCs increase after chemotherapy
- PI3Kα+ EMT+ CTCs in combination with

E+ CTCs have a poor prognosis
[104]

EpCAM, Vimentin Lung Cancer TelomeScan F35 IF 123
EMT+ CTCs: poor response to

chemotherapy and correlation with a
decreased PFS

[105]

EpCAM, Vimentin, CK8, CK18, CK19,
E-Cadherin, ZEB1, Snail1 Prostate Cancer

- CellSearch®, RosetteSep™
- EasySep™ + Anti-vimentin

selection
IF 48 ND [106]

CK, Vimentin, C-MYC, PTEN Prostate Cancer Parsortix™ FISH 81

- CK− Vimentin+ CD45− CTCs correlated
with disease burden, tumor aggressiveness,

and poorer survival
- CK+ Vimentin+ CD45− CTCs: associated

with metastasis

[48]

EpCAM, CK8, CK18, CK19, Vimentin,
EGFR, KRAS Lung Cancer CellSearch® IF 125

C - CTCs > 5: reduced OS
- No difference between Vimentin+ CTCs

and Vimentin- CTCs regarding OS
- Increased Vimentin+ CTCs in patients with

EGFR mutations

[107]

EpCAM, CK19, MUC1, HER2, FLT1,
EGFR, GZMM, PGR, CD24, KIT, PLAU,

ALDH1, CTSD, MKI67, Twist,

Metastatic Breast
Cancer

AdnaTest
(EMT2/StemCellSelect™)

46 gene-signature
qPCR 45

-14 genes significantly higher (CK19,
ALDH1, EGFR, EpCAM, Twist) in

CTC-harboring patients versus
CTC-negative patients

-ADAM17 expressed in CTCs from
treatment-resistant patients

[108]

EpCAM, CK8, CK18, CK19,
Vimentin, Twist Colorectal Cancer CanPatrol system™ RNA-FISH 126 M+ CTCs and CTM associated with

tumor metastasis [109]
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Table 1. Cont.

EMT and Stemness Markers
(+Other Associated) Type of Tumor Method of

Separation/Characterization Method of Detection No. of Patients Correlation between EMT Markers and
Clinical Parameters Ref.

EpCAM, CK20, Survivin, PI3Kα, AKT-2,
Twist, ALDH1

Metastatic Colorectal
Cancer Dynabeads® RT-qPCR 78

- AKT-2+ CTCs: shorter median PFS
- ALDH1+ CTCs: shorter OS

- ALDH1+, PIK3Kα+ and/or AKT2+ CTCs:
shorter PFS and OS

[110]

EpCAM, CK8, CK18, CK18, Smad2,
β-catenin

Hepatocellular
Carcinoma CellSearch®

Single-cell RNA
analysis 73

- CTCs and CTC cluster count correlated
with poor prognosis

- CTCs seems to be predominantly epithelial
at release and switch to EMT phenotype

during hematogenous transit

[111]

CK19, EpCAM, CDH1, HMBS, PSCA,
ALDH1, CD133, HPRT1, Twist,

Vimentin, N-cadherin, B2M, PLS3, PSA
Prostate Cancer CellSearch®, PSA EPISPOT

and CellCollector®
IF/RNA 108 EMT markers increased after radiotherapy [112]

EpCAM, CK8, CK18, CK19,
Vimentin, Twist

Hepatocellular
Carcinoma CanPatrol system™ RNA-FISH 62 M+ CTCs associate with higher recurrence

after curative resection [113]

EpCAM, CK8, CK18, CK19, Vimentin,
Twist, β-catenin

Hepatocellular
Carcinoma CanPatrol system™ RNA-FISH 112

A large number of M+ CTCs associated with
early recurrence, multi-intrahepatic

recurrence, and lung metastasis.
[114]

EpCAM, CK8, CK18, CK19,
Vimentin, Twist

Hepatocellular
Carcinoma CanPatrol system™ RNA-FISH 165

M+ CTCs correlated with high AFP levels,
multiple tumors, advanced TNM and BCLC
stage, presence of embolus and shorter RFS

[115]

EpCAM, CK8, CK18, CK19, Vimentin,
Twist, LGR5

Colorectal Cancer
Prognosis CanPatrol system™ RNA-FISH 66 M+ CTCs correlated with advanced stages,

metastasis, and shorter PFS and OS [116]

EpCAM, CK8, CK18, CK19, Vimentin,
Twist, Glypican 3

Hepatocellular
Carcinoma CanPatrol system™ RNA-FISH 80

Twist+ CTCs correlated with poor clinical
outcome (portal vein tumor thrombi, TNM
stages, cirrhosis, tumor number, tumor size)

[117]

EpCAM, CK8, CK18, CK19,
Vimentin, Twist

Esophageal
Squamous Carcinoma CanPatrol system™ RNA-FISH 21 Number of CTCs correlate with E/M+ CTCs

and M+ CTCs [118]

EpCAM, CK8, CK18, CK19 Prostate Cancer CellSearch® + CellSieve
Microfilter™

IF 108 - EpCAMhigh CTC>5 shorter OS
- No correlation with EpCAMlow [119]

EpCAM, HER2, EGFR Breast Cancer Parsortix™ IF 43
Hypomethylation of binding sites for OCT4,

SOX2 or NANOG are associated with a
poor prognosis

[49]

EpCAM, CKs, CD133 Pancreatic Ductal
Adenocarcinoma The Gem device IF 24 Fluctuation of EpCAM expression in

CSC+ CTCs [28]

EpCAM, Vimentin, ALDH1,
PALB2, MYC

Metastatic Breast
Cancer

- CellSearch® (enumeration)
- Lymphoprep™ (molecular

analysis)
RT-qPCR 20 EpCAMhigh, Vimentinlow, and ALDH1high

are associated with shorter OS and PFS.
[120]
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Table 1. Cont.

EMT and Stemness Markers
(+Other Associated) Type of Tumor Method of

Separation/Characterization Method of Detection No. of Patients Correlation between EMT Markers and
Clinical Parameters Ref.

CD44 Hepatocellular
Carcinoma The Labyrinth device IF 16

- Correlation of cluster of CTCs with
advanced stages.

- 71.4% of single CTCs express CD44
[50]

CK8, CK18, CK19, ALDH1, Twist Metastatic Breast
Cancer Ficoll-Hypaque™ IF 130

- CSC+/partial EMT+ CTCs correlate with
lung metastasis and a decrease in PFS

- In HER2- cancers, CSC+/partial EMT+

CTCs correlate with a reduction of OS

[121]

EpCAM, CK8, CK18, CK19,
Twist, Vimentin Lung Cancer CanPatrol system™ RNA-FISH 110 M+ CTCs are associated with metastasis [122]

EpCAM, CK8, CK18, CK19,
Twist, Vimentin

Castration Sensitive
Prostate Cancer CanPatrol system™ RNA-FISH 108 Faster disease progression in patients with

M+ CTCs [123]

EpCAM, CK8, CK18, CK19,
Twist, Vimentin

Breast Cancer
(HER2-) CanPatrol system™ RNA-FISH 108 M+ CTCs are associated with a

poor prognosis [124]

EpCAM, CK8, CK18, CK19,
Twist, Vimentin

Pancreatic Ductal
Adenocarcinoma CanPatrol system™ RNA-FISH 107 M+ CTCs are correlated with TNM stage

and distant metastasis [125]

EpCAM, EGFR, CK7 Lung Cancer Herringbone-Chip IF 109 EpCAM+ EGFR+ CK+ CD45− CTCs show a
negative correlation with clinical stage [126]

ADAM23, Snail1, Slug, ZEB1,
Twist, CK19 Breast Cancer RosetteSep™ RT-qPCR 203

- Patients with M+ CTCs and no ADAM23
hypermethylation have longer DFS than

patients with M+ CTCs and ADAM23
hypermethylation

- Patients with M+ CTCs and Ki-67 low have
longer DFS than patients with M+ CTCs

and Ki-67 high

[127]

Vimentin, TGFβ-RI, MMP2 Metastatic Pancreatic
Cancer ISET® filter IF 21 No significant differences between the

number of CTCs and PFS or OS [128]

MRP2, MRP5, MRP7, ALDH1,
Twist, Snail1

Head and
Neck Cancer RosetteSep™ + Cultured cells IF 20

High expression of multidrug resistance
genes, EMT genes or stem cells markers are

associated with a poor PFS
[129]

CK8, CK18, CK19, EpCAM, Vimentin,
N-Cadherin, PD-L1 Lung Cancer CellSieve Microfilter™ IF 30

High levels of PD-L1 and EMT markers in
primary tumors and CTCs are associated

with poorer survival
[130]

EpCAM, CK8, Vimentin, Twist Cervical Cancer CanPatrol system™ +
CellSearch® RNA-FISH 90 M+ CTCs are associated with

malignant stages [131]
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Table 1. Cont.

EMT and Stemness Markers
(+Other Associated) Type of Tumor Method of

Separation/Characterization Method of Detection No. of Patients Correlation between EMT Markers and
Clinical Parameters Ref.

CK8, CK18, CK19, AXL, EGFR Lung Cancer
Carcinoma Cell Enrichment
and Detection Kit (Miltenyi

Biotec.)
IF 47 ADC in

comparison to 50 SSC

- Poor prognosis of AXL+ CTC
- EMT+ CTCs are correlated with high

expression of AXL
- EMT+ CTCs are associated with high N

stages patients
- EMT+ CTCs are associated with an

increased risk of RFS and OS
- CTCs after 6 months of surgery: poor

prognostic factors for OS

[132]

PD-L1, EpCAM, CK8, CK18, CK19,
Vimentin, Twist, PD-L1 EGFR, KRAS,

BRAF, ROS1 mutation,
ALK rearrangement

Lung Cancer CanPatrol system™ RNA-FISH 114
Poor prognosis with a high number of CTCs,

CTCs with mesenchymal features and
PD-L1+ CTC

[133]

Vimentin, CK, AXL Lung Cancer Microcavity array system IF 20 High expression of AXL in Vimentin+ CTCs
- Clusters of CTCs with Vimentin expression [52]

EpCAM, Vimentin, ULBP1 Gastric cancer Cyttel-CTC FISH 41 EMT+ CTCs with diminished expression
of ULBP1 [134]

EpCAM, Vimentin, CK Lung Cancer The Labyrinth device FISH 25

- Most of CTC clusters are EpCAM-

- Poorer PFS for patients with CTC clusters >
single CTCs compared with patients with

CTC clusters < single CTCs

[51]

Studies published after 2016 are listed in the Table. For earlier studies, please refer to Table 1 in Francart et al. [68]. It is noteworthy that the CanPatrol system based on filtration followed
by characterization using cocktails of probes discriminating E and M phenotypes have been extensively used within these last 5 years. ADC: adenocarcinoma; BCLC: Barcelona Clinic Liver
Cancer; CKs: cytokeratins; DFS: disease-free survival; IF: immunofluorescence; M+ CTCs: mesenchymal circulating tumor cells; ND: not determined; No.: number, OS: overall survival;
PFS: progression-free survival; RNA-FISH: RNA fluorescence in situ hybridization; (q)RT PCR: (quantitative) reverse transcription polymerase chain reaction; RFS: relapse-free survival;
tPA: tissue plasminogen activator; TNM stage: Tumor Node Metastasis stage.
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4. Epithelial–Mesenchymal Transitions: Impact on Metastatic Competence

EMTs thus provide tumor cells with numerous dynamic/reversible properties that help them
overcome environmental selective constraints of the metastatic translocation. Here, we will detail
crucial mechanisms by which EMTs may impact the fate and metastatic competence of CTCs (Figure 2).
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is considered to protect CTCs against shear stress, anoikis, immune attack, and which is determinant 
for CTC seeding and early niching. Neutrophil recruitment and binding, NETosis: tumor cells secrete 
soluble factors attracting neutrophils, among other immune cells, and neutrophils in turn secrete 
EMT-promoting soluble mediators. In addition, neutrophils physically interact with tumor cells and 

Figure 2. Schematic representation of EMT-associated mechanisms supporting CTC survival and early
metastasis. ¶ CTCs are liberated in the bloodstream through EMT-associated mechanisms (single
cell or collective migration/intravasation) or passive processes (detachment of isolated tumor cells or
clumps through corrupted vessels). · Some single or clustered CTCs will eventually survive in the
bloodstream and niche in secondary organs. A zoom on properties, enhanced in EMT-shifted cells,
that favor CTC survival in the bloodstream and metastatic niching is depicted. Platelet activation and
binding, activation of coagulation: CTCs activate and bind platelets either directly or through molecular
intermediates such as fibrin. The liberation of soluble mediators, such as TGF-β from activated platelets,
may in return induce/enhance/sustain EMT. In addition, EMT-shifted CTCs express Tissue Factor (TF)
that also largely contributes to activate platelets. These coagulation-dependent mechanisms initiate the
formation of a fibrin/platelet-rich cocoon around tumor cells that is considered to protect CTCs against
shear stress, anoikis, immune attack, and which is determinant for CTC seeding and early niching.
Neutrophil recruitment and binding, NETosis: tumor cells secrete soluble factors attracting neutrophils,
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among other immune cells, and neutrophils in turn secrete EMT-promoting soluble mediators.
In addition, neutrophils physically interact with tumor cells and platelets, promoting tumor cell
survival and proliferation, and helping CTC arrest on the vascular wall. Furthermore, through
their ability to entrap tumor cells in Neutrophil Extracellular Traps, structures also known to favor
coagulation events, neutrophils participate to the formation of a protective/anchoring scaffold that
supports CTC survival, and facilitate CTC arrest in capillaries and early phases of metastatic niche
formation. Immune surveillance: these coagulation/neutrophils-dependent mechanisms of shielding
protect CTCs from immune destruction. In addition, CTCs, and more particularly EMT-shifted CTCs,
have been reported to harbor increased ability to evade immune surveillance. Among mechanisms
involved, the expression of immune checkpoint proteins, such as PD-L1, is likely to enhance their
resistance to cytotoxic immune cells. ¸ After an eventual period of dormancy, it is considered that
MET processes intervene, favoring metastatic outgrowth. Figure created with BioRender.com.

4.1. EMT and CTC Release

One of the longest-known properties driven by EMTs is certainly invasiveness. Enhanced invasive
ability may be acquired within the primary tumors and contribute to invasion and intravasation, thereby
facilitating the release of CTCs in the bloodstream [135–137]. EMT-induced proteolytic enzymes, such
as matrix metalloproteinases (MMPs), are key players in tumor invasion [138,139], remodeling the
extracellular matrix, activating growth factors and weakening intercellular contacts. Although they
did not examine EMT markers, Dhar and coworkers supportively reported high MMP activity in
CTCs isolated from prostate cancer patients [140]. The ability of EMT to stimulate angiogenesis is
also certainly a promoting factor of CTC release. Thus, the expression of the potent angiogenic factor
VEGF-A, known as an EMT target gene, has been reported in CTCs of breast cancer patients [141].

Nonetheless, despite the contribution of EMT to CTC release, it is clear today that not all CTCs
express canonical EMT markers. Whether EMT characteristics of all EMT+ CTC subsets are acquired
in the primary tumor or whether some are gained within the circulation are two possibilities that
are not mutually exclusive, which may also account for the CTC heterogeneity [68]. Environmental
factors present in the bloodstream may indeed also induce/sustain EMT, as detailed in following
paragraphs [111,142]. Supportively, single-cell characterization of CTCs taken from different vascular
sites in hepatocellular carcinoma (HCC) patients suggests that an EMT-activated phenotype is gained
during hematogenous transit [111]. Additionally, a passive mode of entry of tumor cells in the
circulation has been suggested and is well in line with the observation of corrupted blood vessels
in most tumors [143–145]. Such a passive mode of entry may concern single tumor cells but may
also liberate clumps/clusters of CTCs in the blood of cancer patients [146,147]. The presence of CTC
clumps with metastatic abilities was in fact already recognized in the early 1950s by Watanabe and
later by several pioneers in metastasis research [148–150]. The mechanisms of cluster formation
and their importance in metastasis formation have since then been analyzed more in details using
xenografts and experimental metastasis assays performed using a mixed population of tumor cells
labeled with different fluorescent reporters [151–153]. As an alternative to the passive liberation of
clusters in the bloodstream, active collective migration processes of intravasation have also been
reported [146,147,152]. Alternatively, an intravascular aggregation of CTCs, particularly at the vicinity
of the endothelium, has been identified [153,154], a process that may also involve various hybrid
states [155,156].

Overall, whether they are passive or active, EMT-dependent or EMT-independent, these different
mechanisms liberate various CTC phenotypes in the bloodstream, and thereby importantly contribute
to the heterogeneity of the CTC population.

4.2. EMT in CTC Survival and Metastatic Seeding

Once in the circulation, CTCs are subjected to a harsh selective pressure imposed by shear stress,
loss of anchorage triggering anoikis, and immune attack [68,157,158]. Studies in mice have accordingly
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shown that CTCs circulate in the bloodstream for a very short time and that the vast majority of CTCs
are rapidly eliminated [159]. Several mechanisms will nevertheless eventually be deployed, enabling
few CTCs to survive in the bloodstream and form a niche at secondary sites (Figure 2). Among these
mechanisms, those regulated by EMTs are numerous as detailed below.

4.2.1. Activation of Survival Pathways

Some CTCs may activate autonomous survival mechanisms. In this context, an abundant literature
shows that EMTs activate many survival pathways (e.g., activation of Akt, PI3K or EGFR pathways,
induction of Bcl-2 antagonizing p53 activity), enabling EMT-shifted cells to better resist apoptosis
or anoikis [160,161]. This enhanced survival ability of EMT-shifted cells certainly plays crucial role
in their now-well recognized resistance to chemo- or targeted therapies [81,162–166]. Supportively,
molecular actors of survival pathways (e.g., EGFR, Akt, PI3K) have been detected in CTCs isolated
from several types of cancer, sometimes in association with canonical EMT markers such as EMT
transcription factors or stem cell markers [101,104,110,167–174] (Table 1).

4.2.2. Traveling in Clusters

Regardless of the mechanisms implicated in the generation of clusters discussed above, traveling
as clusters is currently considered to enhance CTC survival and niching at secondary sites. Although
much less prevalent than isolated CTCs, experimental data in mouse models show that CTC clusters
have higher metastatic potential [146,147,175]. Clusters of CTCs have been detected in a variety of
epithelial cancers and, in some studies, their abundance has been associated with poor prognosis as
shown in breast, lung, pancreatic, prostate, or kidney cancers [29,109,151,176–184]. If their bigger size
certainly facilitates their arrest within capillaries, it appears that traveling as clusters may help CTCs
survive in the bloodstream [185,186].

If the prevalence of EMT phenotypes in clusters is so far largely uncovered, it is nevertheless
recognized that CTC clusters contain hybrid E/M phenotypes. Thus, single-cell RNA sequencing of
clustered CTCs versus isolated CTCs from breast cancer patients has revealed that several cell–cell
contact molecules are overexpressed/maintained in clusters, such as plakoglobin, which has been
further shown to be functionally involved in cluster metastatic potential [151]. Complicating the theory
and blurring the border between E and M states even further, EMT/CSC markers may also be implicated
in cell–cell interactions in clusters. Accordingly, CD44, which has been consistently reported on CTCs in
most types of cancer [50,100,187,188], was recently shown to contribute to intravascular aggregation of
tumor cells through the formation of homophilic intercellular interactions [153]. CD44+ cell aggregates
were also found to be more resistant to apoptosis than single cells. Other recognized markers of
mesenchymal or CSC phenotypes have also been detected in CTC clusters in vitro or in mouse models
such as Tenascin C or Jagged1 [152,189]. A recent study of CTCs isolated from breast cancer patients
and mouse models, reported that the binding sites for CSC transcription factors such as OCT4, SOX2, or
NANOG, are hypomethylated in CTC clusters compared with isolated CTCs [49]. Other data collected
from human samples also emphasize the presence of hybrid E/M phenotypes in heterogeneous CTC
clusters, particularly in lung cancers [51,52,109,190]. Very elegantly, a study by Yu and coworkers
identified cells expressing both epithelial (such as EpCAM or cytokeratins) and mesenchymal markers
(including fibronectin, N-cadherin or PAI-1) in isolated CTCs but also in CTC clusters from breast
cancer patients [179].

Therefore, the presence of EMT-hybrid CTCs in clusters may combine the ability to establish
cell–cell interactions, contributing to a better resistance to anoikis/apoptosis, with known pro-metastatic
EMT-driven properties (stemness, activation of survival pathways, resistance to apoptosis, enhanced
niching properties). This phenomenon may thus contribute to an overall better survival and higher
seeding efficiency of clustered tumor cells [191].
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Though clusters may be homotypic, they are often heterotypic, containing normal host cells and
components, either from the primary tumors [192] or incorporated during their metastatic translocation,
as we discuss below.

4.2.3. Interactions with Host Cells and Host Systems

During their metastatic translocation, CTCs continuously and reciprocally interact with host
components and cells in all microenvironments encountered. Many of these interactions facilitate both
CTC intravascular survival and metastatic niching.

Activation of Coagulation

The activation of the coagulation system is today recognized as a crucial process facilitating
early metastasis. Hypercoagulability is actually a long-known correlate of malignancy (Trousseau’s
syndrome), and venous thromboembolism (VTE) has been associated with worse prognosis [193–195].
Accordingly, the CTC count has been associated with hypercoagulability, increased risk of venous
thrombosis and dismal prognosis [196–200]. Abundant experimental studies have supportively
demonstrated the beneficial effects of anticoagulant strategies in inhibiting metastasis [201].
Many clinical trials examining the impact of the new generation of anticoagulant strategies in
cancer are ongoing [202].

If the mechanisms linking cancer and the coagulation system are numerous and multifactorial,
platelets are certainly central players [203–207]. Abundant literature indeed demonstrates that tumor
cells bind to and activate platelets [203]. Tumor cell/platelet interactions have been shown to engage
several receptors including P-selectin or αIIbβ3 on platelets and ανβ3 integrin, PSGL-1 or CD97 on
tumor cells [208–212]. Fibrin, the end product of the coagulation cascade, may also bridge tumor
cells to platelets. A mechanism by which fibrin connects ICAM-1 on tumor cells to integrin αIIbβ3
on platelets has been particularly highlighted [213]. Interestingly, CD44 has also been described as a
receptor that binds P-selectin on platelets, as well as a fibrin receptor [214]. Platelet activation also
liberates abundant soluble mediators that may favor the recruitment/activation of host cells such as
neutrophils, and may also impact the tumor cell phenotype. All these interactions may thus favor the
formation of fibrin/platelets aggregates trapping CTCs and host cells that have also been referred to as
circulating tumor microemboli (CTM) [203–207].

The formation of a fibrin/platelets network around tumor cells is considered to favor CTC survival
in the bloodstream [203–206]. It is recognized as an important mechanism shielding and protecting
CTCs against shear stress [215] and natural killer (NK) elimination [216,217]. In addition to their
contribution to a physical shielding, platelets have also been shown to decrease NK cell antitumor
activity through a TGF-β-mediated decrease in NKG2D [218]. A platelet coat around CTCs may
also expose platelet MHC-class I molecules and thus “hide” CTCs from NK cells [219]. Biggerstaff

and coworkers have precisely shown that soluble fibrin augments platelet/tumor cell interactions
in vitro and in vivo [213], hinders cellular cytotoxicity against tumor cells and increases experimental
metastasis [220]. In addition, platelet/fibrin-dependent mechanisms also facilitate tumor cell arrest on
the vascular wall and their niching at secondary sites [221,222]. If tumor cells possess receptors (CD44,
P-selectin, integrins,. . . ) enabling their adherence to the endothelium [223], fibrin or platelets may
indeed also mediate and strengthen such interactions [224,225].

A mechanism by which tumor cells may induce coagulation and platelet activation is through
their ability to express factors of the coagulation cascade, among which tissue factor (TF) holds a
particular place, linking the processes described above to EMT. If TF displays coagulation-independent
pro-tumoral signaling functions, it is essentially known as the major cell-associated activator of
the coagulation cascade. Its expression by tumor cells, triggering coagulant properties, has been
demonstrated to be determinant for CTC survival and seeding [194,195,206,226]. This has been
exemplified in numerous animal studies using tumor cells modified for TF expression or TF blocking
antibodies, demonstrating that tumor-cell expressed TF is associated with increased abilities to form
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micrometastases [227–230]. Further connecting TF-coagulant functions to metastasis, Palumbo and
coworkers performed metastasis assays in mice deficient for fibrinogen and prothrombin, and they
demonstrated that TF could support metastasis through mechanisms dependent on these distal
hemostatic factors [231,232]. Importantly, few studies, including ours, have identified TF as a target
gene of EMTs [233,234]. Interestingly, a relationship between TF expression and CSC phenotypes has
also been reported [235,236]. The EMT core transcription factors ZEB1 and Snail were delineated
to regulate TF expression [234], and recently, vimentin was reported to stabilize TF mRNA [237].
Interestingly, TGF-β, liberated from activated platelets, has been described to trigger EMTs [142],
suggesting a regulatory loop between EMT and platelet activation. In addition to these experimental
data, the TF/EMT relationship was also evidenced in cancer patients with a correlated expression of
vimentin and TF in triple-negative breast cancers (TNBC). A subpopulation of CTC expressing TF and
vimentin has also been observed in the blood of metastatic breast cancer patients [234]. Through their
ability to express TF, EMT-shifted CTCs would thus be more efficient in activating coagulation and
building a protective cocoon.

Interaction with Neutrophils

CTCs have been shown to communicate with various cells of the immune system, and interactions
with neutrophils seem to be essential. In agreement with data reporting that CTCs are surrounded by
white blood cells in Pancreatic Ductal AdenoCarcinoma (PDAC) [238], Szczerba and coworkers recently
described that CTCs were found in clusters with neutrophils in invasive breast cancer patients [239].
The abundance of these CTC-neutrophil clusters was further associated with shorter PFS. Corroborating
this finding, a higher metastatic potential of these CTC-neutrophil clusters has been demonstrated in
experimental metastasis assays.

The mechanisms by which neutrophils may support CTC metastasis are various. Neutrophils
have been proposed to escort CTCs and enable cell cycle progression [239]. Along with their ability
to secrete soluble factors attracting neutrophils (such as G-CSF, CXCL1, CXCL8, or CXCL5) [240],
CTCs indeed directly interact with neutrophils through different receptors including VCAM1 [239],
ICAM-1 [241], and β1 integrin [242].

Neutrophils may also interact with CTCs through the coagulation system. Thus, platelets that,
as discussed above are inseparable travel companions of CTCs, may bridge neutrophils to tumor
cells. The release of soluble mediators (such as CXCL5 and CXCL7) by activated platelets accordingly
contributes to neutrophil recruitment [221]. In addition to platelets, fibrin also mediates tumor
cell/neutrophil interactions. A sequential binding of αvβ3 and ICAM-1 has been shown to determine
fibrin-mediated melanoma adhesion of CD11b/CD18 (Mac-1) to neutrophils [243].

A role for neutrophils in facilitating CTC arrest on the vascular wall has also been
evidenced [244,245]. Using an elegant in vitro model consisting of a microfluidic chip covered
by HUVEC endothelial cells to mimic the vascular compartment, Chen et al. revealed interactions
implicating CD11b on neutrophils and ICAM-1 on cancer and endothelial cells, which favored the
formation and arrest on the endothelium wall of tumor cell/neutrophil complexes [244].

Neutrophils may also facilitate CTC survival and niching competencies given their ability to
form neutrophil extracellular traps (NETs). These web structures have been identified to capture
CTCs, to contribute to a physical protection against shear stress and to facilitate early phases of
metastasis (arrest and adhesion on the vascular wall, extravasation and niching) in different mouse
cancer models [246–252]. Conversely, tumor cells may activate neutrophils, thereby stimulating
NETosis as shown in vitro and in mouse tumor models [248,253]. Another mechanism by which
NETs favor CTC survival and colonization is through their ability to activate coagulation and
thrombosis [254–258]. NETs have indeed been shown to activate platelets. In turn, activated platelets
promote NETosis [259] and, through the liberation of soluble mediators, further recruit neutrophils to
the site. Linking CTCs, neutrophils, platelets and coagulation, NETs may thus contribute to the creation
of a protective/anchoring scaffold, helping CTCs to survive in the circulation, arrest in capillaries and



Cancers 2020, 12, 1632 14 of 38

niche in secondary sites. Supporting these experimental data, NETs have been associated with a poor
prognosis in several cancer types and with cancer-associated VTE [260,261]. Recapitulating these
relationships in renal cell carcinoma patients, Wen et al. reported that a high CTC count correlates with
elevated levels of fibrinogen and RNA expression of NET’s markers in blood leukocytes [262].

Overall, narrow relationships may thus be established between CTCs, neutrophils, and the
coagulation system, with many activation/induction loops existing between the different molecular and
cellular actors involved [263]. Although this remains largely uncovered, numerous studies support the
idea that EMTs could be central players in such loops and, at least partly, influence or be influenced by
most of the above-discussed mechanisms.

Adding to their capacity to induce TF expression, EMTs are indeed known to induce several
receptors mediating interactions between neutrophils and CTCs, or between CTCs and platelets/fibrin
including CD44 [96,97,99], ICAM-1 [264], αvβ3 [265–267], or VCAM1 [268].

Additionally, EMTs importantly modulate the secretome of tumor cells notably by inducing the
expression of soluble factors that may act as chemoattractants, or activate the pro-tumoral activities of
many inflammatory cells including neutrophils [269–271]. Reciprocally, neutrophils have also been
shown to induce EMT in several cellular systems [269,270], mostly through the release of soluble
factors including CXCL-1 [272], IL-17 [273] or neutrophil elastase [274].

Together, these data suggest that EMT-shifted CTCs would be particularly efficient in deploying
coagulation-dependent and stimulating neutrophil-mediated strategies that favor survival, resistance
to shear stress and initiation of the metastatic niche.

Immune Escape

A crucial property favoring the metastatic potential of CTCs is the ability to escape cytotoxic
immune cells. As discussed above, coagulation-dependent mechanisms have been implicated in
improved resistance of CTCs to NK-mediated clearance but other mechanisms have also been identified.
Although EMT has been reported to stimulate some antitumor immune cytotoxicity [275], literature
generally supports an improved resistance of EMT hybrid phenotypes to immune cytotoxic cells.
Mechanisms induced by EMT such as increased expression of immune checkpoint proteins, altered
autophagy, immunoproteasome deficiency and dysfunction of immunological synapses have been
implicated and reviewed elsewhere [276,277]. More particularly in the context of CTCs, a reduced
expression of ULBP1 (a major ligand of NKG2D) has been reported in EMT-shifted CTCs isolated
from gastric cancer patients (Table 1) and in TGF-β-induced cells in vitro, and a mechanism has been
proposed by which EMT-shifted CTC resistance to NK cells is increased [134]. In contrast, López-Soto
and coworkers reported an enhanced susceptibility to NK cells and an increased expression of different
NKG2D ligands in colorectal cancer cells induced to EMT by several means (TGF-β stimulation,
inhibition of glycogen synthase kinase-3β, or Snail overexpression) [278]. The impact of EMT in
modulating NKG2D-mediated antitumor response may likely be context-dependent and thus remains
to be clarified, particularly in CTCs. Additionally, and together with the advent of immunotherapy,
the expression of immune checkpoint proteins such as PD-L1 has been examined and detected on
CTCs in different types of cancer [279–281]. Supporting an enhanced ability of EMT-shifted tumor
phenotypes to better resist immune cytotoxic cells, correlated expression of PD-L1 expression and EMT
markers has been evidenced in tumors and CTCs, particularly in NSCLC (non-small cell lung cancer)
and TNBC [130,280,282–287]. Accordingly, PD-L1 has been identified as a gene regulated by EMTs in
various cell systems [284,288–293].

These mechanisms of resistance to cytotoxic immune cells could thus contribute to a better survival
of EMT+ CTCs in the bloodstream but also in the metastatic niche [82].

4.3. EMT in the Initiation of the Metastatic Niche

The timing of metastatic niche formation, and the implicated molecular and cellular entities are still
poorly understood. It is generally recognized that, after CTC arrest in the vasculature (thus becoming
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disseminated tumor cells—DTCs), the niche will provide support to help DTCs recover from the stress
endured in the bloodstream [82]. In this initiation phase, the niche signals to control EMT/MET plasticity
and maintain/accentuate stem cell properties, thereby preventing differentiation, ensuring survival,
and facilitating a quiescent state that, if prolonged, may result in dormancy. Whether EMT and CSC
features are intertwined or somehow uncouple in this context is still a subject of debate [294]. A single
cell analysis study in a breast cancer PDX model thus showed that CTCs/DTCs seeding in secondary
organs displayed increased expression of stem cell-, EMT-, prosurvival-, and dormancy-associated
genes [295]. Another study in MMTV–Her2 mice reported that a majority of early DTCs express
Twist and are in a dormant state [296]. Accumulating data support that EMT-shifted CTCs have an
enhanced ability to stimulate niche formation. Accordingly, all mechanisms mentioned in the previous
section (enhanced survival properties, coagulation/TF/platelet/fibrin/thrombin-related mechanisms,
interactions with neutrophils/NETs) have not only been shown to protect CTCs in the bloodstream
and facilitate arrest in the vasculature but have also been demonstrated to contribute to niche
initiation. Thus, coagulation/TF [226,297–299], platelets and fibrin[ogen] [207,221,222,300–302] and
NETs [248] are all processes/entities/molecules that have been shown to play crucial roles in early
phases of metastatic niche formation. If the microthrombus scaffold engendered by these mechanisms
certainly contribute to the formation of an adequate matrix for the DTCs to niche, it also constitutes
an environment in which host cells are recruited that are determinant for the consolidation of the
niche environment. For instance, Gil-Bernabé and coworkers emphasized that the recruitment of
monocytes/macrophages by TF-mediated coagulation is a determinant for tumor cell survival and
metastatic niche establishment in mouse models [303]. Platelet-dependent processes also strongly
support the recruitment of inflammatory cells into the niche [207,221,222,300–302]. It is also plausible
that EMT hybrids are particularly efficient at establishing the immunosuppressive environment
observed during niche initiation [304]. Although this was not studied in the particular context of niche
formation, EMT-shifted cells have thus been shown to recruit immunosuppressive populations of
immune cells [305–307] through the secretion of immunosuppressive mediators (e.g., CCL2, CXCL8,
thrombospondin). The ability of EMT hybrids to better resist cytotoxic immune cells is also certainly a
property facilitating the establishment of the metastatic niche.

Additionally, once arrested in the vasculature of colonized organs, EMT+ DTCs may also establish
privileged interactions with resident host cells to initiate niche activation. In a mouse metastasis
model, del Pozo et al. thus showed that Axl expressed by mesenchymally-shifted metastatic initiating
cells is involved in the niche activation through the regulation of thrombospondin 2 secretion and
the education of resident fibroblasts [308]. Subsequently, these DTCs reverted to an Axl-negative,
more epithelial phenotype to proliferate. The ability of mesenchymally-shifted CTCs to accomplish
early niching and a subsequent reversion to a more epithelial phenotype associated with metastatic
outgrowth has also been observed by other authors [309,310]. Thus, in later stages of metastasis,
the niche signals to induce MET and favor proliferation leading to metastatic outgrowth.

All in all, these abundant experimental data, considered together with the molecular
characterization of human CTCs, support that mesenchymally-shifted hybrid CTCs may represent
subpopulations with enhanced competence to survive in the circulation and to initiate niche formation
at distant sites. If many mechanisms detailed above (activation of coagulation, interactions with
neutrophils) are likely to favor the formation/consolidation of heterotypic clusters/CTM, they may also
help isolated CTCs to overcome the constraints of metastatic translocation and niching. Various hybrid
phenotypes may therefore travel and niche as isolated CTCs while others, potentially more dependent
on homo/heterotypic interactions for survival, may travel and nest as clusters, thereby gaining even
increased metastatic competence. Considering experimental data and clinical observations showing
that isolated CTCs are largely predominant entities, it is very likely that these two scenarios coexist.
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5. Functional Assays for CTCs

Current CTC research invests great efforts in the development of ex vivo, in vitro and in vivo
models allowing a functional characterization of CTCs [311]. An underlying aim is certainly to
understand CTC biology and to identify/isolate, within a heterogeneous population of CTCs, those CTCs
with a high potential to initiate metastasis (so-called MICs, metastasis initiating cells).

Because CTCs are so rare, many researchers have aimed at shortly expanding CTCs in
culture and even at establishing CTC-derived cell lines before downstream in vitro and in vivo
characterization [312,313], although this may certainly modify the heterogeneity of the initial CTC
population and introduce a bias. Cell lines have thus been successfully established from different
CTC subpopulations isolated from different types of cancer including breast [314,315], colon [316],
and lung [126,317,318] cancers. To better mimic the in vivo contexts, 3D (tumor) spheroids and
organoids culture models are being optimized [319–327]. Additionally, 3D co-culture systems are also
under development [317]. Although this remains largely uncovered, several studies have examined
EMT heterogeneity in such culture models aiming to gain knowledge about CTC biology and their
metastasis-initiating potential. Hybrid E/M phenotypes have thus been reported in CTC-derived cell
lines [126,316]. Dynamic differences in E and M composition have also been observed in a 3D polymer
scaffold culture [323] and in 3D spheroid cultures [324]. Aiming at isolating and characterizing invasive
CTCs, VitatexTM developed a platform system to capture and culture viable CTCs with an ability to
adhere and remodel/ingest a labeled matrix (Cell Adhesion Matrix -CAM) [187,328,329]. Friedlander
and coworkers were thus able to identify invasive CTCs expressing EMT/CSC markers (vimentin, CD44)
in the blood of prostate cancer patients [187]. Most importantly, in vivo CTC xenografts (CTC-derived
xenografts, CDX) are also being optimized as most representative models to evaluate the metastatic
competence of different subpopulations of CTCs and understand the biology of MICs. Although
some studies use CTCs without prior in vitro expansion, CTC-derived cultures or cell lines are also
commonly assessed. MICs have thus been successfully identified in CTCs isolated from different
types of cancer including breast, lung or colon cancer [315,316,330–334]. In some studies, intravenous
or intra-femoral injections have been directly performed. Therefore, breast-cancer derived CTC cell
lines expressing E/M hybrid phenotypes (cytokeratins 8/18, vimentin, CD44) have been shown to
metastasize after tail-vein or intracardiac injection [314]. Similar findings have been reported with CTC
cell lines established from an initial xenograft model of a breast cancer-derived DTC cell line [334].
Baccelli and coworkers also identified CD44+/c-Met+/CD47+ CTCs isolated from breast cancer patients,
which generated bone, lung, and liver metastases after intrafemoral injection [335].

Another important scope behind the elaboration of these CTC-derived assays is to develop
patient-matched preclinical models that could be established for longitudinal assessment of
disease progression and drug sensitivity, thereby customizing and improving individual patient
management [320,321]. Thus, CTC cell lines [315,336–338] and 3D CTC-derived spheroid and organoids
models [317,322–325,339] have been examined in drug screening settings. In this sector, microfluidics
is also making a breakthrough, allowing a better control of the culture conditions and easier settings for
drug delivery [340]. CDX have also been evaluated in drug screening assays [341–343] with an ultimate
goal of being analyzed in patient-matched settings [344]. Although this line of research is very promising,
further developments are needed to improve efficiency and reproducibility and, ultimately, to select
models that could be transferrable in co-clinical trials on patients and patient-matched “avatars”.

6. Clinical Relevance of EMT-Related CTC Heterogeneity

A profusion of clinical studies supports the validity of CTC count before or during treatment
(chemotherapy or targeted therapy) as a prognostic biomarker particularly for breast, prostate,
and colorectal cancer [7,8,345–350]. Nevertheless, CTCs are thus far not utilized in clinical routine.
Large-scale multicentered trials using identical detection methods seem crucial to establish the utility
of CTC enumeration and implement this parameter in clinical practice.
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In addition to enumeration, it is also becoming clear that a deeper molecular characterization of
CTCs may provide a goldmine of information for clinicians and holds promises to improve personalized
cancer management.

6.1. EMT+ CTCs as A Prognostic Factor

Numerous studies to date have already suggested that certain EMT-shifted CTC subsets harbor
prognostic information. In agreement with the well-documented and numerous pro-metastatic
functions of EMTs, the detection of certain EMT actors in CTCs has thus been correlated with
poor clinical parameters such as an aggressive cancer types and a shortened OS or PFS (Table 1).
More particularly, CTCs harboring mesenchymal features have been reported to associate with the
presence of metastases in numerous cancers including breast, lung, pancreatic, colorectal, prostate,
or hepatocellular cancers [101,109,114,116,122,125,169,351–354]. Considering particular EMT/CSC
molecular actors, studies, for instance, have detected CD44, often in conjunction with other canonical
EMT markers, in CTCs isolated from many cancer types, which was associated with poor clinical
outcomes in some studies [50,100,170,187,188,335,355,356]. EMT transcription factors (Twist, ZEB or
Snail) have also been frequently detected in CTCs and associated with a poor prognosis in different
cancer types [101,174,353,357,358]. Axl was found in CTCs isolated from lung cancers, particularly in
those expressing vimentin [52], and it was similarly associated with a poor prognosis [132]. Interestingly,
high expression of PD-L1 and EMT markers in CTCs was reported to be a sign of a grim prognosis in
patients with complete surgically resected lung cancer [130]. The exploration of EMT on CTCs may
thus help to predict a poor outcome and could thus guide towards an adaptation of individual patient
management (reinforced surveillance, treatment adaptation).

6.2. EMT+ CTCs in Therapy Management

In addition to this important prognostic information, EMT detection in CTCs also harbors
meaningful predictive information. Identifying molecules that may predict the response or a
non-response to an existing treatment accordingly constitutes a promising perspective of CTC molecular
characterization that may guide/refine patient stratification and management, particularly when tumor
biopsy is not informative or no longer an option.

Therefore, a combined detection of known therapeutic targets (such as EGFR, PD-L1 or HER2)
together with poor-prognostic EMT markers may refine patient management and point to potential
combinatory therapies. Illustrating this, an association between PD-L1 expression and EMT markers has
been evidenced in tumors and CTCs, particularly in NSCLC and TNBC [130,280,282–285]. Along these
lines, tandem expression of vimentin and PD-L1 has been shown to constitute a prognostic factor
in NSCLC [287]. Hence, EMT has been proposed as a candidate biomarker to be explored on
tumors and CTCs to predict immunotherapy outcome and to design combination approaches with
immunotherapy [276,359].

A pivotal aspect of CTC analysis resides on the possibility to perform successive liquid biopsies
to monitor the progression of the disease and to assess treatment efficacy. Importantly, the emergence
of EMT-shifted CTC phenotypes after one or several lines of treatment was found to correlate with
drug resistance in several studies [52,104,112,121,124,179,360]. This finding is in agreement with
a large amount of experimental data demonstrating an enhanced ability of EMT-shifted cells to
resist most existing therapeutic options (chemo- radio-resistance, and resistance to existing targeted
therapies) [81,162–166]. Analyzing EMT as a companion marker in the course of a treatment may thus
help predict drug resistance and eventually help guide therapeutic strategies.

In addition, a deeper molecular characterization of these drug-resistant phenotypes may also
point to the emergence of other targetable pathways, or identify new potential therapeutic targets.
For instance, NSCLC patients treated with one or several lines of therapies, progressively presented
significantly more vimentin-positive Axl-expressing CTCs [52]. Overexpression of Axl in CTCs
isolated from lung cancer patients who developed resistance to EGFR inhibitor therapies has also been



Cancers 2020, 12, 1632 18 of 38

reported [361]. Examining Axl on CTCs, against which drugs are currently evaluated in clinical trials,
has accordingly gained interest within the last 5 years [132,362,363].

As debated numerous times [75,364], the dynamic and reversible nature of EMTs makes it difficult
to define a single EMT molecular signature that fits the variety of hybrid phenotypes, particularly
across various types of cancer. Due to this molecular complexity, the identification of specific EMT/CSC
molecular markers or signatures to be used as prognostic or predictive markers in specific cancer
contexts will most likely constitute a necessary steppingstone towards a clinical use. Defining an “EMT
index” to somehow quantify the extend of EMT may also facilitate the implementation of EMT analysis
in clinical practice. Fici and coworkers, analyzing EMT-related splicing factors ESRP1/ESRP2/RBFOX2,
provided rationale to use the ESRP1/RBFOX2 ratio as a prognostic biomarker for early prediction of
metastasis in breast cancer, and further suggested this ratio could also be evaluated in CTCs [365]

Further development is thus ongoing to delineate clear parameters (selection of appropriate
CTC isolation techniques, selection of specific EMT markers or EMT signatures or EMT indexes,
selection of adequate preclinical models for drug screening) that may be transferable to clinical
routine. With increasing experimental data identifying new EMT molecular mechanisms supporting
metastatic competence, emerging therapeutic targets will also undoubtedly be identified. Thus,
targeting mechanisms and specific molecules involved in coagulation, NET formation or neutrophil
interactions are currently interesting paths of exploration.

7. Concluding Remarks

A tremendous amount of experimental data shows that EMTs endow epithelial tumor cells with
properties that help them overcome hostile signals encountered as they travel as CTCs: an enhanced
survival potential, an increased ability to activate coagulation, an augmented aptitude to hijack host
cell pro-metastatic functions, and a raised capacity to establish an early metastatic niche.

Nevertheless, examining EMT in human CTCs remains complicated, partly because enrichment
and isolation of rare human CTCs remain a technical challenge. Microfluidic-based approaches of CTC
isolation are undergoing rapid development and currently represent the most promising innovative
avenue to isolate label-free human CTCs, hopefully accelerating CTC research and subsequently CTC
consideration in the clinic.

The clinical potential of CTCs is indeed enormous and multiple. CTCs hold a prominent place in
personalized medicine. When tumor biopsy is not or no longer an option, CTCs represent a unique
accessibility to tumor material, and, moreover, a material containing the physical entities responsible
for metastasis. Additionally, as liquid biopsies are non-invasive procedures that can be repeated during
the course of the treatment, a live assessment of disease progression and a monitoring of treatment
efficacy may be possible.

Thus far, and beyond the clinical interest of CTC enumeration, data collected on human CTCs
point to a clinical utility to longitudinally interrogate the EMT status in CTCs. An EMT signature
in CTCs is indeed a marker of poor prognosis in most cancer contexts. In advanced and metastatic
situations, EMT traits also clearly point to drug resistance. EMT detection may thus represent a
companion marker of further assessment to facilitate individual cancer patient management and guide
treatment decisions. Although the examination of specific EMT markers seems easier to implement in
the clinic, analysis of EMT signatures may harbor more significant power and point to new potential
therapeutic targets to consider.

Additionally, the elaboration of preclinical models that would allow a deeper functional and
molecular characterization of MICs within the CTC population and that could be utilized as
drug-screening platforms, certainly represent a crucial axis of CTC research that may pave a way
towards personalized medicine.
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