

Article



## Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithelial-Mesenchymal Transition

Karina Martins-Cardoso, Vitor H. Almeida, Kayo M. Bagri, Maria Isabel Doria Rossi, Claudia S. Mermelstein, Sandra König and Robson Q. Monteiro

**Supplementary Materials** 







**Figure S1.** Uncropped blots for analysis of EMT markers. MCF7 cells were starved and treated with NETs for 3 to 24 hours. MDA-MB-231 cells (MDA) were used as a mesenchymal cell model. The figure shows the uncropped blots revealed with antibodies against (**a**) E-cadherin, (**b**) fibronectin, (**c**) vimentin, or (**d**)  $\beta$ -actin, which was used as the loading control. Also, (**e**) E-cadherin levels were analyzed in HCC 1954 cells treated with NETs, using  $\beta$ -actin as a loading control. Densitometric analysis was performed with the ImageJ software (NIH, USA). Fold difference was calculated in relation to untreated MCF7 cell line (**a**,**b**), MDA-MB-231 cells (**c**), or untreated HCC 1954 cells (**e**) depicted at the bottom of each blot. Molecular weight was determined using the Novex<sup>TM</sup> Sharp Prestained Protein Standard (#LC5800, ThermoFisher Scientific). Experiment #1 and experiment #2 refer to two independent assays.



**Figure S2.** Effect of NETs on HER2+ breast cancer cells. HCC 1954 cells were treated with NETs (500 ng/mL) for 16 h (gene expression analyzes) or 24h (western blot). (**a**) Gene expression of *MMP9* and E-cadherin (*CDH1*) was evaluated by quantitative RT-PCR using the  $\Delta\Delta$ CT method. *GAPDH* was used as the reference gene. Columns represent means ± SD of three independent experiments. \*\* denotes *p* < 0.01 (unpaired *t*-test). (**b**) Protein levels of E-cadherin and  $\beta$ -actin (loading control) were evaluated by western blotting.



**Figure S3.** Quantitative analysis of immunocytochemistry assays for EMT markers in NETs-treated MCF7 cells. Quantification of the immunostaining shown in the Figures 2c–f was performed using the ImageJ software. The unpaired *t*-test was applied as a statistical method. \*\* p < 0.01, \*\*\* p < 0.001.



**Figure S4.** The pro-tumoral effects of NETs are independent of DNA integrity. (**a**) The digestion of NETs was evaluated by agarose gel electrophoresis. NETs, prepared from two distinct healthy donors, were incubated with 5 U DNase I (Pulmozyme®, Roche, Basel, Switzerland), at 37 °C, for the indicated times. (**b**) Tumor cell migration was evaluated employing the Boyden chamber assay. MCF7 cells that were cultured for 16 h in the absence or the presence of either full or digested (5 U DNase I, 30 min, 37 °C) NETs (500 ng/mL) were seeded in the upper chamber (5 × 10<sup>4</sup> cells/well) and further allowed to migrate for 20 h. As chemoattractant, medium supplemented with FBS (2% or 10%) was used in lower chambers. Data are presented as mean ± SD from three independent experiments. Statistical analysis of each condition was evaluated by unpaired *t*-test. \* *p* < 0.05, *n.s.*, no significance. (**c**,**d**) MCF7 cells were treated for 16 h with either full or digested NETs (500 ng/mL). Gene expression of IL-8 (*CXCL8*) and *MMP9* was evaluated by quantitative RT-PCR using the  $\Delta\Delta$ CT method. *GAPDH* was used as the reference gene. Columns represent means ± SD of three independent experiments. Statistical analysis was performed using one-way ANOVA and Tukey post-test. \* *p* < 0.05, *\*\* p* < 0.01, *n.s.*, no significance.

| Table S1. qRT-PCR primer sequences. |
|-------------------------------------|
|-------------------------------------|

| Primer | Forward primers (5'–3')               | Reverse primers (5'–3')                | Size bp |
|--------|---------------------------------------|----------------------------------------|---------|
| GAPDH  | 5'- TGCACCACCAACTGCTTAGG -3'          | 5'- GGCATGGACTGTGGTCATGAG -3'          | 87      |
| CXCR1  | 5'- CGTCTGTCAATGTCTCTTCCAACC -3'      | 5'- GATAGTGCCTGTCCAGAGCCAG -3'         | 127     |
| IL1B   | 5'- GGACAGGATATGGAGCAACAA -3'         | 5'- TCTTTCAACACGCAGGACAG -3'           | 128     |
| IL6    | 5'- TACCCCAGGAGAAGATTCC - 3'          | 5'- TTTTCTGCCAGTGCCTCTTT -3'           | 174     |
| CXCL8  | 5'- CTGGACCCCAAGGAAAACTG -3'          | 5'- GAATTCTCAGCCCTCTTCAAAAAC -3'       | 65      |
| MMP2   | 5'- AGCTCCCGGAAAGAGTTGATG -3'         | 5'- CAGGGTGCTGGCTGAGTAGAT -3'          | 101     |
| MMP9   | 5'- GCAATGCTGATGGGAAACCC -3'          | 5'- AGAAGCCGAAGAGCTTGTCC -3'           | 144     |
| TWIST1 | 5'- CCGGAGACCTAGATGTCATT -3'          | 5'- CACGCCCTGTTTCTTTGAA -3'            | 148     |
| SNAI1  | 5'- TCG GAA GCC TAA CTA CAG CGA-3'    | 5'- AGA TGA GCA TTG GCA GCG AG -3'     | 140     |
| SNAI2  | 5'- AAG CAT TTC AAC GCC TCC AAA -3'   | 5'- GGA TCT CTG GTT GTG GTA TGA CA -3' | 118     |
| ZEB1   | 5'- TGGAATGTATGCTTGTGATTTGTG -3'      | 5'- GAATAAGACCCAGAGTGTGAGAAG -3'       | 225     |
| ZEB2   | 5'- CCC TTC TGC GAC ATA AAT ACG A -3' | 5'-TGT GAT TCA TGT GCT GCG AGT -3'     | 192     |
| CD24   | 5'- CCCACGCAGATTTATTCCAG -3'          | 5'- GACTTCCAGACGCCATTTG -3'            | 255     |
| CD44   | 5'- GGAGCAGCACTTCAGGAGGTTAC -3'       | 5'- GGAATGTGTCTTGGTCTCTGGTAGC -3'      | 129     |
| PTGS2  | 5'- TGGTGCCTGGTCTGATGATG -3'          | 5'- GCCTGCTTGTCTGGAACAAC -3'           | 120     |