Article

Neutrophil Extracellular Traps (NETs) Promote ProMetastatic Phenotype in Human Breast Cancer Cells through Epithelial-Mesenchymal Transition

Karina Martins-Cardoso, Vitor H. Almeida, Kayo M. Bagri, Maria Isabel Doria Rossi, Claudia S. Mermelstein, Sandra König and Robson Q. Monteiro

Supplementary Materials

Figure S1. Uncropped blots for analysis of EMT markers. MCF7 cells were starved and treated with NETs for 3 to 24 hours. MDA-MB-231 cells (MDA) were used as a mesenchymal cell model. The figure shows the uncropped blots revealed with antibodies against (a) E-cadherin, (b) fibronectin, (c) vimentin, or (d) β-actin, which was used as the loading control. Also, (e) E-cadherin levels were analyzed in HCC 1954 cells treated with NETs, using β-actin as a loading control. Densitometric analysis was performed with the ImageJ software (NIH, USA). Fold difference was calculated in relation to untreated MCF7 cell line (a,b), MDA-MB-231 cells (c), or untreated HCC 1954 cells (e) depicted at the bottom of each blot. Molecular weight was determined using the Novex ${ }^{\text {TM }}$ Sharp Prestained Protein Standard (\#LC5800, ThermoFisher Scientific). Experiment \#1 and experiment \#2 refer to two independent assays.

Figure S2. Effect of NETs on HER2+ breast cancer cells. HCC 1954 cells were treated with NETs (500 $\mathrm{ng} / \mathrm{mL}$) for 16 h (gene expression analyzes) or 24 h (western blot). (a) Gene expression of MMP9 and E-cadherin (CDH1) was evaluated by quantitative RT-PCR using the $\triangle \Delta C T$ method. GAPDH was used as the reference gene. Columns represent means \pm SD of three independent experiments. denotes $p<0.01$ (unpaired t-test). (b) Protein levels of E-cadherin and β-actin (loading control) were evaluated by western blotting.

Figure S3. Quantitative analysis of immunocytochemistry assays for EMT markers in NETs-treated MCF7 cells. Quantification of the immunostaining shown in the Figures 2c-f was performed using the ImageJ software. The unpaired t-test was applied as a statistical method. ${ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Figure S4. The pro-tumoral effects of NETs are independent of DNA integrity. (a) The digestion of NETs was evaluated by agarose gel electrophoresis. NETs, prepared from two distinct healthy donors, were incubated with 5 U DNase I (Pulmozyme ${ }^{\circledR}$, Roche, Basel, Switzerland), at $37^{\circ} \mathrm{C}$, for the indicated times. (b) Tumor cell migration was evaluated employing the Boyden chamber assay. MCF7 cells that were cultured for 16 h in the absence or the presence of either full or digested (5 U DNase I, $30 \mathrm{~min}, 37^{\circ} \mathrm{C}$) NETs ($500 \mathrm{ng} / \mathrm{mL}$) were seeded in the upper chamber (5×10^{4} cells/well) and further allowed to migrate for 20 h . As chemoattractant, medium supplemented with FBS (2% or 10%) was used in lower chambers. Data are presented as mean \pm SD from three independent experiments. Statistical analysis of each condition was evaluated by unpaired t-test. * $p<0.05, n . s$., no significance. (c,d) MCF7 cells were treated for 16 h with either full or digested NETs ($500 \mathrm{ng} / \mathrm{mL}$). Gene expression of IL-8 (CXCL8) and MMP9 was evaluated by quantitative RT-PCR using the $\triangle \triangle$ CT method. GAPDH was used as the reference gene. Columns represent means \pm SD of three independent experiments. Statistical analysis was performed using one-way ANOVA and Tukey post-test. * $p<0.05,{ }^{* *} p<0.01$, n.s., no significance.

Table S1. qRT-PCR primer sequences.

Primer	Forward primers ($5^{\prime}-3^{\prime}$)	Reverse primers (5'-3')	Size bp
GAPDH	5'- TGCACCACCAACTGCTTAGG -3'	5'- GGCATGGACTGTGGTCATGAG -3'	87
CXCR1	5'- CGTCTGTCAATGTCTCTTCCAACC -3'	5'- GATAGTGCCTGTCCAGAGCCAG -3'	127
IL1B	5'- GGACAGGATATGGAGCAACAA -3'	5'- TCTTTCAACACGCAGGACAG -3'	128
IL6	5'- TACCCCAGGAGAAGATTCC - 3'	5'- TTTTCTGCCAGTGCCTCTTT -3'	174
CXCL8	5'- CTGGACCCCAAGGAAAACTG -3'	5'- GAATTCTCAGCCCTCTTCAAAAAC - $\mathbf{}^{\prime}$	65
MMP2	5'- AGCTCCCGGAAAGAGTTGATG -3'	5'- CAGGGTGCTGGCTGAGTAGAT -3'	101
MMP9	5'- GCAATGCTGATGGGAAACCC -3'	5'- AGAAGCCGAAGAGCTTGTCC -3'	144
TWIST1	5'- CCGGAGACCTAGATGTCATT -3'	5'- CACGCCCTGTTTCTTTGAA -3'	148
SNAI1	5'- TCG GAA GCC TAA CTA CAG CGA-3'	5'- AGA TGA GCA TTG GCA GCG AG -3'	140
SNAI2	$5^{\prime}-$ AAG CAT TTC AAC GCC TCC AAA -3'	5'- GGA TCT CTG GTT GTG GTA TGA CA -3'	118
ZEB1	5'- TGGAATGTATGCTTGTGATTTGTG -3'	5'- GAATAAGACCCAGAGTGTGAGAAG -3'	225
ZEB2	5'- CCC TTC TGC GAC ATA AAT ACG A -3'	5'-TGT GAT TCA TGT GCT GCG AGT -3'	192
CD24	5'- CCCACGCAGATTTATTCCAG -3'	5'- GACTTCCAGACGCCATTTG -3'	255
CD44	5'- GGAGCAGCACTTCAGGAGGTTAC -3'	5'- GGAATGTGTCTTGGTCTCTGGTAGC -3'	129
PTGS2	5'- TGGTGCCTGGTCTGATGATG -3'	5'- GCCTGCTTGTCTGGAACAAC -3'	120

