
 

Cancers 2020, 12, 1248; doi:10.3390/cancers12051248 www.mdpi.com/journal/cancers 

Article 

Multi-Modal PET and MR Imaging in the Hen’s Egg 
Test-Chorioallantoic Membrane (HET-CAM) Model 
for Initial in Vivo Testing of Target-Specific 
Radioligands 

Gordon Winter 1,†,*, Andrea B. F. Koch 1,†, Jessica Löffler 1,2, Mika Lindén 3, Christoph Solbach 1, 

Alireza Abaei 2, Hao Li 2, Gerhard Glatting 4, Ambros J. Beer 1 and Volker Rasche 2,5,* 

1 Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany;  

andrea.koch@uni-ulm.de (A.B.F.K.); jessica.loeffler@uni-ulm.de (J.L.);  

christoph.solbach@uniklinik-ulm.de (C.S.); ambros.beer@uniklinik-ulm.de (A.J.B.) 
2 Core Facility Small Animal Imaging, Ulm University Medical Center, 89081 Ulm, Germany; 

alireza.abaei@uni-ulm.de (A.A.); hao.li@uni-ulm.de (H.L.) 
3 Department of Inorganic Chemistry II, Ulm University, 89081 Ulm, Germany; mika.linden@uni-ulm.de  
4 Department of Nuclear Medicine, Medical Radiation Physics, Ulm University Medical Center,  

89081 Ulm, Germany; gerhard.glatting@uni-ulm.de  
5 Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany 

* Correspondence: Gordon.Winter@uni-ulm.de (G.W.); Volker.Rasche@uni-ulm.de (V.R.);  

Tel.: +49-731-500-61364 (G.W.); +49-731-500-45014 (V.R.) 
† These authors contributed equally to the work. 

Received: 15 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 

Abstract: The validation of novel target-specific radioligands requires animal experiments mostly 

using mice with xenografts. A pre-selection based on a simpler in vivo model would allow to reduce 

the number of animal experiments, in accordance with the 3Rs principles (reduction, replacement, 

refinement). In this respect, the chick embryo or hen’s egg test–chorioallantoic membrane (HET-

CAM) model is of special interest, as it is not considered an animal until day 17. Thus, we evaluated 

the feasibility of quantitative analysis of target-specific radiotracer accumulation in xenografts using 

the HET-CAM model and combined positron emission tomography (PET) and magnetic resonance 

imaging (MRI). For proof-of-principle we used established prostate-specific membrane antigen 

(PSMA)-positive and PSMA-negative prostate cancer xenografts and the clinically widely used 

PSMA-specific PET-tracer [68Ga]Ga-PSMA-11. Tracer accumulation was quantified by PET and 

tumor volumes measured with MRI (n = 42). Moreover, gamma-counter analysis of radiotracer 

accumulation was done ex-vivo. A three- to five-fold higher ligand accumulation in the PSMA-

positive tumors compared to the PSMA-negative tumors was demonstrated. This proof-of-principle 

study shows the general feasibility of the HET-CAM xenograft model for target-specific imaging 

with PET and MRI. The ultimate value for characterization of novel target-specific radioligands now 

has to be validated in comparison to mouse xenograft experiments. 
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1. Introduction 

The development of target-specific radiolabeled probes like on the basis of small molecules, 

peptides, antibodies, or nanoparticles, always requires information on biodistribution and in 

particular on the level of specific binding of the novel probe to the target in the in vivo situation, 

which means specific radiotracer accumulation in the target-expressing region of interest [1–5]. Up 

to now, animal experiments are necessary to obtain this information mostly using mice with 
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xenografts expressing the specific target and often also target-negative xenografts as controls. 

However, alternative methods to these animal experiments are of high interest regarding animal 

welfare according to the 3Rs principles (reduction, replacement, refinement), and also to potentially 

speed up the development of novel radioligands by simpler and nonetheless effective screening tools. 

In this respect, the hen’s egg test-chorioallantoic membrane (HET-CAM) model is a promising 

alternative for animal experiments, as in many countries, chick embryos are not considered live 

animals before embryo development day (EDD) 17 or hatching. Thus, in contrast to animal studies, 

the HET-CAM model does not rise legal authorization issues if the embryos are sacrificed 

accordingly. Considering the fact that there is some dissent in the available literature concerning the 

point at which the chick embryo starts to feel pain, it is recommended to initiate the experiments as 

early as possible and to use methods with minimal burden [6–14]. The CAM is a well-suited platform 

for conducting experiments because of its textures and function as well as the complex character of 

its vascular system e.g., to study tumor growth and metastasis formations, tissue grafts, drug 

delivery, and toxicological analysis [15–17]. The CAM of fertilized chicken eggs is formed between 

EDD 4-10 of avian development. The mesodermal layers of the chorion and allantois fuse and build 

the CAM that generates a rich vascular network with a gas and waste exchange [18–20]. As a 

relatively simple, quick and inexpensive model, HET-CAM has already been used for studies on, e.g., 

angiogenesis [21], cancer progression [22], pharmacology [23], and radiotherapy [24]. It is also well 

suited for xenograft studies, as the chick embryo is not fully immunocompetent at early development 

stages. T-cells can be detected on embryo development day (EDD) 11 and B cells on EDD12 [25,26]. 

The immune system components further diversify until EDD18 when the embryo is fully 

immunocompetent [27].  

Recently, several studies have been published about tumor imaging in the HET-CAM model, 

focusing on MRI compounds [28] or therapeutic effects after specific and non-specific accumulation 

[29,30], demonstrating the vast potential of these method. Our group has focused on optimization of 

conditions for in ovo imaging, e.g., cooling of the embryo and light fumigation with isoflurane to 

reduce motion artifacts [31–33]. There are also several publications on positron emission tomography 

(PET) imaging in chick embryos [23,34–39], but the models were neither combined with MRI nor 

were they extensively studied for quantitative tracer evaluation. To the best of our knowledge, the 

analysis of target-specific accumulation of radiotracers by combined PET and MR imaging in ovo has 

not yet been described before.  

It was the objective of this proof-of-principle study to evaluate the feasibility of the combination 

of high-resolution MR imaging and highly sensitive PET imaging in ovo in a HET-CAM xenograft 

model system for evaluation of target-specific radiotracer accumulation. As target for our model 

system, we chose the prostate-specific membrane antigen (PSMA or glutamate carboxypeptidase II 

(EC 3.4.17.21)) [40] as it is often overexpressed in human prostate carcinoma (PCa) and thus of special 

clinical relevance). As specific radioligand we chose the clinically widely used PET tracer [68Ga]Ga-

PSMA-11 [41–43]. The well-established PCa tumor cell line LNCaP [44] and its derivative LNCaP C4-

2 [45] are known for high PSMA expression and served as PSMA-positive (PSMA+) xenografts [46–

50]. As negative control for evaluation of target-specificity in the same embryo, we chose the also 

well-established PSMA-negative (PSMA-) PCa cell line PC-3 [51]. 

2. Results 

2.1. Methodological Aspects 

For all chick embryos (n = 66) MR scans were successfully performed with adequate quality for 

further analysis. Detailed information about presence or absence of tumors and thus successful tumor 

growth and the tumor volume could be provided. 

Concerning PET, 42 chick embryos (64%) were available for final analysis and 24 chick embryos 

(36%) had to be excluded from further analysis because of the following reasons: In 14 (21%) cases 

the systemic intravascular injection of [68Ga]Ga-PSMA-11 was not successful and thus there was no 

detectable signal in the embryo in PET imaging (Figure 1). Four more chick embryos had to be 
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excluded despite successful injection, because of extended paravasation of radiotracer adjacent to the 

tumor areas and consecutive spillover of activity which made a meaningful analysis of tracer 

accumulation in the tumors either by PET or gamma-counter measurements impossible. For two 

chick embryos (3%) no data were available because of technical problems. Four further chick embryos 

had to be excluded because of failure of tumor growth of the PSMA-positive cell line.  

 

Figure 1. Examples of failed (a) and successful (b) systemic injection of the radiotracer. The positron 

emission tomography (PET) image (left side) and the respective PET/MR overlay (right side) are 

depicted. In (a), no tracer accumulation in the embryo can be observed (black arrow), while the whole 

tracer activity is pooled outside the system on top of the CAM, (white arrow). Thus, this embryo was 

excluded from further analysis. In (b) regular accumulation of the radiotracer in the body of the 

embryo can be seen (black arrow) without major paravasation. Note also the different intensities of 

radiotracer accumulation in the xenografts (green and red arrows = PSMA pos., PSMA neg). 

Minor paravasation was noted in 5 of the 42 analyzed chick embryos, however they were 

included for evaluation as ex vivo gamma counter measurements after rigorous cleansing of the 

xenografts were still possible despite a potential bias of the in vivo PET data due to spillover. In 5 of 

the 42 analyzed chick embryos, the PSMA-negative PC-3 cell line did not grow successfully and only 

the background activity could be analyzed (termed as “CAM”). 

In summary, 42 chick embryos could be analyzed both by PET and MR: 37 chick embryos with 

both PSMA-positive and PSMA-negative xenografts (34 with LNCaP C4-2 + PC-3, 3 with LNCaP + 

PC-3) and 5 chick embryos with only the PSMA-positive xenograft (LNCaP C4-2 + CAM). The 

complete data are listed in detail in the Table S1. 

2.2. In ovo MR and PET Imaging 

In MRI, the mean tumor volumes of PSMA-positive and PSMA-negative tumors were not 

significantly different (p = 0.06) with LNCaP C4-2 (32.4 ± 7.8 mm³), LNCaP (29.4 ± 0.1 mm³), and PC-

3 (30.0 ± 2.3 mm³).  

In the static PET measurements, the radiotracer accumulation in PSMA-positive tumors was 

significantly higher (mean 1.36 ± 0.68 MBq/cc; median 1.29 MBq/cc) than in the negative control 
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tumors (mean 1.08 ± 0.61 MBq/cc, median = 0.99 MBq/cc; p = 0.04) and compared to the background 

(CAM; mean 0.88 ± 0.44 MBq/cc). 

When analyzing the ratio of tracer accumulation in the PSMA-positive tumors versus PSMA-

negative tumors, the ratio was above 1 in the majority of cases (23/37, 62%) with a mean ratio of (2.1 

± 1.4): [LNCaP C4-2 / PC-3] (2.1 ± 1.4, 1.9), [LNCaP / PC-3] (1.9 ± 0.8, 1.9) (mean ± SD, median).  

We also performed dynamic measurements of radiotracer accumulation over time, however, as 

measurements normally started 10 min after injection, no perfusion peak can be observed in the time–

activity curves and thus quantitative kinetic modelling was not performed (Figure 2). In a qualitative 

analysis of accumulation patterns, a constant activity level was observed for LNCaP C4-2, LNCaP, 

and PC-3 in 19, 2, and 22 curves, respectively. An increase of activity over time was observed in 

LNCaP C4-2, LNCaP, and PC-3 for 12, 1, and 9 chick embryos, while in 8, 0, and 6 embryos the activity 

decreased over time. The high variability of PET data corresponds with the qualitative evaluation of 

the time-activity-curves.  

In the body of the embryo, the activity was heterogeneously distributed with highest 

accumulation in the heart region (see Figure 1 and 2; [52]) 

All data are listed in detail in Table S3.  

 

Figure 2. Magnetic resonance (MR) images (T2-weighted, TSE [28], left panel) and PET/MR fusion 

images (middle panel) of hen´s egg test–chorioallantoic membrane (HET-CAM) xenograft 

experiments with the corresponding time–activity curves for the respective PET region of interest 

(right panel). The PSMA-positive tumors can be clearly visualized in the MR image in all cases (a, b 

and d: LNCaP C4-2, c: LNCaP), whereas the negative tumor PC-3 can only be seen in examples a, b, 
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and c and did not grow in example d (PSMA+green arrow; PSMA-  red arrow; CAM  white 

arrow). Note the more intense accumulation in the PSMA-positive tumors as compared to the PSMA-

negative tumors, suggesting target-specific tracer accumulation. 

2.3. Gamma Counter-Based Evaluation 

Absolute radiotracer accumulation evaluated ex vivo by gamma counter measurements showed 

a significantly higher accumulation in the PSMA-positive tumors in comparison to the PSMA-

negative tumors (n = 37, (0.27 ± 0.16) %IA all PSMA+, (0.11 ± 0.11) %IA all PSMA- PC-3; p < 0,0001). 

When separately analyzing the subgroup of LNCaP C4-2 (n = 32, mean (0.28 ± 0.17) %IA; median: 

0.24 %IA) and excluding the five tumors with more intense spillover and thus potentially impaired 

data quality, the accumulation still was significantly higher compared to PC-3 (p < 0.001). Even in the 

five experiments with a more intense spillover, the activity ratios still were substantially higher in 

the PSMA+ tumors compared to the PSMA-negative tumors (3.7; 3.2; 1.5; 4.6; 4.2, mean ± SD = 3.4 ± 

1.2, p = 0.01). Tracer accumulation was also substantially higher in the small subgroup of LNCaP 

versus PC-3 ((0.20 ± 0.03) %IA vs. (0.12 ± 0.11) %IA), however did not reach statistical significance 

because of the low number of experiments (n = 3, p = 0.25). Tracer accumulation was also significantly 

higher in PSMA-positive tumors compared to background (CAM only) mean 0.34 [LNCaP C4-2 + 

CAM] n = 5, p = 0.0313. Results of the subgroup evaluations are presented in Figure 3. Data for single 

experiments are listed in Table S2. 

 

Figure 3. Mean and standard deviation of the three groups after paired evaluation of the tumor 

accumulation [%IA] test for (a) [LNCaP C4-2 + PC-3] (n = 34), (b) [LNCaP + PC-3] (n = 3), and (c) 

[LNCaP C4-2 + CAM] (n = 5). Significance of the pairwise comparison is indicated (p-values: **** p < 

0.0001; * p < 0.05). 

When using the MR-derived tumor volumes for calculation of the radioactivity concentration in 

%IA per gram, the values of PSMA-positive tumors were also significantly higher compared to 

PSMA-negative tumors (mean 9.3 %IA/g, mean 3.8 %IA/g, p < 0.0001). This resulted in high ratios of 

activity concentration of PSMA-positive versus negative tumors (mean ± SD) of 4.0 ± 3.9 [LNCaP C4-

2 vs. PC-3], 4.9 ± 0.8 [LNCaP vs. PC-3], and also versus background with 24.8 ± 48.5 [LNCaP C4-2 vs. 

CAM]. Furthermore, the activity concentration ratios of the tumor activity in comparison to the total 

activity in the chick embryo (tumor/total) were determined (Table S4). Here also the PSMA-positive 

tumors (5.4 ± 3.2) showed a significantly higher ratio compared to the PSMA-negative tumors (mean 

2.2 ± 2.1; p < 0.0001). 

The distribution of the data is visualized in a logarithmic scatter plot (Figure 4). The data are 

summarized in Table 1.  
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Table 1. Medians of the different calculated ratios and the respective p-values. P-values < 0.05 are 

assumed statistically significant. Low sample numbers were not sufficient for statistical evaluation 

(ns = not significant), but the results still provide information about the tendency in the experimental 

groups. LNCaP C4-2 + PC-3 (n = 34); LNCaP + PC-3 (n = 3); LNCaP C4-2 + CAM (n = 5). 

Tumor 

Entities 

Activity Ratio  

(PSMA+/PSMA-) 

[Median] 

Activity Concentration Ratio 

(PSMA+/PSMA-)  

[Median] 

Activity Concentration Ratio 

(Tumor/Total) 

[Median] 

P value  

(Two 

Tailed) 

LNCaP C4-2 
3.0 2.5 

4.8 <0.0001 

(****) PC-3 1.5 

LNCaP 
5.0 5.0 

4.6 
0.250 (ns) 

PC-3 0.9 

LNCaP C4-2 
4.1 3.9 

5.8 
0.0625 (ns) 

CAM 1.5 

 

 

Figure 4. Scatter plots of the activity concentration ratios of the three experimental groups 

(PSMA+/PSMA-) in logarithmic scale (a) and the activity concentration ratios of the tumor area and 

the total chick embryo (b). Each experiment is depicted as a single dot, the median is shown. Notably, 

all ratios but one had a value greater than 1 for the direct comparison of the tumor entities (a). All 

values of PSMA+ in comparison to the total chick embryo were >1 (b). 

For the comparison of the results with the mouse xenograft model, several corresponding 

literature data were compiled in Table 2. Data on tumor accumulation of [68Ga]Ga-PSMA-11 and 

further PSMA-specific tracers were listed with regard to their accumulation in the tumor cell lines 

used in this study. In cases where the PSMA-positive and PSMA-negative tumor cell lines were 

available, the activity concentration ratio was calculated and additionally reported in the Table. 

Table 2. Animal experiments in mice using [68Ga]Ga-PSMA-11 (Glu-NH-CO-NH-Lys(Ahx)-HBED-

CC) or a similar PSMA-specific tracer in comparison to the present HET-CAM study (mean ± SD). The 

activity concentration ratios have been calculated based on the published data. 

Ligand 

Tumor Accumulation [%IA/g] Activity 

Concentration 

Ratio 

(PSMA+/PSMA-) 

Incubation 

Time [h] 
Ref. 

LNCaP LNCaP C4-2 PC-3 

68Ga-PSMA-11 - 9.27 ± 5.61 4.02 ± 3.78 2.3; (4.0)† 1 HET-CAM § 
68Ga-PSMA-11 6.95 ± 1.31 - 1.45 ± 0.41 4.8; (4.9)† 1 HET-CAM § 
68Ga-PSMA-11 7.70 ± 1.45 - 1.30 ± 0.12 5.9 1 [41] 
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68Ga-PSMA-11 4.89 ± 1.34 - 1.30 ± 0.12 3.8 1 [42] 
68Ga-PSMA-11 7.28 ± 0.82 - 1.21 ± 0.07 6.0 1 [53] 
68Ga-PSMA-11 5.89 ± 2.82 - - - 1 [54] 
68Ga-PSMA-11 12.75 ± 2.49  -  -  - 1 [55] 
68Ga-PSMA-11 8.91 ± 0.86 - - - 1 [56] 
68Ga-PSMA-11 8.42 ± 1.40 - - - 1 [57] 
68Ga-PSMA-11 7.19 ± 0.86 - - - 1 [57] 
68Ga-PSMA-11 8.20 ± 2.44 - - - 1 [57] 
68Ga-PSMA-11 8.67 ± 1.97 - - - 1 [57] 

68Ga-PSMA-11-

Dimer 
8.22 ± 1.78 - 0.93 ± 0.53 8.8 1 [42] 

18F-PSMA-11 55.7 ± 11.8 - 3.1 ± 0.9 18.0 6 [58] 
18F-PSMA-1007 8.04 ± 2.39 - 1.05 ± 0.11 7.7 1 [59] 

[11C]DCMC 8.73 ± 0.73  - 1.65 ± 0.29 5.3 0.5 [60] 

[11C]DCIT 5.07 ± 1.02 - 1.78 ± 0.63 2.8 0.5 [60] 
68Ga-HE0 2.38 ± 0.05 - 0.84 ± 0.18 2.8 1 [54] 
68Ga-HE1 2.41 ± 1.24 - 2.67 ± 1.25 0.9 1 [54] 
68Ga-HE2 10.66 ± 4.19 - 1.99 ± 0.40 2.5 1 [54] 
68Ga-HE3 3.22 ± 0.22 - 1.66 ± 0.41 1.9 1 [54] 

203Pb-PSMA-CA012 - 8.4 ± 3.7 - - 1 [61] 

DUPA-99mTc 11.2 - - - 4 [62] 
68Ga-CHX-A’’-DTPA 

conjugate 
~3* - - - 1 [63] 

68Ga-CHX-A’’-

DOTA conjugate 
~7* - - - 1 [63] 

68Ga-PSMA-617 8.47 ± 4.09 - - - 1 [64] 
177Lu-PSMA-617 11.20 ± 4.17 - - - 1 [64] 
64Cu-PSMA-617 - - 3.47 ± 0.48 - 24 [65] 

† ratios of the mean; (mean of the ratios); § present study; * values estimated from diagram. 

2.4. Immunohistochemistry for PSMA Detection 

Immunohistochemical staining was performed to verify PSMA expression in the PSMA+ tumor 

entities in contrast to the PSMA- control. In Figure 5 sections of the tumor cell lines are depicted in 

two magnifications as well as an overview demonstrating. In all sections a clear separation of the 

tumor tissue from the surrounding CAM is possible. An intense positive staining could be observed 

for the PSMA-positive tumors of LNCAP C4-2 and LNCAP. No substantial staining was observed 

for PSMA-negative PC-3 tumor cells with only faint staining of single areas, which is probably due 

to known PSMA expression in neoangiogenesis. 
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Figure 5. Immunohistochemical staining of HET-CAM tumor xenograft sections using an anti-PSMA 

antibody. Sections of each cell line specific tumor xenograft were used as an example. In image (a) an 

overview section is depicted. PC-3 and LNCaP tumor xenografts were stained simultaneously. In part 

(b) two magnifications (10×; 20×) of the tumor entities are depicted and an intense staining of the 

PSMA protein is clearly visible in the sections of LNCaP C4-2 and LNCaP (brown color), while a weak 

staining is visible for PC-3. 

3. Discussion 

In this feasibility study we demonstrated successful imaging and analysis of target-specific 

radiotracer accumulation in a HET-CAM xenograft model by combined PET and MRI, using the 

PSMA-specific PET tracer [68Ga]Ga-PSMA-11 and PSMA-positive and PSMA-negative tumor cell 

lines. Based on these promising data, further validation studies of the HET-CAM model compared 

to standard mice xenograft experiments are justified and warranted. 

3.1. Analysis of In Ovo Target-Specific Binding of [68Ga]Ga-PSMA-11 and Comparison to Reported Data in 

Mice  

We deliberately chose PSMA-expression as the model target structure for our proof-of-principle 

study as it is of paramount clinical relevance in PCA imaging and well established PSMA-positive 

and negative cell lines are available. As PET radiotracer we used the clinically widely used PSMA-

specific probe [68Ga]Ga-PSMA-11. We could show significantly higher tracer accumulation in PSMA+ 

tumors compared to PSMA- tumors by in vivo PET as well as in ex vivo gamma counter 

measurements, which clearly suggests PSMA-specific radiotracer accumulation. Moreover, a 

significantly higher ratio of accumulation in the tumor versus the embryo was demonstrated for the 

PSMA+ tumors compared to PSMA- tumors, which is another indicator for PSMA-specific tracer 

accumulation. The results were comparable in androgen sensitive and androgen insensitive PSMA+ 

tumors, however the activity concentration ratio for LNCaP C4-2 versus PC-3 was slightly lower, 

possibly caused by a lower PSMA expression in LNCaP C4-2 compared to LNCaP which is reported 

in the literature [66–68].  

We also successfully performed dynamic scanning in the HET-CAM model for analysis of time–

activity curves (TACs), however no quantitative analysis was performed because of the missing 

perfusion phase as measurements could not be started earlier than 10 min. p.i., because the injection 

is too difficult to be performed in the scanner. Qualitative evaluation did not reveal substantial 

differences in the patterns of the TACs between PSMA+ and PSMA- tumors. Although a direct 

comparison with the literature is difficult because of the later start of measurements, the principle 

feasibility of the technique could be shown. 

In various publications, [68Ga]Ga-PSMA-11 and other PSMA-specific radioligands have been 

analyzed by in vivo studies in mice. In Table 2 animal experiments are listed using the LNCaP, 

LNCaP C4-2 or PC-3 cell line for comparison to our data. Comparing the absolute values and the 
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ratios of tracer accumulation in PSMA+ and PSMA- tumors of all ligands listed, the results of our 

HET-CAM experiments are very comparable and within the same order of magnitude, which further 

corroborates our data. It is of interest that similar to our results in the HET-CAM model, a minor 

ligand uptake was also observed for PC-3 tumors in mice. At first glance this is surprising as it was 

clearly demonstrated in various in vitro studies that the PC-3 cell line is PSMA-negative [69,70]. 

However, under in vivo conditions this might be explained by PSMA expression in neoangiogenesis 

[71–74]. Furthermore, Laidler et al. had demonstrated that PSMA expression can be reestablished in 

PC-3 by using the basic fibroblast growth factor (bFGF or FGF2) [75]. The bFGF plays a pivotal role 

in the developmental processes in the chick embryo and [76–78] and was specifically demonstrated 

in the chorioallantoic fluid [79]. Thus, a low expression of PSMA might have been induced in some 

PC-3 tumor cells by bFGF from the chick embryo. Taken together these factors might explain the 

minor accumulation of the ligand in PC-3 xenografts as well as the weak staining in our 

immunohistochemical assays. Further validation of this hypothesis by Western blotting will be 

relevant for future studies. 

3.2. MR Imaging, Tumor Volumetry, and PET-MR Image Fusion 

The high-resolution MR images and fusion with the PET data not only facilitated the anatomic 

localization of radiotracer accumulation, but also provided detailed information about successful 

tumor growth and tumor volume. This was of special relevance as in some cases, the cells did not 

adequately grow after inoculation and thus no macroscopic tumor was formed. This is a problem 

also encountered in mice xenografts. In the mouse model tumor growth could easily be checked by 

palpation, whereas it is more challenging in the HET-CAM model. Without the MRI information, 

PET might have misinterpreted a missing signal in an area with no tumor growth as lack of specific 

tracer accumulation in the “tumor” as it does not provide detailed anatomic information. However, 

with the combined information from MRI cases of inadequate tumor growth could be identified and 

either excluded from analysis or categorized as background (CAM only). In cases of adequate tumor 

development, MRI was able to provide precise data on the tumor localization, extent, and volume, 

which is crucial for an exact PET and gamma counter analysis. For PET measurements it is very 

helpful for correct placement of the respective VOI over the tumor area, especially in case of no or 

only little uptake, because e.g., if the VOI was drawn to big, the uptake of the tumor would have been 

underestimated. Moreover, the MRI derived volumes were used for the gamma counter-based 

calculations of the radiotracer concentration in the tumor tissue. In MRI no significant difference in 

the tumor volumes of PSMA+ and PSMA- tumors were observed. This further corroborates our 

hypothesis that the differences in tracer uptake in PET in PSMA+ and PSMA- tumors are mainly due 

to differences in target-specific binding and not just caused by differences in tumor size. This also 

explains the gamma counter analysis, in which the absolute values of the tracer uptake (%IA) 

corresponded well with the activity concentrations (%IA/gram). 

With the capability of MRI to provide multiple image contrasts even in the small HET-CAM 

tumors [28], its potential to provide further important physiological and molecular information (e.g., 

perfusion, diffusion, and tissue relaxation properties) for a more detailed tumor characterization is 

of major interest for future studies. The required immobilization of the embryo has been proven 

possible by various means, with simple cooling of the embryo at 4 °C showing excellent results and 

no effect on the survival of the embryo [31,32]. Within the duration of the presented experiments, no 

effect on the growth of the tumor or the embryo was observed. 

3.3. Methodological and Logistical Aspects of the HET-CAM Xenograft Model  

Only 64% (n = 42) of the prepared chick embryos could be used for the final evaluation. The 

major factor for exclusion was failed systemic injection of the radiotracer in 14 cases as the correct 

injection of the substance into the small CAM vessels is challenging. Bleeding after injection is another 

major challenge in this model as radiotracer in the blood may be distributed across the CAM adjacent 

to the tumor areas and thus impairing the measurements. Bleeding may be caused by choosing 

comparatively large vessels for injection in order to be able to work with the smallest standard 
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cannulas (30G). Even if an injection was well administered, the wound in the blood vessel was 

relatively large. The use of cotton buds and liquid dressing spray stopped bleeding in most cases. 

However, moving the embryo could cause the wound to open again. Moreover, in chick embryos 

between EDD12-EDD16, wound healing processes and vasoconstriction are still not fully developed 

[80–82]. Smaller blood vessels could be used for the injection, but this increased the likelihood of 

failed injections. In five experiments a minor spillover of blood after injection was observed and the 

embryos were not excluded from analysis. While the activity ratio (PSMA+/PSMA-) based on PET 

imaging for these chick embryos was <1, the corresponding gamma counter data provided values >1. 

It can be assumed that by washing of the excised tumors the remaining residual activity could be 

successfully removed from the surface, while the PET data were biased by spill-in of unspecific 

activity. 

In summary, the dropout rate was higher as compared to our experience with mice xenografts. 

However, we also noted a substantial learning curve and with increasing expertise we expect a lower 

failure rate in future studies. Despite these methodological challenges, the HET-CAM model still 

appears very attractive from the cost and administrative burden point of view. Costs for purchasing 

and keeping the model are only a fraction of the costs of similar studies in mice. Since no approval 

for animal testing is required in most countries, a study based on HET-CAM can start much faster 

than a comparable study in mice. The HET-CAM model allows the easy introduction of various 

tumor models, not only based on human cell lines but also on rodent cell lines or patient-derived 

material [15,29–31,39,83–85]. This facilitates the transfer from an established mouse model to the 

HET-CAM model for at least initial evaluation. However, further studies on optimization and 

validation against standard tumor models are certainly required before more widespread use. 

3.4. Limitations 

A limitation of the model is the comparably short time available for performing experiments, 

since chick embryos hatch on day 21. Considering that embryos start developing a sensation of pain 

not in the first trimester but most likely before EDD15 and experiments should be stopped latest at 

EDD18 [6–14], the time window for the measurements is reduced to about 4–7 days. An earlier start 

of the measurements is conceivable, provided that the tumors have reached a reasonable size.  

A limitation of our study might be that the tumor weight was estimated based on the MR-

measured tumor volume and not directly weighed as after excision of the tumor, the measured 

weight was unreliable because of the small size and wetness of the washed tumor. However, ex vivo 

measured absolute activities and activity concentrations correlated well with each other and also with 

the in vivo PET data thus suggesting that this was of minor relevance.  

Another potential limitation is the lack of blocking experiments to further validate the specificity 

of tracer uptake in the PSMA+ tumors. Unfortunately, blocking experiments could not yet be done, as 

double injection in the HET-CAM model is quite challenging and single injection with samples 

separated by air bubbles might kill the embryo. However, we believe that the use of target-positive 

and negative tumors also allows a good characterization of the specificity of tracer uptake and is also 

commonly used in mouse xenograft experiments [61,86,87]. Moreover, the tracer [68Ga]Ga-PSMA-11 

is very well characterized and our data are in line with reported data in the same tumor cell lines in 

mice.  

Moreover, the exact quantification of tracer accumulation in small structures based on PET data 

is challenging because of the comparatively low resolution of PET systems and the influence of the 

partial-volume effect (PVE). The PVE, as described by Soret et al. [88], depends on the finite spatial 

resolution (affected by detector construction, image reconstruction) and image sampling (voxel size). 

For small lesions, signal is spread out leading to an underestimation of the activity concentration and 

an overestimation of tumor size, but also activity from the outside, e.g., from nearby blood vessels or 

the embryo, spills in and possibly biases the results. Tumor entities with a size less than three times 

the full width at half maximum (FWHM) are affected by PVE. The diameter of the tumor was limited 

by the 5 mm silicone rings and it usually grew up to 1.5 – 2.5 mm in depth. The optimal spatial 

resolution of the Focus 120 PET scanner is 1.13 mm FWHM (tangential, FBP) in the center field of 
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view [89]. Tumor size of at least 3.39 mm and smaller would therefore be affected by PVE. 

Consequently, the PET-based activity concentration was underestimated and for a PV correction the 

system-specific properties of the respective PET system must therefore be considered in future HET-

CAM studies. In our study PSMA+ and PSMA- tumor xenografts were of similar volume. Even though 

the absolute uptake is underestimated, analysis of the uptake differences still allows correct 

interpretation of the data. A PV correction might be considered in future studies after determination 

of the exact correction factors for tumors of different sizes and intensities of uptake in relation to the 

surrounding tissue, which is challenging. Moreover, a PV correction also has disadvantages as it also 

always increases the noise in the data. Therefore, the effort and benefit of a corresponding complex 

calculation must be carefully considered. An attractive strategy would be the autoradiographic 

imaging of the tumors after extraction because the higher resolution of this technique leads to a 

considerably decreased PVE. In case no additional gamma counter measurement will be performed, 

then a very efficient PV correction must be implemented. 

Finally concerning the LNCaP tumors only five embryos were evaluated. Initially an equal 

number of androgen sensitive and insensitive PSMA+ tumors should be examined. However, after 

we experienced a relatively high dropout rate in the first experiments, we primarily used one PSMA+ 

cell line as the major focus was on demonstrating differences in PSMA+ and PSMA- tumors. Still we 

wanted to show the data of the other cell line to the readers as well despite the lower number of 

experiments. 

4. Materials and Methods  

4.1. Cell Culture 

The androgen-dependent prostate carcinoma (PCa) cell line LNCaP [44] and its androgen-

independent derivative LNCaP C4-2 [45] as well as PC-3 [51] are used as model system for HET-

CAM xenograft design. While the cell lines LNCaP and LNCaP C4-2 are known for the high 

expression level of the PSMA protein [46], there is no detectable PSMA expression in the PC-3 cell 

line, which therefore was used as negative control. The human PCa cell lines LNCaP (ACC256, 

DSMZ, Braunschweig, Germany), LNCaP C4-2 (ViroMed Laboratories, Minnetonka, USA), and PC-

3 (ACC465, DSMZ, Braunschweig, Germany) were cultivated as described elsewhere [90]. For HET-

CAM xenograft experiments, cells were counted using a Neubauer hemocytometer and the respective 

number of cells was applied onto the CAM in silicone rings as described in the HET-CAM-model 

section. 

4.2. HET-CAM Model 

The method we used was similar to already published HET-CAM models [17,83,91–94]. 

Fertilized chicken eggs (LSL Rhein-Main Geflügelvermehrungsbetriebe GmbH & Co.KG, Dieburg, 

Germany) were defined upon start of incubation on embryo development day 0 (EDD0). The eggshell 

was carefully opened on EDD2 using a cordless drill and scissors (Figure 6). The small opening was 

closed with clinical tape (Leukosilk, BSNmedical, Hamburg, Germany) allowing continuous gas and 

humidity exchange. After five days of incubation at 37.8 °C and 65% of relative humidity (EDD5), 

silicone double-rings were placed on the membrane of the opened chicken eggs. Xenografts were 

established by pipetting the PCa cell lines LNCaP C4-2 (1 × 106 cells; PSMA+), LNCaP (1 × 106 cells; 

PSMA+), and PC-3 (1 × 106 cells; PSMA-) with Matrigel (40%, v/v) in an overall volume of 30 µL into 

the silicone rings on EDD6. Two groups of cell line combinations in the HET-CAM model were 

prepared: LNCaP C4-2 + PC-3 (61 chick embryos) and LNCaP + PC-3 (5 chick embryos). When only 

LNCaP C4-2 and no PC-3 tumor was established the embryo were used as a third group [LNCaP C4-

2 + CAM], validating the CAM in the PC-3 area of the silicone rings. Tumor growth and embryo 

health were daily monitored by visual inspection. The MR and PET imaging experiments were 

performed between EDD12 and EDD16. For MRI scans the chick embryos were cooled for 70 to 120 

min at 4 °C prior to the measurement start to minimize movement artefacts, according to the 

protocols of Bain et al. and Zuo et al. [31,32]. The eggshell opening was widened to the maximum 
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without affecting the membrane and 1 mL of 0.9% NaCl solution was pipetted to shift the interface 

between the membrane surface and the atmosphere away from the tumor. During image acquisition 

the chick embryo was fumigated with 3% isoflurane [33]. For PET imaging the NaCl solution was 

completely removed and the surface carefully dried. A 30G needle (B. Braun, Melsungen, Germany) 

was bend and combined with a 1-mL syringe for the injection of 75 µL of [68Ga]Ga-PSMA-11 (1.3 

µg/mL) into a chorioallantoic membrane blood vessel. On average an activity of 1.7 ± 1.5 MBq, in 

median 1.1 MBq was injected. To stop the bleeding after injection a cotton bud was held on the 

injection side and liquid bandage spray (Opsite, Smith & Nephew GmbH, Hamburg, Germany) was 

pipetted on the dried surface. The complete chick embryo and afterwards also needle, syringe, and 

cotton buds were measured in an activity meter (CRC-12, Capintec, NJ, USA) to determine the 

successfully applied radioactivity which was set to 100% injected activity [%IA] for quantification 

calculation. Events, where blood was slightly distributed across the membrane or near/into the tumor 

areas were protocolled and considered during the evaluation of the data, while large spillover lead 

to exclusion from evaluation in four cases. The embryos have been sacrificed after tumor excision.  

 

Figure 6. Workflow of the HET-CAM xenograft model. On the arrival day (EDD0) the eggs were 

incubated. On EDD2 the eggs were carefully opened (1). On days EDD5 and EDD6 the silicone rings 

were positioned, and the tumor cells were applied (2). The development of the tumors and the chick 

embryos was regularly checked (3). Between EDD12 and EDD16 three to five measurements per day 

were performed. Experiments started with high-resolution MRI (4). Immediately afterwards the 

ligand was systemically administered into a blood vessel of the CAM and the corresponding PET scan 

was performed (5). After PET the tumors were carefully excised, washed and the accumulated 

radioactivity was detected in a gamma counter (6). The embryos would not recover from the tumor 

excision and were sacrificed immediately. 

4.3. MR and PET Imaging 

The precursor PSMA-HBED-CC (PSMA-11) was purchased from ABX GmbH (Radeberg, 

Germany). The radiopharmaceutical [68Ga]Ga-PSMA-HBED-CC ([68Ga]Ga-PSMA-11) was produced 

as recently published [41,42]. For radiolabeling, a 50 mCi (1850 MBq) 68Ge/68Ga radionuclide 

generator was used (iThemba LABS, South Africa). 

The eggs were placed in a custom-build holder for enabling PET-MRI registration by specific 

fiducials filled with 50 µl CuSO4 and 1 µl of [68Ga]Ga-PSMA-11. 

The implemented protocols for MR measurements were based on the publications of Zuo et al. 

[28,31]. Imaging was performed on an 11.7 Tesla small animal MRI system (Bruker BioSpec 117/16, 
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Bruker Biospin, Ettlingen, Germany). Data were obtained with a 72 mm quadrature volume T/R 

resonator. 

Tumor volume, location, and structure were assessed by applying a high-resolution T2-

weighted multislice rapid acquisition with relaxation enhancement (RARE) sequence. Scan 

parameters were as follows: TR/TE = 4320/45 ms, matrix size = 650 × 650, in-plane resolution = 77 × 91 

µm2, slice thickness = 0.5 mm, no interslice gap, RARE factor = 8 and NSA = 4. The number of slices 

was adapted to the tumor size and ranged from 15 to 30 slices. The acquisition time for a single high-

resolution RARE scan was between 15 and 35 min depending on the number of slices required to 

cover a sufficient volume of interest, covering both, the tumors and the chick embryos.  

For PET imaging a dynamic 60 min scan was performed on a small animal PET scanner 

(Focus120, Siemens Medical Solutions, Inc., Erlangen, Germany). The Focus120 has a high spatial 

resolution (<1.3 mm) and high sensitivity (about 7%) with a bore size (12 cm diameter and 7.6 cm 

axial length) [89]. These list-mode files were processed to obtain histogrammed data (sinograms) for 

a single 60 min image and an additional image of 12 dynamic frames of 5 min each. The reconstruction 

algorithm OSEM3D/MAP using 4 OSEM2D, 2 OSEM3D, and 18 MAP iterations was implemented. 

Partial volume correction was not performed to avoid additional noise in the data. 

MRI and PET data were fused by fiducial registration using the 3Dslicer software (ver. 4.10.2) 

[95] and the software Amide (ver. 1.0.4). Additional data conversion was achieved using the Vinci 

software. (ver. 5.02) [96]. The area of the silicone rings and the tumor entities were selected in the MR 

images using the segmentation tool to have a visual support for activity detection in the specific 

tumor regions in PET images. For time-activity evaluation of the PET scans elliptical cylinder VOIs 

were drawn in the areas of the inner silicone rings with a size of 5 × 5 × D mm³, where D was at least 

1.5 mm and adapted to the respective tumor size. VOI analysis provided voxel-based mean data for 

each 5 min time frame. 

4.4. Gamma Counter Quantification and Evaluation 

After washing (1 min), the tumors were analyzed with a gamma-counter COBRA II (Perkin 

Elmer) to accurately quantify the accumulated radioactivity. Quantification of the radioactivity in the 

tumor was based on these gamma-counter measurements followed by decay correction and 

calculation of the fraction in comparison to the applied activity (percent injected activity, %IA). The 

quotient of the activity ratios and the tumor volume ratios of the paired PSMA-positive and PSMA-

negative xenografts [radioactivity in the tumor (PSMA+/PSMA-) / tumor volume (PSMA+/PSMA-)] 

was calculated to provide the value for evaluation of the ligand accumulation. Values >1 indicate a 

higher accumulation in the PSMA-positive tumor regions. Using data from the gamma counter and 

volume determination based on MR images, the accumulated activity in %IA/g was calculated for 

comparison with literature data. The calculation is based on the definition of 1000 mm³ = 1 g, whereby 

the density of water as the main component in the cells is approximated. 

Wilcoxon matched-pairs signed rank tests were performed using GraphPad Prism (ver. 8.4.2 for 

Windows, GraphPad Software, San Diego, California USA, www.graphpad.com). A p-value <0.05 

was assumed as statistically significant.  

4.5. Immunohistochemistry 

Tumor excision tissues were fixated in 4% formaldehyde in phosphate-buffered saline (PBS) and 

paraffin-embedded. Sections were deparaffinized using xylene (3×; 5 min) and rehydrated by 

washing in descending alcohol solutions. To reveal the masked epitopes antigen retrieval was 

obtained by boiling citrate-based antigen unmasking solution (1:100; 5 min; pH 6.0; Vector 

Laboratories, CA). The cooled sections were washed for 1 min using 30% H2O2 in PBS solution to 

quench endogenous peroxidase activity followed by an additional washing in PBS for 5 min. To 

prevent background-staining phosphate-buffered albumin (PBA; 1% BSA in PBS) was applied for 

60 min followed by treatment using 2% normal serum (blocking serum) (Vector Laboratories, CA) in 

PBA for 30 min at room temperature. The mouse monoclonal primary antibody YPSMA-1 (ab19071, 

Abcam, Cambridge, UK) was applied in a dilution of 1:800 in PBA and the sections were incubated 
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overnight at 4 °C in a wet chamber. After washing in PBS (2×, 5 min), biotinylated secondary antibody 

(Vector Laboratories, CA) diluted 1:200 in PBA was applied for 60 min in a wet chamber at room 

temperature. Sections were rinsed in PBS (2×, 5 min) and incubated with avidin/biotin-based 

VECTASTAIN® Elite® ABC Kit (Peroxidase (HRP) working solution (Vector Laboratories, CA) for 

30 min at room temperature. Following an additional washing in PBS (2×, 5 min), Vector® DAB 

peroxidase substrate (Vector Laboratories, CA) was applied for 10 min at room temperature. The 

substrate was removed by washing with water (2×, 5 min) and counterstained using hematoxylin 

solution modified according to Gill III (Merck KGaA, Darmstadt, Germany). After dehydration by 

ascending alcohol steps (2 min) and toluene (2×, 2 min), slides were mounted (Fisher Chemical™ 

Permount™; Thermo Fisher Scientific, Germany). 

5. Conclusions 

Our feasibility study suggests that the HET-CAM xenograft model using PET and MR imaging 

is promising for the initial assessment of specific radiotracer accumulation under in vivo conditions 

and the results of our study are in line with the reported data in mice xenografts. The model has 

many advantages compared to the mouse model, e.g., lower costs, less administrative work, a short 

experimental start-up time, and less maintenance effort. On the other hand, its application is limited 

by the rather short time window for the experimental procedures, and technical challenges like 

injecting into the rather small CAM vessels. However, the time window is only of minor importance 

in the context of the intended approach for the initial analysis of new radioligands and the technical 

challenges can be overcome with appropriate experience. Now further comparative studies for 

validation of our data have to be performed. If successfully established, combined PET-MR imaging 

using the HET-CAM xenograft model would allow for a substantial reduction of animal experiments 

in line with the 3Rs principles. 
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