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The software used in the study 

For all studies, we used freely accessible online data resources that served as a platform for our 

investigation of hypoxia driving pathogenesis and treatment in glioblastoma. 

TCGA (1): https://www.cancer.gov/ 

Ivy GAP (2): http://glioblastoma.alleninstitute.org/rnaseq 

GBM biodiscovery portal (3): https://gbm-biodp.nci.nih.gov  

dchip with R package: http://www.dchip.org/  

Gene Ontology database: http://www.geneontology.org/ 

GlioVis (4): http://gliovis.bioinfo.cnio.es/?ref=labworm  

HGNC database http://www.genenames.org 

ShinyGO v0.61 http://bioinformatics.sdstate.edu/go/ 

Details of Data analysis 

The collection of the data from IVY GAP and TCGA GBM was compliant with all applicable 

laws, regulations, and policies for the protection of human subjects, and necessary ethical approvals 

were obtained. For analysis of gene expression in glioblastoma, we used normalization of data and 

aggregation at the feature level as designated by the TCGA GBM the "Level3". Data were analyzed 

using free available portals as a resource for accessing and displaying interactive views of Ivy GAP 

and TCGA data associated with glioblastoma (3,4).  

RNA-Seq Data Normalization 

Gene expression values were summarized as transcripts per million (TPM) and fragments per 

kilobase per million (FPKM). To improve the display of the website heatmap, the FPKM data matrix 

was further adjusted for the total transcript count using TbT normalization (5), which scales each 

sample based on the summed expression of all genes that are not differentially expressed. FPKM 

values were TbT (from a trimmed mean of M values (TMM) - TMM-baySeq-TMM) normalized in 

linear space, with the differential expression vector defined as TRUE if a sample was from cellular 

tumor and FALSE if otherwise. Sample data were then scaled in a way that the total log2(FPKM) 

across the entire data set remained unchanged after normalization. The result of this step was that 

expression levels for all genes in a particular sample were multiplied by a scalar value close to 1 (in 

most cases between 0.7-1.3). 

Displaying a summary of experimental data associated with selected genes 

https://www.cancer.gov/
http://glioblastoma.alleninstitute.org/rnaseq
https://gbm-biodp.nci.nih.gov/
http://www.dchip.org/
http://www.geneontology.org/
http://gliovis.bioinfo.cnio.es/?ref=labworm
http://www.genenames.org/
http://bioinformatics.sdstate.edu/go/


Cancers 2020, 12, x FOR PEER REVIEW 2 of 7 

 

The samples (columns on the heatmap) were annotated in two ways: first, according to the 

cluster membership (the optimal number of clusters was determined using NbClust); second, by 

inspecting the status of a prognostic index (which was computed by weight averaging the gene 

expressions with the regression coefficients of a multi-gene Cox proportional hazards model). The 

gene names were annotated with their respective Hazard Ratios in a multi-gene Cox proportional 

hazards model. When search results involved more than 50 genes, we filtered them by keeping the 

50 genes whose expression is the most varied among the samples. 

Performing gene survival analysis 

The Kaplan-Meier survival curve analysis compared samples stratified according to gene 

expression levels. The default options stratified samples into two groups: those with expression levels 

below the median over the subgroup, and those with expression levels above the median.  

For gene searches that resulted in multiple hits, we analyzed how the expression profiles impacted 

the survival. We performed two types of survival analyses: first, the optimum clusters were selected 

by the stratification of the samples according to the heatmap cluster membership (see the first 

annotation bar), where the optimal number of clusters is picked out algorithmically using silhouette 

width index. Next, we used a Kaplan-Meier model to analyze the differences in survival between 

groups using a log-rank statistic. Hierarchal clustering analysis of a full cohort of TCGA GBM 

samples dataset stratified by inspecting the status of genes with the most varied prognostic index 

was computed by weight averaging the gene expressions with the regression coefficients of a multi-

gene Cox proportional hazards model. These analyses were performed using the "NbClust" package 

in R. 

Displaying heatmap clustering of gene expression data correlation 

For selected multiple hits of genes, we presented a heatmap of the correlation between the 

expression of genes in anatomic features. Each cell of the heatmap represented how the expression of 

the gene in the row, and the gene in that column are correlated, and it was annotated with the 

correlation value. The results were displayed as a heat map using hierarchical clustering analysis 

using the average linkage distance metric. 

Prognosis prediction using SVM-based methods 

SVM data classification and function approximation introduced by Vapnik (6) is a binary 

classifier (trained on a set of labeled patterns called training samples) (7). This SMV strategy was used 

to investigate the possibility of identifying different prognostic subsets of patients based on their 

clinicopathologic features and immunomarkers (8). We used this approach to classify the immune 

cell enrichment between CT and PN gene signatures.  

Quantification and Statistical Analysis 

Graphs and plots were generated, and statistical analyses were performed using GraphPad 

Prism 7. Statistical parameters, including the value of n, statistical test, and statistical significance (p-

value), are reported in the figures and their legends. Statistical tests were selected based on the 

desired comparison. Unpaired two-tailed t-tests were used to assess significance when comparing 

data between two variances. One-way ANOVA was used to determine significance when comparing 

data between ≥ 3 variances; significant ANOVA results were followed by post hoc testing comparing 

every mean with every other mean (Tukey's multiple-comparison test). For the differential expression 

of global measurements (platforms), the DESeq2 software-generated adjusted p values using the 

Wald test with the Benjamini-Hochberg procedure to correct for multiple hypothesis testing. The 

Mann-Whitney test was used to compare cumulative distributions of gene fold changes between two 

gene sets. The characteristics of genes deregulated in PN vs. CT in comparison with the rest of the 

genes in the genome were analyzed by Chi-squared and Student's t-test to see if selected genes are 

different.  
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Supplementary Figures and Figure’s Legends 

 

Figure S1. Supplementary Figure to Figure 1. (A) Heat map of RNA-seq expression correlation data 

for EPAS1, NOTCH3, and PRKAA2 in all glioblastoma anatomic features. (B) The density plot of 

expression and association-correlation data for EPAS1, NOTCH3, and PRKAA2 in glioblastoma bulk 

data from TCGA GBM. Pearson's product-moment correlation value and ***p-value (<0.001) is 

indicated. 
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Figure S2. Supplementary Figure to Figure 2. (A) The characteristics of genes down- and up-regulated 

(n = 366) in PN (n = 556) (p value < 0.01, FD > 2) in comparison with the rest of the genes in the genome 

based on the length (in bp) of a coding sequence, genome span content, 3' and 5' UTR or percentage 

of GC content (respectively). (B) Gene Venn analysis of gene ontology category in PN and CT features, 

see also Table S4. 
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Figure S3. Supplementary Figure to Figure 3. (A) A correlation matrix is showing correlation 

coefficients between gene expression associated with cell-type-specific sub-profiles in CT and PN 

zones. (B) The density plot of expression and association-correlation between paired samples data for 

CD274 and MSH2 in glioblastoma bulk data from TCGA GBM. Pearson's product-moment correlation 

value and *p-value (<0.05) are indicated. (C) RNA-seq expression data of OLMFL3 and MIR210HG 

genes (normalized Log fold-change expression data) for CT (n = 111) and PN (n = 66); pairwise two-

tailed p-value between pair (n = 65) is shown. The grey lines denote sample pairs derived from two 

anatomic features from the same individual. 



Cancers 2020, 12, x FOR PEER REVIEW 6 of 7 

 

 

Figure S4. Supplementary Figure to Figure 4. (A,B) Heatmaps with color annotations according to 

profile similarity (blue/red) of 50 most up-regulated only (A) or both up- and down-regulated genes 

together (B) (based on differential analysis of CT and PN zone, n = 2707) annotated with Hazard Ratios 

(HR red-violet) from Cox's based on TCGA GBM samples dataset. (C, D) Survival analysis of TCGA 

GBM samples dataset stratified according to their cluster membership (blue/red) from panels (A) and 

(B) using the Kaplan-Meier analysis. (E, F) Heatmaps of RNA-seq expression correlation data for 15 

(with p value < 0.01) from 50 gene signature from panels (A) and (B) in all glioblastoma anatomic 

features isolated by LMD. 

Supplementary Table Legend: 

Table S1. List of genes identified as significantly deregulated between CT and PZ (n=2707) in these 

features of glioblastoma. 

Table S2. A: Gene ontology enrichment analysis based on hypergeometric distribution followed by 

FDR correction, showing the top three most enriched biologic functional categories of genes up- or 

downregulated in PN vs. CT (n= 556 and 366, respectively). B: The promoter sequences of the genes 

up-regulated (n=556) and down-regulated (n=366) compared with the other genes in the genome in 

terms of transcription factor (TF) binding motifs within 300 bp upstream of transcription start. An 

asterisk in "query gene" indicates a transcription factor coded by a gene included in the list. 

Table S3. Summary of genes deregulated in PN vs. CT (n= 2707), grouped by functional categories 

defined by high-level GO terms. 
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