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Abstract: Background: Diabetes is a risk factor associated with pancreatic ductal adenocarcinoma
(PDAC), and new adult-onset diabetes can be an early sign of pancreatic malignancy. Development of
blood-based biomarkers to identify diabetic patients who warrant imaging tests for cancer detection
may represent a realistic approach to facilitate earlier diagnosis of PDAC in a risk population. Methods:
A spectral library-based proteomic platform was applied to interrogate biomarker candidates in
plasma samples from clinically well-defined diabetic cohorts with and without PDAC. Random
forest algorithm was used for prediction model building and receiver operating characteristic
(ROC) curve analysis was applied to evaluate the prediction probability of potential biomarker
panels. Results: Several biomarker panels were cross-validated in the context of detection of
PDAC within a diabetic background. In combination with carbohydrate antigen 19-9 (CA19-9),
the panel, which consisted of apolipoprotein A-IV (APOA4), monocyte differentiation antigen CD14
(CD14), tetranectin (CLEC3B), gelsolin (GSN), histidine-rich glycoprotein (HRG), inter-alpha-trypsin
inhibitor heavy chain H3 (ITIH3), plasma kallikrein (KLKB1), leucine-rich alpha-2-glycoprotein
(LRG1), pigment epithelium-derived factor (SERPINF1), plasma protease C1 inhibitor (SERPING1),
and metalloproteinase inhibitor 1 (TIMP1), demonstrated an area under curve (AUC) of 0.85 and
a two-fold increase in detection accuracy compared to CA19-9 alone. The study further evaluated
the correlations of protein candidates and their influences on the performance of biomarker panels.
Conclusions: Proteomics-based multiplex biomarker panels improved the detection accuracy for
diagnosis of early stage PDAC in diabetic patients.

Keywords: proteomics; pancreatic cancer; pancreatic ductal adenocarcinoma; diabetes; mass spectrometry;
plasma; biomarker
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that represents the majority
of pancreatic cancer cases. Most patients diagnosed with PDAC die within six months. For all stages
combined, PDAC has the lowest five-year relative survival rate (9%) compared to other cancer types [1].
The high mortality of this disease is predominantly due to the advanced stage of the disease at the time
of diagnosis and the rapid development of chemoresistance during treatment. Early detection of PDAC
may markedly improve the survival rate [1,2]. When PDAC is detected at early stages as localized
disease, the five-year survival rate could be improved to 22% [3]. If the tumor is surgically removed
when at a size smaller than 2 cm and with no lymph node involvement (stage 1A), the five-year
survival rate could be further improved to 40% [4]. Therefore, detection of PDAC at early stages
could represent an effective strategy to improve the survival rate of PDAC patients. Unfortunately,
while CA19-9, the current clinical biomarker for PDAC, is widely used for monitoring clinical course
of PDAC treatment, it has a limited accuracy for detecting early stage disease. Efforts have been
made to develop blood-based biomarkers to assist early detection of PDAC [5-17]. Due to the low
prevalence of pancreatic cancer (the age-standardized rate (ASR) incidence was 7.6 per 100,000 people
in North America [18]), whole population screening for early cancer detection is very challenging and
economically unfeasible, requiring a testing method with nearly 100% specificity.

Studies have shown that new-onset diabetes mellitus (DM) can be associated with PDAC and
could be an early sign of pancreatic malignancy. Up to 80% of PDAC patients are either hyperglycemic
or diabetic up to three years prior to the diagnosis of cancer [19,20]. Whether diabetes is a cause or
effect of pancreatic neoplastic change is still controversial [20], yet PDAC risk is >8-fold increase in
diabetics over the age of 65 [19]. This risk increases even further in the adults who have new onset
diabetes for less than three years. By screening higher risk groups, such as new-onset adult diabetes,
and by improving the accuracy of cancer test, the false-positive rate could be improved and the cancer
screening could become cost effective. Thus, development of a blood-based proteomic signature that is
highly specific to PDAC in a new-onset adult diabetic population may represent a realistic avenue for
early detection of PDAC in this risk group.

In this study, we applied a spectral library-based mass spectrometric platform to investigate
the systemic proteome alterations in the plasma from diabetic patients with PDAC in comparison to
diabetic patients who were cancer-free. We sought to establish multiplex biomarker panels to facilitate
the detection of early-stage PDAC among diabetic patients for future biomarker development.

2. Results

2.1. Analytical Platform

A spectral library-based platform described previously was implemented for the plasma analysis
in the current study [21], as illustrated in Figure 1A. To enhance the analytical sensitivity for proteins of
low abundance, all plasma samples were depleted to remove the 12 most abundant proteins, including
albumin, Immunoglobulin G (IgG), transferrin, fibrinogen, «1-antitrypsin, Immunoglobulin A (IgA),
Immunoglobulin M (IgM), «2-macroglobulin, haptoglobin, apolipoproteins A-I and apolipoproteins
A-Il, and «1-acid glycoprotein. To prevent potential cross-contaminations between the clinical samples,
individual spin columns were used for the plasma depletion. After the removal of the 12 most abundant
proteins, the samples were processed and subjected to LC MS/MS analysis. For each analysis, about
17,000 MS/MS spectra were typically acquired and searched for the identification of peptides and
proteins. A representative three-dimensional peptide map of a depleted plasma sample is demonstrated
in Figure 1B. While the blue dots represent the precursors being acquired, the red dots indicate the
peptides being fragmented for tandem analysis. Using Skyline software [22], a composite spectral
library was constructed, which included all the peptides and proteins identified in the cohort samples
with stringent criteria, and was used for peptide and protein identification in the analysis using spectral
matching. This spectral library-based approach largely overcame the intrinsic caveat of data-dependent
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acquisition (DDA) in intermittent data acquisition, and significantly improved the data-missing issue
associated with large cohort analysis using DDA-based labor-free approach. Figure 1C exemplifies the
identification and quantification of a peptide using the spectral library-based platform. Each peptide
was identified through spectral library by matching its fragmentation pattern and quantified using its
elution profile.

A replicate experiment was carried out to assess the robustness of the platform for quantitative
analysis. As shown in Figure S1, peptides with higher intensity (more abundant or/and sensitive to MS
analysis) tended to have more reliable identification (small mass deviation) and quantification (smaller
CV of the replicate runs). More than 85% of the peptides identified had a mass deviation < 5 ppm from
the theoretical values and 65% of them had a coefficient of variation (CV) < 25% in the six-replicate
analysis. For the peptides that were consistently identified across all replicate samples witha CV < 25%,
their intensities were well correlated between the replicates with an average R-squared (R?) = 0.98
(Figure S2).
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Figure 1. Illustration of a spectral library-based platform. (A) The analytical flow, (B) a peptide 3D
map of a clinical plasma sample after depletion of the 12 most abundant proteins, (C) an illustration of
a peptide identification and quantification using a spectral library-based approach.

2.2. Plasma Protein Candidates Associated with Early-Stage PDAC in Pilot Cohort

A pilot cohort, consisting of plasma samples from 10 diabetic patients with early-stage (stages 1
and 2) PDAC (PDAC-DM) and 10 diabetic controls (DM) (Table S1), were analyzed with over 1800
plasma proteins being interrogated. Eleven protein candidates were selected for further evaluation
based on their differences in abundance between PDAC-DM versus DM groups, as well as their
plasma concentration (Table S2). These proteins include apolipoprotein A-IV (APOA4), monocyte
differentiation antigen CD14 (CD14), tetranectin (CLEC3B), gelsolin (GSN), histidine-rich glycoprotein
(HRG), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), plasma kallikrein (KLKB1), leucine-rich
alpha-2-glycoprotein (LRG1), pigment epithelium-derived factor (SERPINF1), plasma protease C1
inhibitor (SERPING1), and metalloproteinase inhibitor 1 (TIMP1).

The measurements of these proteins in the pilot cohort are illustrated in Figure 2. None of these
proteins showed a significant correlation of their plasma levels with the patients’ age, gender, or duration
of DM. Protein network analysis indicated that these proteins were interconnected with known PDAC
pathways and oncogenes, including KRAS (GTPase KRas), SMAD4 (Mothers against decapentaplegic
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homolog 4), CDKN2A (Cyclin-dependent kinase inhibitor 2A), MYC (Myc proto-oncogene protein),
TP53 (Cellular tumor antigen p53), TNF (Tumor necrosis factor), TGFB1 (Transforming growth factor
beta-1 proprotein) and EGF (epidermal growth factor) (Figure S3). It is noteworthy that despite the
relatively low blood concentration of TIMP1 (at low ng/mL level), this protein was included for further
testing in this study, as its blood concentration has been previously associated with PDAC in multiple
studies [8,12,13,23].
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Figure 2. Measurements of the 11 protein candidates in the plasma samples of the pilot cohort, which
includes 10 PDAC-DM (left) and 10 DM (right); * p < 0.05.

2.3. Analysis of the Selected Plasma Proteins in Testing Cohort

The selected protein candidates were tested in a clinical plasma cohort (N = 99), including 50
PDAC patients with stage 1 or 2 disease and 49 controls who were cancer-free (25 chronic pancreatitis
(CP) patients and 24 subjects with no pancreatic disease) (Table 1). Each protein candidate was detected
and quantified with at least three unique peptides derived from the corresponding proteins. As an
example, for the detection of APOAA4, the intensities of seven quantifiable peptides from APOA4
eluted at different retention times were measured and used for APOA4 quantification (Figure 3A).
The peptides were identified using spectral library matching and quantified based on their elution
profile (Figure 3B). Across the 99 samples analyzed, the measurements of these seven peptides showed
a tight correlation with APOAA4 at protein level (Figure 3C).
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Table 1. Summary of sample sets.

Pilot Cohort  Testing Cohort

Intensity (10%6) Intenslty (10%9)

Peptides (IPM)

Total samples 20 99
PDAC 10 50
Ia 3
Ib 1 1
ITa 11
St
age b 9 35
III 0
VI 0
Control 10 49
Normal Imaging 11
Chronic pancreatitis 25
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Normal pancreas 8
Other benign conditions 2
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Diabetes No 0 0
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Figure 3. Identification and quantification of APOA4 using quantitative peptides. (A) Seven
quantifiable peptides eluted at different retention times were selected for APOA4 quantification.
The blue arrow indicates the detection of peptide SELTQQLNALFQDXK, (B) peptide identification and
quantification using SELTQQLNALFQDK as an example, (C) correlations of APOA4 measurement
with the corresponding peptides.

The measurements of these proteins in the plasma samples from the testing cohort are shown in
Figure 4. Using receiver operating characteristic (ROC) curve analysis, the predictive performance
of individual markers in distinguishing PDAC-DM from CP-DM + DM was illustrated by the area
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under curve (AUC) values listed in Table 2. To prevent overfitting and obtain an accurate assessment,
we evaluated the prediction capacity of marker using a leave-one-out (LOO) cross-validation approach.
The LOO-AUC values for these candidates as an individual biomarker ranged from 0.44 to 0.75 in
separating PDAC from the control groups. As a benchmark for comparison, CA19-9 was measured in
the testing cohort and had a LOO-AUC value of 0.66 in distinguishing PDAC from the control groups.
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Figure 4. Measurements of the 11 protein candidates in the plasma samples of the testing cohort, which
included 50 PDAC-DM and 49 DM controls; * p < 0.05.

Table 2. AUC of protein candidates in the testing cohort.

Gene Protein Name Fitting AUC* LOO AUC **
APOA4 Apolipoprotein A-IV 0.72 0.69
CD14 Monocyte differentiation antigen CD14 0.60 0.44
CLEC3B Tetranectin 0.72 0.71
GSN Gelsolin 0.77 0.75
HRG Histidine-rich glycoprotein 0.68 0.66
ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3 0.69 0.66
KLKB1 Plasma kallikrein 0.69 0.67
LRG1 Leucine-rich alpha-2-glycoprotein 0.63 0.59
SERPINF1 Pigment epithelium-derived factor 0.73 0.71
SERPING1 Plasma protease C1 inhibitor 0.62 0.59
TIMP1 metalloproteinase inhibitor 1 0.60 0.56
CA19.9 0.77 0.66

* Fitting AUC—AUC obtained from training data; ** LOO AUC—Leave-One-Out AUC.

Further analysis of the plasma data indicated the correlation of plasma concentration of some
proteins, as illustrated in Figure 5. Using a p-value < 0.0001 (corresponding to a Spearman
r > 0.40 for positive correlation or Spearman r < -0.40 for negative correlation) as a cutoff
for significance, the protein candidates showing positive correlation include APOA4-CLEC3B,
APOA4-GSN, APOA4-KLKB1, APOA4-SERPINF1, CD14-ITIH3, GSN-CLEC3B, CLEC3B-KLKB1,
GSN-HRG, GSN-KLKB1, GSN-SERPINF1, and HRG-KLKB1 and the proteins showing negative
correlation include CLEC3B-ITIH3, CLEC3B-LRG1, HRG-TIMP1, and KLKB1-TIMP1. The pairs of

GSN-CLEC3B (r: 0.83), APOA4-GSN (r: 0.54), and APOA4-SERPINF1 (r: 0.54) showed the most
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significant positive correlation, while CLEC3B-ITIH3 (r: —0.48) showed the most significant negative
correlation among the candidates (Figure 5).
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Figure 5. Plasma concentration correlations between the 11 protein candidates. Red indicates a positive
correlation and blue indicates a negative correlation.

2.4. Evaluation of Multiplexed Panels

To cross-validate the predictive probability of several potential biomarker panels, a supervised
learning algorithm, random forest, combined with LOO approach was applied. Using CA19-9
alone, the LOO-AUC value for discriminating PDAC-DM from the controls was 0.66 (95%
confidence interval (CI): 0.54-0.78). For the full panel consisting of all 11 protein candidates
(APOA4+CD14+CLEC3B+GSN+HRG+ITTH3+KLKB1+LRG1+SERPING1+SERPINF1+TIMP1), without
and with the combination of CA19-9, the LOO-AUC values were 0.81 (95% CI: 0.73-0.90) and 0.85 (95%
CL: 0.77-0.93), respectively (Figure 6A). Using the top four candidates with the best AUC values
(APOA4+CLEC3B+GSN+SERPINF1) (Top 4 panel), the LOO-AUC values, without and with the
combination of CA19-9, were 0.79 (95% CI: 0.70-0.88) and 0.83 (95% CI: 0.74-0.91), respectively (Figure 6B).
In addition, based on the protein correlations indicated in Figure 5, the candidates were divided into
two panels for evaluation, a Correlation panel and a Non-correlation panel. For the Correlation panel
(APOA4+CLEC3B+GSN+HRG+KLKB1+SERPINF1), which included the protein candidates with a
Spearman r > 0.4 (p-value < 0.0001), the LOO-AUC values, without and with the combination of CA19-9,
were 0.77 (95% CI: 0.68-0.86) and 0.83 (95% CI: 0.75-0.92), respectively (Figure 6C). For the Non-correlation
panel (APOA4+ITIH3+LRG1+SERPING1+TIMP1), which included candidates with a Spearman r < —-0.4
(p-value < 0.0001), the LOO-AUC values, without and with the combination of CA19-9, were 0.69 (95% CIL:
0.59-0.80) and 0.81 (95% CI: 0.72-0.90), respectively (Figure 6D). CD14 was not included in either panel,
because it strongly correlated with ITIH3 (p < 0.0001) and SERPINGI (p = 0.0002), and addition of CD14
to either panel showed little influence on panel performance. The performances of the panels based on
the LOO-ROC analyses are summarized in Table 3. Overall, the full panel in combination of CA19-9
outperformed other panels with a LOO-AUC of 0.85.
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Figure 6. ROC analysis for the testing cohort using random forest combined with LOO approach. (A) Full panel, (B) Top-4 panel, (C) Correlation panel,

(D) Non-correlation panel.

Table 3. Summary of LOO-ROC analysis on biomarker panels.

Full Panel Top 4 with Highest LOO AUC Correlation Panel Non-Correlation Panel CA19-9
APOA4+CD14+CLEC3B+GSN+
Panel HRG+TIH3+KLKBI+LRG1+  APOA4+CLEC3B+GSN+SERPINF1 APOA;&%?SSEI:;?\II\SHRG* Aggﬁ;&gﬂ%ﬁﬁ“ CA19-9
SERPINGI1+SERPINF1+TIMP1
w/o CA19-9 w CA19-9 w/o CA19-9 w CA19-9 w/o CA19-9 w CA19-9 w/o CA19-9 w CA19-9 CA19-9
ng /AC%C 0.81(0.73-090)  0.85(0.77-0.93)  0.79 (0.70-0.88)  0.83 (0.74-0.91)  0.77 (0.68-0.86)  0.83 (0.75-0.92)  0.69 (0.59-0.80)  0.81 (0.72-0.90)  0.66 (0.54-0.78)
Sensitivity—
True positive 0.76 0.80 0.78 0.80 0.74 0.82 0.66 0.82 0.94
rate (TPR)
Specificity—
True negative 0.70 0.80 0.68 0.74 0.68 0.76 0.64 0.72 0.40

rate (TNR)
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2.5. Tumor Tissue RNA Expression of the Candidates in the Cancer Genome Atlas (TCGA) Database

Using the TCGA RNA sequencing dataset available from v19.1 ProteinAtlas.org [24], the RNA
expression of the 11 candidates in PDAC tissues were evaluated, and six of them, which were
significantly linked to tumor stages and/or patient survival time, are illustrated in Figure S4. CLEC3B,
KLKB1, and LRG1 displayed significant difference at RNA level among the tumor stages and patient
survival time. While higher expression of CLEC3B and KLKB1 was associated with stage 1 and longer
survival time, higher expression of LRG1 was found in stage 2 and associated with shorter survival
time. Higher expression of APOA4 and SERPINGI1 at RNA level was significantly linked to less
favorable patient survival time. ITIH3 was found with significantly higher expression in patients with
late-stage diseases.

3. Discussion

Using a spectral library-based proteomic platform, we tested 11 protein candidates for their value
in distinguishing PDAC-DM from the controls (CP-DM and DM). The panels constructed from these
candidate proteins showed significant discrimination in the comparison of PDAC group and control
groups, and many of the candidates have previously been implicated in PDAC or other cancers. Protein
network analysis indicated that these proteins were interconnected with known PDAC pathways
and oncogenes, underscoring the potential biological significances linked to their systemic changes
in PDAC.

Among the protein candidates, APOA4, CLEC3B, GSN, and SERPINF1 could separate PDAC
cases from controls with a LOO-AUC > 0.7 as individual biomarkers. APOA4 is a major component of
high-density lipoproteins and chylomicrons. Previous studies reported the association of aberrant
APOA4 expression with colorectal cancer development in diabetic patients [25] and a reduced plasma
abundance in colorectal cancer patients [26]. In our current study, the plasma level of APOA4 was
significantly reduced in the PDAC-DM cases compared to the controls (CP-DM and DM). APOA4 is
primarily expressed in the small intestine and secreted into the blood. The average RNA expression
in normal pancreas tissue is almost zero according to Human Protein Atlas. TCGA data suggested
that APOA4 RNA expression was not significantly different among disease stages of pancreatic
cancer; however, higher APOAA4 level in tumor tissue appeared to have a less favorable outcome in
patient survival.

CLEC3B encodes a tetranectin protein that is designated to the extracellular region, where it binds
to plasminogen, and could be involved in tissue remodeling for tumor invasion and inflammation.
Aberrant expression of CLEC3B has been reported in multiple cancers, including hepatocellular
carcinoma, ovarian cancer, oral squamous cell carcinoma, and lung cancer [27-29]. In this study, the
plasma level of CLEC3B was significantly reduced in the PDAC-DM cases compared to the controls
(CP-DM and DM). The reduced plasma level of CLEC3B from PDAC cases was in agreement with its
tissue RNA level in TCGA database. Lower tissue RNA level of CLEC3B was associated with later
stages of pancreatic cancer and less favorable outcome of cancer survival.

GSN is a calcium-dependent, actin-binding protein with two major isoforms, cytoplasmic and
plasma. The cytoplasmic GSN is involved in regulating the assembly and degradation of intracellular
actin filaments [30]. A previous study suggested that cytoplasmic GSN could regulate insulin secretion
through remodeling the actin cytoskeleton in pancreatic 3-cells [31]. On the other hand, plasma GSN
is thought to be involved in the clearance of F-actin released into the circulation system by tissue
or cell injury [32]. Aberrant plasma GSN is associated with various pathological conditions such as
inflammation, trauma, and response to bacterial toxin. In diabetes, plasma GSN values were shown to
decrease by about half in the blood of type II diabetic humans and mice models [33]. In cancer, several
studies reported abnormal level of plasma GSN in multiple solid tumors [34]. Our data indicated
a strong correlation of plasma GSN and CLEC3B in plasma concentration of patients with diabetes
(Figure 5). The multi-functional role of GSN and its systemic changes implicated in diabetes and PDAC
warrant further investigation.
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Pigment epithelium-derived factor (PEDF), a serpin that has diverse biological functions, is encoded
by SERPINF1. SERPINF]1 plays critical roles in many physiological and pathophysiological processes,
including neuroprotection, angiogenesis, fibrogenesis, and inflammation [35]. SERPINF1 regulates
pancreatic vasculature development, and its deficiency causes atypical hyperplastic phenotypes in the
pancreas [36]. While elevated levels of SERPINF1 have been reported in patients with diabetes and
associated microvascular complications [37], a study showed that SERPINF1 was a critical negative
regulator of tumor invasion in the pancreas [36]. Our data suggested that, compared to diabetic
controls, the plasma level of SERPINF1 was decreased in PDAC. How the reduced plasma level of
SERPINF1 contributes to the PDAC development under diabetic conditions remains to be elucidated.

Four panels generated from the 11 proteins were evaluated in the current study, including the
Full panel, Top-4 panel, Correlation, and Non-correlation panels, using random forest with LOO
cross-validation approach. All four panels demonstrated better performance than CA19-19 alone
and showed complementary behavior with CA19-9 in distinguishing PDAC-DM from the controls.
The inclusion of CA19-9 improved the performance of each panel. We also asked if the correlation of
protein candidates affected biomarker panel performance. Our data suggested that aggregation of
either correlated or non-correlated proteins in a biomarker panel did not significantly improve the
panel performance. In the context of clinical applications, the desired sensitivity and specificity of a
test is primarily determined by the prevalence of the disease. If we assume the prevalence of PDAC
in adult new-onset diabetic patients is approximately ~1% [38,39], the detection accuracy of CA19-9
alone is estimated to be only 40%. With the combination of the Full panel, the detection accuracy
could be improved to 80% in distinguishing PDAC patients with early-stage diseases from controls,
reaching a positive predictive value (PPV) of 4%. This opens the opportunity for further development
of biomarkers to assist clinical workout to rule in diabetic patients for imaging tests, such as endoscopic
ultrasound (EUS), Magnetic Resonance Imaging (MRI), or computed tomography (CT). It is notable
that one of the unique advantages of spectral library-based platform is its enormous multiplexing
capacity, which affords detection of multiple proteins simultaneously with high specificity and is
highly robust for biomarker panel detection using quantifiable peptides. In this study, our platform
could measure more than 200 plasma proteins in a single analysis with accurate quantification in an
automatic, high-throughput fashion.

4. Materials and Methods

4.1. Patients and Plasma Samples

The study was approved by the Institutional Review Boards at the University of Washington (6276,
approved on 11 June 2019), University of Pittsburgh (MOD19070256, approved on 21 October 2019),
and Mayo Clinic (356-06, approved on 25 January 2012, 354-06, approved on 8 November 2019).
All subjects from the 2 pilot cohorts gave their informed consent for inclusion before they participated
in the studies. The pilot cohort was from Mayo Clinic and included 10 diabetic patients with PDAC and
10 diabetic patients who were cancer-free. The demographic information of these patients is provided in
Table S1. The testing cohort from University of Pittsburgh (Pittsburgh cohort) included 50 PDAC patients
with early-stage disease (3-1A, 1-1B, 11-2A, 35-2B), 25 chronic pancreatitis patients, and 24 controls
with no pancreatic diseases (Table 1). All these patients have diabetes. The PDAC patients were
staged according to histology, imaging, and clinical assessment. The blood samples were drawn into
purple-top tubes (Becton Dickinson, Franklin Lakes, NJ, USA), with EDTA (ethylenediaminetetraacetic
acid) as an anticoagulant, and then centrifuged at 1200 rpm for 20 min within four hours of collection.
The aliquoted plasma was stored at —80 °C until analysis.

4.2. Sample Preparation for Proteomic Analysis

Equal volumes (6 pL) of plasma from each patient was depleted to remove the top 12 abundant
proteins using depletion spin columns (ThermoFisher Scientific, Waltham, MA, USA). The proteins
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were deglycosylated with PNGase F (New England Biolabs, Ipswich, MA, USA), reduced with 10 mM
dithiothreitol at 50 °C for 1 h and alkylated with 25 mM iodoacetimide at room temperature in
the dark for 30 min. After buffer exchange (Vivaspin® 500 filter), the samples were digested with
sequencing-grade modified trypsin at 1:30 ratio (weight:weight) at 37 °C for 18 h. The samples were
dried down and re-suspended in 50 uL 0.1% formic acid for MS analysis.

4.3. LC-MS/MS Analysis

The samples were blinded and analyzed in a random order. The LC MS/MS system included a Q
Exactive™ Plus mass spectrometer (ThermoFisher Scientific) coupled with a nanoACQUITY HPLC
(Waters, Milford, MA, USA). The peptides were first loaded onto a trapping column (100 pm X 3 cm)
then separated with an analytical column (75 um X 30 cm). The trapping column and the analytical
column were packed with ProntoSIL 120 A-5 um-C18 AQ beads (Mac-Mod, Chadds Ford, PA, USA).
The analytical column was house-made with a tip pulled with a Laser Fiber Puller P-2000 (Sutter
Instruments, Novato, CA, USA) at the end of the column. The sample was loaded onto the trapping
column with 98% Buffer A (0.1% formic acid in water)/2% Buffer B (0.1% formic acid in acetonitrile)
at a flow rate of 2 ul/min for 10 min, and separated by a linear gradient from 5 to 30% B for 90 min,
followed by flushing with 80% B for 10 min and equilibration with 2% B for 20 min. The LC gradient
lasted 120 min with a flow rate of 0.3 pL/min. Electrospray ionization was operated in a positive mode
at a voltage of 2.1 kV. Data-dependent acquisition (DDA) was performed on a Q Exactive™ Plus mass
spectrometer. The survey scan was done with 70,000 resolution at 200 m/z from 400 to 1200 m/z with
an Automatic Gain Control (AGC) target of 1e6 and max injection time of 100 ms. The precursors were
isolated in the quadrupole within an isolation window of 1.6 m/z. The top 50 monoisotopic masses
with 2 to 4 plus charges were selected with a minimum intensity threshold of 5e4, then fragmented by
higher-energy collisional dissociation (HCD). The DDA cycle time was ~3 s.

4.4. Data Analysis

The MS data were searched against the UniProt human protein database for peptide/protein
identification using the Comet algorithm [40] embedded in the Trans-Proteomic Pipeline [41].
Carbamidomethylation of cysteine was set as fixed modification, and oxidation of methionine and
deamidation of asparagine were set as variable modifications. The peptide assignment was validated
with PeptideProphet [42], and a probability score > 0.9 in correspondence with an FDR (false discovery
rate) of 0.01 was applied to filter the peptides. The Skyline software [22] was used for quantitative
analysis of the DDA data. The composite spectral library was built using all of the DDA data collected
from the samples analyzed in each batch. Quantification was made at MS1 level using the sum of
the first 3 monoisotopic peaks. The abundance of each peptide was normalized to total ion current
(TIC) and presented as ion per million (IPM) using the following formula: Normalized Intensity
(IPM) = Peptide Intensity/TIC x 1,000,000. Protein quantification was achieved by summation of the
normalized intensities of the corresponding peptides.

4.5. CA19-9 Analysis

CA19-9 levels in plasma were measured in a randomized, blinded fashion using a commercial
ELISA kit (DRG International Inc., Springfield, NJ, USA) according to manufacturer’s instructions.
Ten microliters of each sample were incubated along with an assay buffer in 96-well ELISA plates
precoated with murine monoclonal anti-CA19-9 antibody for 90 min at 37 °C. After washing the wells
4 times with wash bulffer, a horseradish peroxidase-conjugated anti-CA19-9 was added and incubated
for 90 min at 37 °C. After washing the wells 4 times with wash buffer, 100 uL of chromogen with
substrate were added and incubated at room temperature in dark for 20 min. The reaction was stopped
by the addition of 100 pL of stop solution and the absorbance at 450 nm was determined using a
Synergy H1 Multi-Mode plate reader (BioTek, Winooski, VT, USA) within 15 min of addition of stop
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solution. Results were mean absorbance of duplicate wells. The subjects with a CA19-9 reading < 37.5
may possibly have included patients who lack the Lewis antigen A.

4.6. Statistical Analysis

In this study, the supervised random forest algorithm was used to build the prediction model.
Random forest is an ensemble learning method by collecting multiple decision trees and aggregating
the results into one final output. To avoid the model overfitting and provide an accurate assessment,
leave-one-out approach was used. Predication capacity of markers was evaluated by the receiver
operating characteristic (ROC) curve and the area-under-curve (AUC) value. All statistical analysis was
conducted in R (version 3.5.3). A p-value < 0.05 was considered as statistical significance. The protein
correlation analysis was computed using nonparametric Spearman correlation with 95% confidence
interval. A two-tail p-value < 0.0001 was considered statistical significance.

5. Conclusions

Diabetes is a risk factor for PDAC. Detection of PDAC among diabetic patients, especially adult
new-onset diabetics, may represent a practical avenue to facilitate early diagnosis of PDAC in this
risk population. This study provided novel empirical data to reveal the systemic proteome alterations
linked to early-stage PDAC within the diabetic background. While the study was not mechanistically
driven, the changes of plasma proteome associated with PDAC-DM may provide useful clues to
elucidate the molecular events and interplays between the two diseases. Furthermore, using a spectral
library-based proteomic approach, a roster of protein candidates was evaluated based on their plasma
level in the context of development of surrogate biomarker panels to assist PDAC diagnosis.
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using TCGA database, Table S1: The demographic information for the pilot cohort, Table S2: Selected protein
candidates in pilot cohort.
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