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Abstract: Significant prostate carcinoma (sPCa) classification based on MRI using radiomics or deep 
learning approaches has gained much interest, due to the potential application in assisting in clinical 
decision-making. Objective: To systematically review the literature (i) to determine which 
algorithms are most frequently used for sPCa classification, (ii) to investigate whether there exists a 
relation between the performance and the method or the MRI sequences used, (iii) to assess what 
study design factors affect the performance on sPCa classification, and (iv) to research whether 
performance had been evaluated in a clinical setting Methods: The databases Embase and Ovid 
MEDLINE were searched for studies describing machine learning or deep learning classification 
methods discriminating between significant and nonsignificant PCa on multiparametric MRI that 
performed a valid validation procedure. Quality was assessed by the modified radiomics quality 
score. We computed the median area under the receiver operating curve (AUC) from overall 
methods and the interquartile range. Results: From 2846 potentially relevant publications, 27 were 
included. The most frequent algorithms used in the literature for PCa classification are logistic 
regression (22%) and convolutional neural networks (CNNs) (22%). The median AUC was 0.79 
(interquartile range: 0.77–0.87). No significant effect of number of included patients, image 
sequences, or reference standard on the reported performance was found. Three studies described 
an external validation and none of the papers described a validation in a prospective clinical trial. 
Conclusions: To unlock the promising potential of machine and deep learning approaches, 
validation studies and clinical prospective studies should be performed with an established protocol 
to assess the added value in decision-making. 

Keywords: prostate carcinoma; clinically significant; radiomics; machine learning; deep learning; 
systematic review; mpMRI; classification; model; prediction; Gleason score 

 

1. Introduction 

Prostate cancer (PCa) is the most common malignancy and second leading cause of cancer-
related death in men [1]. One in six men will develop PCa; however, many pathological 
subclassifications are present, roughly separated into low grade and high grade, or into clinically 
insignificant and significant PCa. Significant PCa (sPCa) has the potential to metastasize and 
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therefore has the poorest prognosis. Insignificant PCa may not metastasize and mostly results in 
indolent or slowly growing low-grade tumors. Patients with low-grade PCa die from other causes 
than PCa. Overdiagnosis of low-grade PCa and, consequently, overtreatment is an important 
problem in current practice, estimated to be up to 50% of all PCa [2]. Therefore, accurate 
discrimination between significant and low-grade PCa is critical for risk stratification and clinical 
decision-making 

Multiparametric magnetic resonance imaging (mpMRI) has become an essential tool for PCa risk 
assessment. This is performed by radiologists using the Prostate Imaging Reporting and Data System 
(PI-RADS) [3]. However, mpMRI assessment is challenging and prone to inter- and intrareader 
variability, making this evaluation dependent on reader experience [4]. 

Quantitative assessment of mpMRI might provide a radiologist with an objective and 
noninvasive tool to support decision-making in clinical practice and decrease the intra- and inter-
reader discordances. Due to the increased interest in AI applications in medicine, increased computer 
power, and the development of new AI techniques, the number of studies proposing computer-aided 
diagnosis (CAD) systems to detect and classify tumors on medical images using either radiomics and 
machine learning (ML) or deep learning (DL) methods has greatly expanded. This certainly is the 
case for PCa detection and classification. Whereas the frontrunners focused primarily on the proof of 
concept of using radiomics and machine learning techniques to classify prostate tumor versus no 
tumor or versus benign lesions, the more recent literature focuses on the clinically relevant problem 
of discriminating significant from low-grade tumors. In older studies, the Gleason grades of the 
included tumors are often not mentioned, making it difficult to compare results between studies. 

In recent literature, a large variety of classifiers have been applied based on different ground 
truths (biopsies or prostatectomy data) and using several performance statistics, with varying results. 
Our aim with this study was to systematically review the literature to synthesize and describe the 
state of the art and current practice for automated significant PCa classification based on mpMRI. 
Therefore, we identified the following questions: (1) What algorithms are most frequently used for 
sPCa classification? (2) Is there a relation between the performance and the method or MRI sequences 
used? (3) Which study design factors affect the performance on sPCa classification? (4) Have methods 
been validated in a clinical setting? 

2. Results 

2.1. Search Results and Statistical Description 

The flow diagram is depicted in Figure 1. In total, 27 articles were eligible for inclusion in this 
review [5–31]. From these, 13 studies reported enough information to perform a meta-analysis. 

 
Figure 1. Systematic review flow diagram, modified from [32]. 
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In Figure 2, the number of publications per year included in our analysis is shown. The first 
study dates from 2013. Most studies included in the systematic review were published in the years 
2018 and 2019. The studies included obtained a median score of 52% on the modified radiomics 
quality score with an interquartile range (IQR) = 44–56%. 

 

Figure 2. Number of articles included per year of publication. 

Regarding the study design, in five studies (17%), the data acquisition had a prospective design, 
while 22 (83%) studies used a retrospective design for data gathering. In all studies, the computer-
aided analysis (CAD) was performed retrospectively. The median of the dataset size was 127 patients 
with an IQR of 71–193 patients, the largest dataset had 344 patients, and the smallest counted 36 
patients. Most of the data were collected internally in a single-center setting (66%); a minor 
proportion (30%) used only publicly available datasets. Furthermore, only one study used data from 
several centers (4%) (Table S1). 

When observing the population description used for PCa classification, 89% described the 
Gleason distribution of their study population. Almost 90% of the studies described their study 
population in detail. Seven studies (29%) mentioned a size restriction for the inclusion of lesions. 

As input for the classification method, the Apparent diffusion coefficient (ADC) map was the 
most frequently used (93%), followed by the T2w sequence (81%). Dynamic contrast-enhanced (DCE) 
images were used in 52% of the studies. Most studies used more than two image inputs for the 
classification method. Twenty-two papers gave a description of the MRI protocols used. Twenty-four 
of the studies (89%) used data acquired with a 3T MRI. Given that 25 of the studies were performed 
with a single-center cohort, most of the datasets originated from a single scanner or several scanners 
belonging to the same vendor. Only three studies used an external validation cohort to check the 
generalizability of their results (Table S2). 

For classification, eight studies (30%) used prostatectomy as a reference standard. The PCa lesion 
correlation with the mpMRI and the delineation were mostly carried out manually by an experienced 
radiologist (70%), while fully automatic and semiautomatic methods were rarely applied (7%), and 
other studies did not comment on how the segmentation was obtained (23%). 

From the image combination selected by the researchers, image feature extraction was 
performed. The variation in number of features selected for the development of the model was large: 
median = 8 features and IQR of 3–56 features.  

The classification task most observed was the discrimination between PCa tumors with GS ≥ 7 
and GS ≤ 6 (62%). Other classification tasks performed were ISUP classification, differentiation 
between Gleason pattern 3 + 4 and Gleason 4 + 3, single Gleason pattern 4 vs single Gleason pattern 
3, and prediction. Additionally, these classification tasks were performed without distinction of the 
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tumor location in 17 studies (63%), while 4 studies (15%) reported the results per zone. Four studies 
focused on tumors in the peripheral zone (PZ) (15%). 

For the classification based on the imaging features, several ML algorithms were used, as can be 
seen in Table 1. Logistic regression, convolutional neural networks, and random forest were most 
frequently chosen, while support vector machines (SVMs) and the linear mix model were selected 
slightly less frequently. The rest of the ML algorithms were not reported more than twice (Table S3). 

All studies performed a thorough cross-validation. Eleven studies (41%) reported a class 
imbalance between the sPCa and non-sPCa cases, and performed an upsampling of the minority 
class. Eight of these studies (30%) reported the use of a data augmentation method. Three of these 
papers also performed data augmentation on the validation set. In 24 studies (89%), the validation of 
the methods was performed with an internal dataset, while only 3 studies used external data to check 
the generalizability of their results. Only in one study was the performance of a radiologist with or 
without CAD compared [24]. 

The performance of the methods was reported by the authors in terms of the area under the 
receiver operating curve (AUC), accuracy, sensitivity, and/or specificity. However, not all the metrics 
were reported all the time, and only 59% of the included studies reported confidence intervals. For 
instance, 41% of the studies did not report metrics as sensitivity and specificity. Only 33% reported 
their metrics per zone, and most studies reported their metrics for the whole prostate. 

The median AUC of all the studies included was 0.79 (IQR: 0.77–0.87).  

2.2. Factors Influencing the Performance 

In Table 1, the performance of the different methods is summarized. As can be seen, the support 
vector machine method, the linear mix model, and k-nearest neighbor occupy the top three positions 
in terms of performance. The methods validated on external datasets are marked with an (*). 

Table 1. Method performances in terms of the median area under the receiver operating curve (AUC) 
and respective interquartile range (IQR). 

Method Median (AUC) IQR N 
SVM 0.91 0.84 0.92 3 

Linear mix model * 0.89 0.84 0.92 3 
k-nearest neighbor 0.87 0.87 0.87 1 
Neural Network 0.81 0.76 0.84 2 

CNN 0.80 0.78 0.83 6 
Random Forest * 0.80 0.75 0.82 4 

Logistic regression 0.79 0.77 0.79 6 
Linear discriminant analysis 0.74 0.72 0.76 2 

(*) Models validated with an external dataset. N = number of studies using the method. CNN = 
convolutional neural network and SVM = support vector machine. 

As demonstrated in Figure 3, the reported performances do not show a correlation with the 
number of patients included in the study. Furthermore, we found no significant statistical difference 
between the performance of externally validated studies and studies without external validation 
(Mann–Whitney U test = 43, p-value = 0.49).  
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Figure 3. Scatter plot showing number of patients included per study and the performance reported. 
The studies with a blue triangle were externally validated and studies marked with an orange circle 
were tested internally. 

We also investigated whether the inclusion of the DCE sequence for model development 
influenced the reported performance of the model. As can be seen in Figure 4, the AUC of models 
including DCE overlaps with the IQR of the models not using the DCE sequence. There was no 
statistically significant difference between the median AUC between the two groups (Mann–Whitney 
U test = 61.0, p-value = 0.12).  

. 

Figure 4. Model performance boxplots grouped by inclusion of the dynamic contrast-enhanced (DCE) 
sequence for model development. 

Similarly, we tested if there were differences in performance between studies using transrectal 
ultrasound (TRUS) guided biopsies or prostatectomies as the reference standard. We found no 
statistical difference between the median AUC of models using TRUS-guided biopsies and 
prostatectomies as the reference standard (Mann–Whitney U test = 56.5, p-value = 0.2). Additionally, 
for the studies that reported sensitivity and specificity, we computed the hierarchical receiver 
operating characteristic curves (Figure 5). The studies using biopsies showed more homogenous 
performance compared with the ones using prostatectomy. Furthermore, the difference between the 
confidence regions and predicted region was less prominent. 
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Figure 5. Hierarchical receiver operating characteristic curves for biopsies (a) and prostatectomies (b). 
Studies are represented by circles with a size proportional to their data size, red = optimal working 
point, black line = curve, red line = 95% confidence region, blue line = 95% predicted region. 

3. Discussion 

In this study, we systematically reviewed the literature and described the state of the art and 
current practices for significant PCa classification based on multiparametric MRI. In recent years, 
many studies have been published using radiomics in combination with machine learning or deep 
learning methods on mpMRI to classify significant prostate cancer with the ultimate goal of assisting 
the radiologist in his diagnosis workflow. In this systematic review, we quantified the chosen 
approaches for radiomics, and deep learning methods applied and summarized the results for PCa 
classification. Despite the promising results obtained by several studies and their explicit intention 
to translate their tools into clinics, none of the studies demonstrated the improvement of PCa 
detection using a CAD system in a clinical workflow. 

This lack of prospective studies might be explained by several reasons: First, performing a 
prospective study embedded in the clinical workflow is more time and cost intensive per patient than 
performing a retrospective study. Second, a large cohort of patients will be needed to demonstrate 
with enough power the added value of a CAD system. In most studies, the methods are trained and 
validated on MRI data from the full spectrum of ISUP classes, whereas the radiologist primarily needs 
assistance for the ISUP classes 1–3 [33]. Further, tumors with a larger volume are easier to detect. Zhu 
et al. [24] found that for lesions larger than 1.5 cm, the CAD system did not improve the sensitivity. 
Most studies described the distribution of Gleason grades in their study but failed to give a 
distribution of the sizes of the tumors. Both aspects can have a major impact on the performance of 
the CAD. For a prospective study to assess the improved performance of the radiologist working 
with the CAD system, the cohort should be large enough to contain enough intermediate GS and 
tumors with varied sizes. 

With this perspective, most of the studies are proof-of-concept studies. Researchers tend to work 
with data that are accessible and less time consuming to obtain, which would explain the observation 
of larger patient cohorts per study when using TRUS-guided biopsies as the reference standard as 
compared with patient cohorts in studies that used prostatectomies. In fact, we need patient cohorts 
with prostate template mapping biopsies (at 5 mm intervals) for appropriate diagnostic test 
accuracies, as well as second best cohorts with TRUS-guided biopsies combined with MRI-targeted 
biopsies (in MRI-positive cases). Although radical prostatectomy specimen may be the best reference 
standard, we need to be aware that this is already a selected patient cohort, with most likely high(er) 
risks and high(er) Gleason grade PCa, which is not representative of the screened or tested 
population, in which CAD could be helpful. Men on active surveillance are excluded in such high-
risk cohorts. 

Similarly, the time and cost limitations also apply for MRI data, where obtaining multicentric 
datasets for radiomics studies is an obstacle to overcome [34]. In the context of PCa, this means 
gathering data from urology, radiology, and pathology departments. Data must be anonymized, 
processed, matched, segmented, and verified before being used for CAD development. Therefore, it 
is not surprising that the images used by most of the studies included in this systematic review were 

a) b) 
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generated using a single scanner or two scanners of the same vendor in one center. This should be 
considered as limiting when aiming to develop a generalizable model. Due to the feature dependency 
on the acquisition parameters of scanners [35], for developing a generally applicable model, data 
from different scanners and different sites will be needed. 

We found no performance difference for studies that included T2, diffusion-weighted imaging 
(DWI), and ADC images as compared to studies that added a DCE sequence [36]. The DCE sequence 
is included in the PIRADS v2; however, there is a debate about the added value. Based on the results 
of this systematic review, adding the DCE sequence in a proposed study cohort may not enhance the 
performance of the methods significantly. A more in-depth analysis to investigate the added value 
of DCE in particular circumstances is needed. 

A significant number of the studies included in this systematic review specified their patient 
inclusion/exclusion criteria, describing how large the patient cohort was and how many tumor 
samples were taken to develop the model. Nevertheless, the details regarding the selected 
populations were heterogenous between studies. Some papers limited their description to the 
number of positive and negative samples [27,31], while others mentioned the PCa lesion distribution 
per GS [11,23] and/or the volume distribution [16,21]. Both characteristics describe the type of 
population used and whether the PCa lesions are clinically relevant [2]. Moreover, this information 
is fundamental when drawing conclusions regarding the added value in a clinical setting of the 
proposed method. For instance, if a model is trained exclusively on tumors with a first Gleason 
pattern > 4 and a volume > 5 mL, the added value in a clinical setting would be zero, since these 
lesions will be easily detected not only on MRI by a radiologist but also on rectal examination by a 
urologist. A model trained on small tumors with volumes between 0.5 and 1 mL and with the aim to 
differentiate between GS 3 + 3 (ISUP grade 1) and 4 + 3 (ISUP grade 3) might represent a significant 
support tool. As previous investigations have suggested that GS 7 tumor volumes above 0.5 mL and 
GS6 tumor volumes above 1.3 mL become clinically significant, we may consider thresholding CAD 
systems to such tumor volumes [37]. 

Regarding the correlation of the tumors on MRI with the pathology reference, the most common 
practice is to perform a segmentation by an expert radiologist. The region of interest (ROI) delineation 
is a factor that has a direct influence on the feature computation [38]. Therefore, studying the 
robustness of the features to the segmentation is a factor that authors should consider when 
validating their methods. This process can also by automated by performing both segmentation and 
classification within the same pipeline. Nevertheless, the performance of segmentation methods was 
outside the scope of this review. 

To enable a fair comparison of the different methods, only studies that compared the 
classification of significant versus nonsignificant tumors were included. Studies that discriminated 
healthy tissue from ISUP 1–5 were not included. Furthermore, to enhance comparability, only studies 
that performed the evaluation study on a patient or lesion level were included. A number of studies 
performed the evaluation on the voxel, slice, or segment level, reporting excellent AUCs. However, 
this does not correspond to the output that a radiologist will use in a clinical context. Furthermore, 
some studies did not perform a patient split for the training and validation cohort, which may lead 
to overestimated results [39]. Therefore, these studies were also excluded. Of the included studies, 11 
reported class imbalance and used resampling and data augmentation techniques to balance the 
classes. However, three studies also performed data augmentation on the validation set, which may 
make the results overoptimistic. 

When the features computed from the ROI are used to develop a classification model, the 
number of features is most likely to be higher than the number of samples included in the study, 
which increases the risks of obtaining an overfitted model. As a consequence, authors aim to reduce 
the feature space by removing the less informative and redundant features. However, when reporting 
their results, the number of features selected is vague in most of the cases. Furthermore, most 
researchers do not offer details regarding preprocessing steps and model parameters. Only a few 
authors made their code publicly available in a repository [40]. This lack of detailed information 
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hampers the reproducibility of the results, makes it difficult to compare methods, and does not help 
in pushing this field forward.  

Most of the papers described a single-center study without external validation. Exchanging 
codes and data between different research groups would help to externally validate the different 
methods and to improve the robustness of the methods for different centers and scanners. Moreover, 
only one study compared the performance of radiologists with or without a CAD. As the ultimate 
goal of these approaches is to assist the radiologist in this diagnostic task, the real evaluation should 
be performed in a clinical setting 

The performance obtained by ML and DL methods included in this systematic review can be 
considered comparable. While the SVM, the linear mix model, and the k-nearest neighbor showed 
the highest performance, most studies were not validated with an external set, so the reported 
performance will most likely be overestimated. On the other hand, for linear mixed models and 
random forests, there is scientific evidence that their real performance is stable when translating these 
methods to a new population with similar characteristics as the population used to create the model 
[41]. 

All of the included studies, except for one, focused on the imaging data, whereas in urology, the 
use of decision models based on clinical data is common practice. We expect that the combination of 
imaging and clinical data in a more patient-based model will further improve the performance  

The literature suggests that there are discordances between GS in TRUS biopsies and the GS 
obtained after prostatectomy [42], where the latter is more accurate since the whole organ is assessed 
and there are no sampling errors. We hypothesized that the classification performance obtained while 
developing a model using prostatectomies as the reference standard would obtain better results when 
compared with using TRUS-guided biopsies. However, our results suggest that an equivalent 
performance can be obtained, regardless of the reference being used. This could be explained by the 
fact that using biopsies allows a larger patient cohort in the study, which might mitigate the effects 
of sampling errors and generalize as well as a study with less patient samples based on 
prostatectomies. 

In a broader perspective, there are many factors to consider when developing a PCa 
classification model. In the previous paragraphs, we described how these factors might influence the 
end model performance and generalizability. However, the current heterogeneity regarding how 
these relevant factors are described in studies makes it hard to make a fair comparison between them. 
Therefore, we would like to make some recommendations that are fundamental from our perspective 
when working on PCa classification: (1) to use a prospective study design to assess the added value 
in a clinical setting with the inclusion of clinical parameters in the model and with a clear description 
of the patient cohort, the inclusion/exclusion criteria, the risk group, patient age, number of lesions 
included per patient, and the distribution according to GS and tumor volume; (2) to encourage the 
sharing of codes and data; (3) to test the model on external datasets; and (4) to report the model and 
the performance metrics in a standardized way.  

This study has some limitations that should be mentioned. First, due to publication bias, 
methods with low performances were not included in this study [32]. As a result, the real 
performance of the listed methods in this systematic review might be overestimated. Second, some 
papers might have been excluded from this systematic review since the necessary information to 
assess the eligibility could not be obtained from the test. Finally, only 12 papers (43%) from the 29 
papers included in the systematic review reported sufficient information to perform a meta-analysis, 
which means that our conclusions in this section were based on less than half of the final number of 
papers included. 

4. Materials and Methods  

This systematic review was conducted following the recommendations published in the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy 
(PRISMA-DTA) statement [43]. A systematic literature search was performed on 6 January 2020 on 
the online databases EMBASE and MEDLINE Ovid. The databases were searched for primary 
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publications describing studies of classification and/or detection of clinically significant PCa on MRI 
employing radiomics combined with a machine learning and/or a deep learning approach. The exact 
search can be found in the Supplementary Materials Section S1. 

After removal of duplicate findings, the screening of abstracts and full-text articles was 
performed independently by two researchers (J.M.C.T. and J.F.V.). Discrepancies were resolved by 
discussion. 

The following exclusion criteria were used: not original research, studies that performed PCa 
classification without description of Gleason grades of the tumors, studies that did not classify 
significant versus nonsignificant PCa, studies that did not have a proper evaluation setup, and 
studies that performed only a statistical feature comparison. For the data extraction, three researchers 
performed a training phase (J.M.C.T., M.A., and J.F.V.), where they discussed the data extraction from 
4 randomly selected articles to check criteria agreement on the items of the predefined extraction 
form. Following this training phase, these authors independently extracted the items. The data 
extraction was cross-checked. When a study reported several classification experiments or compared 
several feature classifier combinations, the best performance results were extracted. Missing 
specificity values were computed from the sensitivity, positive predictive value, and patient 
numbers. When authors reported the performance metrics for 5 separate ISUP classes, the 
performance metrics for class 1 versus classes 2–5 were computed. When performance metrics were 
reported per zone, the average was computed for the whole prostate. When performance metrics for 
an augmented and a nonaugmented validation set were reported, the metrics from the 
nonaugmented set were extracted. 

To assess the quality of the included studies, we defined our own system for PCa classification 
study quality assessment. Our assessment tool was based on the Radiomics Quality Score (RQS) [44]. 
This tool has been developed for radiomics studies; several items are applicable not only for 
radiomics studies but also for other ML approaches. Nevertheless, the RQS is quite extensive and 
does not include criteria to evaluate biases regarding patient inclusion criteria, which in our opinion 
is a fundamental point to assess in classification studies. Therefore, we included in our assessment 
tool this criterion taken from the Quality Assessment of Diagnostic Accuracy Studies (QUADAS ) 
[45]. The selected criteria for our quality assessment are included in Table 2. 

Table 2. Prostate Carcinoma Classification Study Quality Score, modified from radiomics quality 
score [44]. 

Criteria Points Min Max 
Bias due to 

population selection 
Patient selection introduces bias (−5), patient selection might introduce 

bias 0, patient selection does not introduce bias (+5). 
−5 5 

MRI protocol 
description MRI protocols are well documented (+1). 0 1 

Multiple 
segmentations 

Study includes segmentations from several 
physicians/algorithms/software. Study analyzes method robustness to 

segmentation variabilities (+1). 
0 1 

Multivariable 
analysis with non-
radiomics features 

Study includes multivariable analysis with non-radiomics features, for 
instance, age and prostate-specific antigen (+1). 0 1 

Discrimination 
statistics 

The study reports discrimination statistics (for example, receiver 
operating curve, AUC) (+1). The study reports the validation method 

(for example, cross-validation, bootstrapping) and confidence intervals 
(+1). 

0 2 

Prospective study The study has a prospective design (+7). 0 7 

Validation 

The study does not report a validation method (-5), a validation 
performed on a dataset from the same institute (+2), a validation on a 
dataset from another institute (+3), a validation on a dataset from two 
distinct institutes (+4), a validation on a dataset from three different 
institutes (+5). *Validation set size should be of comparable size and 

representative of the training set. 

−5 5 
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Comparison to gold 
standard 

The study assesses the extent to which the model agrees with/is 
superior to the current "gold standard" (+2). 0 2 

Report potential 
clinical utility 

The study reports potential clinical utility and potential application of 
the model in a clinical setting (+2). 

0 2 

Open science and 
data 

Study scans are open source (+1), region of interest (ROI) segmentations 
are open source (+1). The classification model with parameter settings is 

publicly available (+1). 
0 3 

Score  (number of points × 100)/29 0% 100% 

After performing a qualitative analysis on the included papers, we performed a statistical 
analysis on several factors that could influence the performance matrix. We performed a meta-
analysis with the studies that contained the detailed information required: area under the curve, 
sensitivity, and specificity for the significant versus nonsignificant PCa classification. Statistical 
analysis and meta-analysis were performed with two free source programing languages: Python and 
R, respectively. The hierarchical receiver operating curves were computed using the software 
package HSROC in R [46]. For statistics computation regarding studies with multiple performance 
outcomes, we used the highest performance metric reported. 

5. Conclusions 

This systematic review shows an increased research interest in PCa classification with machine 
learning and deep learning approaches, and many promising results are reported. Among such 
studies, large heterogeneity is present in patient population (and risks), number of included patients 
and prostate cancer lesions, MRI sequences used, machine learning and deep learning approaches, 
and used reference standards. No significant differences were identified in diagnostic performance 
regarding these factors. 

This review also shows that external validation of methods is lacking, and that there are no 
studies describing the actual inclusion of radiomics or deep learning models in a clinical workflow. 
To unlock the promising potential of machine and deep learning approaches, validation and 
prospective studies should be performed in a clinical setting with an established protocol to assess 
the added value in decision-making.  

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/6/1606/s1, 
Supplementary Materials Section S1: Search strategy, Table S1: Table with summary of extracted parameters 
regarding data sets from included papers, Table S2: Table with summary of extracted parameters regarding MRI 
data from included papers, Table S3: Table with summary of extracted parameters regarding model’s 
performance and methodology from included papers.  
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