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Abstract: For detecting malignant tumors, diffusion-weighted magnetic resonance imaging (DWI) 
as well as fluoro-2-deoxy-glucose positron emission tomography/computed tomography (FDG-
PET/CT) are available. It is not definitive how DWI correlates the pathological findings of lung 
cancer. The aim of this study is to evaluate the relationships between DWI findings and pathologic 
findings. In this study, 226 patients with resected lung cancers were enrolled. DWI was performed 
on each patient before surgery. There were 167 patients with adenocarcinoma, 44 patients with 
squamous cell carcinoma, and 15 patients with other cell types. Relationships between the apparent 
diffusion coefficient (ADC) of DWI and the pathology were analyzed. When the optimal cutoff value 
(OCV) of ADC for diagnosing malignancy was 1.70 × 10−3 mm2/s, the sensitivity of DWI was 92.0% 
(208/226). The sensitivity was 33.3% (3/9) in mucinous adenocarcinoma. The ADC value (1.31 ± 0.32 
× 10−3 mm2/s) of adenocarcinoma was significantly higher than that (1.17 ± 0.29 × 10−3 mm2/s) of 
squamous cell carcinoma (p = 0.012), or (0.93 ± 0.14 × 10−3 mm2/s) of small cell carcinoma (p = 0.0095). 
The ADC value (1.91 ± 0.36 × 10−3 mm2/s) of mucinous adenocarcinoma was significantly higher than 
that (1.25 ± 0.25 × 10−3 mm2/s) of adenocarcinoma with mucin and that (1.24 ± 0.30 × 10−3 mm2/s) of 
other cell types. The ADC (1.11 ± 0.26 × 10−3 mm2/s) of lung cancer with necrosis was significantly 
lower than that (1.32 ± 0.33 × 10−3 mm2/s) of lung cancer without necrosis. The ADC of mucinous 
adenocarcinoma was significantly higher than those of adenocarcinoma of other cell types. The 
ADC of lung cancer was likely to decrease according to cell differentiation decreasing. The 
sensitivity of DWI for lung cancer was 92% and this result shows that DWI is valuable for the 
evaluation of lung cancer. Lung cancer could be evaluated qualitatively using DWI. 

Keywords: diffusion-weighted magnetic resonance imaging (DWI); magnetic resonance imaging 
(MRI); lung cancer; pathology; apparent diffusion coefficient (ADC)  
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1. Introduction 

Lung cancer is one of the leading causes of cancer-related deaths and has many patterns of 
progression and treatment responses. As the imaging method of choice in tumor staging, fluoro-2-
deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) has been 
widely adopted. Its maximum standardized uptake value (SUVmax) presents glucose uptake and 
indicates how aggressive the cancer is. FDG-PET/CT is useful for differentiating malignant from 
benign pulmonary nodules [1]. However, FDG-PET/CT is likely to yield false-negative results for 
small volumes of metabolically active tumors [2] or well-differentiated pulmonary adenocarcinoma 
[3], and false-positive results for inflammatory nodules [4]. 

For the last two decades, magnetic resonance imaging (MRI) of the staging of lung cancer has 
been narrowly available in the cases of chest wall invasion or mediastinum invasion of lung cancer 
partly due to the report of Webb et al. [5] of the Radiologic Diagnostic Oncology Group published in 
1991. The technology of MRI has developed dramatically. Diffusion-weighted magnetic resonance 
imaging (DWI) has been used for detecting the restricted diffusion of water molecules. The principle 
of DWI is the random motion of water molecules in biological tissues [6]. Its apparent diffusion 
coefficient (ADC) value presents a quantitative parameter of the diffusion of water molecules in 
biological tissues, and the ADC of malignant tumors is significantly lower than that of normal tissues 
or benign lesions [7]. The magnetic resonance (MR) signal intensity of pulmonary cancer is 
significantly higher than that of benign lesions [8]. A meta-analysis indicated that DWI could be used 
to differentiate malignant from benign pulmonary lesions [9]. Two articles of meta-analysis have 
shown that DWI was useful for the evaluation of the N factor of lung cancer [10,11]. For nodal 
assessment in non-small cell lung cancer, Peerlings et al. [10] showed the high diagnostic capability 
of DWI (sensitivity 0.87, specificity 0.88). DWI can differentiate benign from malignant lesions in the 
lung [9,12], in the thorax [13], in the prostate [14], in the breast [15], and in the liver [16]. 

DWI possesses great potential for monitoring treatment response in cancer patients shortly after 
the initiation of radiotherapy [17]. Functional evaluation of DWI was more useful than that of CT for 
the response evaluation of chemotherapy and/or radiotherapy to recurrent tumors of the lung [18]. 
MR functional imaging offers valuable information about tumor tissue, tissue architecture, cellular 
biomarkers related to the hepatocellular functions, and tissue vascularization profiles related to 
tumor and tissue biology [19]. Maximum whole tumor ADC values may be available for 
differentiating luminal from other molecular subtypes of breast cancer [20]. 

In this article, we analyze relationships between DWI and the pathological findings of resected 
lung cancers and got information about DWI for the pathologic characteristics of lung cancer.  

2. Results 

Chest CT, FDG-PET/CT, DWI, ADC map, and pathologic hematoxylin and eosin stain are 
presented according to lepidic adenocarcinoma (Figure 1), mucinous adenocarcinoma (Figure 2), 
papillary adenocarcinoma (Figure 3) and squamous cell carcinoma (Figure 4). 

When the optimal cutoff value (OCV) of ADC for diagnosing malignancy was 1.70 × 10−3 mm2/s 
[21], the sensitivity of DWI was 92.0% (208/226) (Table 1). For pathologic cell types, the sensitivity of 
DWI was 91.6% (153/167) in adenocarcinoma, 95.4% (42/44) in squamous cell carcinoma, 66.6% (2/3) 
in large cell neuroendocrine carcinoma (LCNEC), 66.6% (2/3) in large cell carcinoma, and 100% (6/6) 
in small cell carcinoma. For subtypes of adenocarcinoma, the sensitivity of DWI for mucinous 
adenocarcinoma was 33.3% (3/9), which was significantly lower than 94.4% (51/54) for acinar 
adenocarcinoma, 94.6% (53/56) for papillary adenocarcinoma, 92.8% (26/28) for lepidic 
adenocarcinoma, 100% (7/7) for micropapillary adenocarcinoma, or 100% (12/12) of solid 
adenocarcinoma.  
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Table 1. Sensitivity of diffusion-weighted imaging (DWI) for lung cancer. 

Cell Type Cell Subtype Sensitivity 

Adenoca. 

Mucinous 33.3% (3/9) 

91.6% (153/167) 

Acinar 94.4% (51/54 ) 
Papillary 94.6% (53/56) 
Lepidic 92.8% (26/28) 

Micropapillary 100% (7/7) 
Solid 100% (12/12) 

Squamous cell ca.   95.4 % (42/44) 
LCNEC   66.6% (2/3) 

Large cell ca.   66.6% (2/3) 
Small cell ca.   100% (6/6) 

Other cell type   100% (4/4) 
Total   92.0% (208/226) 

 
Figure 1. Lepidic adenocarcinoma. The ADC of the carcinoma was 1.36 × 10−3 mm2/s. (A) CT, (B) PET-
CT, (C) DWI, (D) ADC map, (E) Pathology (Hematoxylin and Eosin Staining) ×100. 

 
Figure 2. Mucinous adenocarcinoma. The ADC of the carcinoma was 2.25 × 10−3 mm2/s. (A) CT, (B) 
PET-CT, (C) DWI, (D) ADC map, (E) Pathology (Hematoxylin and Eosin Staining) ×100. 
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Figure 3. Papillary adenocarcinoma. The ADC of the carcinoma was 1.09 × 10−3 mm2/s. (A) CT, (B) 
PET-CT, (C) DWI, (D) ADC map, (E) Pathology (Hematoxylin and Eosin Staining) ×100. 

 
Figure 4. Squamous cell carcinoma. The ADC of the carcinoma was 0.979 × 10−3 mm2/s. (A) CT, (B) 
PET-CT, (C) DWI, (D) ADC map, (E) Pathology (Hematoxylin and Eosin Staining) ×100. 

The ADC value by pathologic cell type of lung cancer is presented in Figure 5. The ADC value 
(1.31 ± 0.32 × 10−3 mm2/s) of adenocarcinoma was significantly higher than that (1.17 ± 0.29 × 10−3 
mm2/s) of squamous cell carcinoma (p = 0.012), or (0.93 ± 0.14 × 10−3 mm2/s) of small cell carcinoma (p 
= 0.0095). The ADC value (1.62 ± 0.40 × 10−3 mm2/s) of LCNEC was significantly higher than that (1.17 
± 0.29 × 10−3 mm2/s) of squamous cell carcinoma (p = 0.016), or (0.93 ± 0.14 × 10−3 mm2/s) of small cell 
carcinoma (p = 0.011). 

The ADC value by pathologic subtype of adenocarcinoma is shown in Figure 6. The ADC value 
(1.91 ± 0.36 × 10−3 mm2/s) of mucinous adenocarcinoma was significantly higher than that (1.31 ± 0.28 
× 10−3 mm2/s) of acinar adenocarcinoma (p < 0.0001), (1.29 ± 0.30 × 10−3 mm2/s) of papillary 
adenocarcinoma (p < 0.0001), (1.28 ± 0.28 × 10−3 mm2/s) of lepidic adenocarcinoma (p < 0.0001), (1.14 ± 
0.20 × 10−3 mm2/s) of micropapillary adenocarcinoma (p = 0.0002), or (1.12 ± 0.20 × 10−3 mm2/s) of solid 
adenocarcinoma (p < 0.0001).  
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Figure 5. ADC value by pathologic cell type of lung cancer. 

 
Figure 6. ADC value by pathologic subtype of adenocarcinoma. 

The ADC value (1.91 ± 0.36 × 10−3 mm2/s) of mucinous adenocarcinoma was significantly higher 
than that (1.25 ± 0.25 × 10−3 mm2/s) of adenocarcinoma with mucin, or (1.24 ± 0.30 × 10−3 mm2/s) of 
other cell types (Figure 7). The ADC (1.11 ± 0.26 × 10−3 mm2/s) of lung cancer with necrosis was 
significantly lower than that (1.32 ± 0.33 × 10−3 mm2/s) of lung cancer without necrosis (p = 0.0001) 
(Figure 8). For cell differentiation, the ADC value was 1.36 ± 0.35 × 10−3 mm2/s in well differentiation 
(G1), 1.24 ± 0.28 × 10−3 mm2/s in moderate differentiation (G2), 1.12 ± 0.19 × 10−3 mm2/s in poor 
differentiation (G3), and 1.18 ± 0.43 × 10−3 mm2/s in undifferentiation (G4). There is a correlation 
between the decrease in ADC value and the decrease in cell differentiation.  
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Figure 7. ADC value by the presence of mucin component in lung cancer. 

 
Figure 8. ADC value by the presence of necrosis in lung cancer. 

3. Discussion 

A concise update of lung cancer staging, supported by the European Society of Thoracic 
Surgeons and the American College of Chest Physicians, expressed that DWI can differentiate benign 
from malignant lymph nodes and showed that diffusion MRI has equal sensitivity to PET-CT (0.75 
versus 0.72, respectively) but higher specificity (PET-CT 0.89 versus MRI 0.95) [22]. In our experience 
of hilar and mediastinal lymph nodes in lung cancer [23], DWI correctly diagnosed N staging in 144 
carcinomas (90%) but incorrectly diagnosed N staging in 16 (10%) (3 (1.9%) had overstaging, 13 (8.1%) 
had understaging). PET-CT correctly diagnosed N staging in 133 carcinomas (83.1%) but incorrectly 
diagnosed N staging in 27 (16.8%) (4 (2.5%) had overstaging, 23 (14.4%) had understaging). The 
maximum diameter of metastatic lesions in lymph nodes was 3.0 ± 0.9 mm in 21 lymph node stations 
not detected by either DWI or PET-CT, 7.2 ± 4.1 mm in 39 detected by DWI, and 11.9 ± 4.1 mm in 24 
detected by PET-CT. Therefore, DWI could detect significantly smaller lymph node metastases than 
PET-CT could. DWI was reported to be superior to FDG-PET in the detection of primary lesions and 
the nodal assessment of non-small cell lung cancers [21]. 

In the Japanese lung cancer practice guidelines published in 2018 [24], MRI was recommended 
partly for the diagnosis of lung cancer. Recommendation of the usage of DWI was discussed in 2008 
during the International Society for Magnetic Resonance in Medicine meeting held in Toronto [25]. 
Concerns about the lack of understanding of DWI were summarized in the meeting report [25].  

The optimal cutoff value is very useful for distinguishing malignancy from benignity but would 
change based on the patients of a study. There are two articles which compare the diagnostic 
capability of DWI with that of FDG-PET/CT for pulmonary nodules and masses [12,26]: in one, the 
sensitivity and the accuracy of DWI were significantly higher [12]; in the other, the sensitivity of DWI 
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was significantly higher [26] than that of FDG-PET/CT. Based on our assessment of DWI for 
pulmonary nodules and masses (143 lung cancers, 17 metastatic lung tumors, and 29 benign 
pulmonary nodules and masses) [26], the sensitivity (80.0%) of DWI was significantly higher than 
that (70.0%) of FDG-PET/CT. The specificity (65.5%) of DWI was equal to that (65.5%) of FDG-
PET/CT. The accuracy (77.8%) of DWI was not significantly higher than that (69.3%) of FDG-PET/CT 
for pulmonary nodules and masses. The results imply DWI has higher potential than FDG-PET/CT 
in assessing pulmonary nodules and masses. There were three meta-analyses of DWI for the 
differential diagnosis of malignancy and benignity for pulmonary nodules and masses [9,27,28]. All 
of the meta-analyses concluded that DWI could differentiate malignancy from benignity for 
pulmonary nodules and masses. However, DWI is used limitedly restrictive in the lungs and is not 
popular yet. MRI eradicates not only contrast mediums but also radiation exposure, and it is suitable 
and ideal for the examination of children and pregnant women. In the future, we believe MRI will be 
more available for lung cancer assessment because CT and FDG-PET/CT have some risk of radiation 
exposure which must be explained and is not expected by patients. 

The ADC value of adenocarcinoma was significantly higher than that of either squamous cell 
carcinoma or small cell carcinoma, which shows that the tissue cellularity of squamous cell carcinoma 
or small cell carcinoma would be higher than that of adenocarcinoma. Through DWI examination we 
realized that we could detect histopathological necrosis and mucinous areas in lung cancer and the 
ADC values could be related to the pathological structure.  

One of the pulmonary lesions which presented restricted diffusion and lower ADC values in 
DWI was a pulmonary abscess with pathological necrosis. The heavily impeded mobility of pus may 
have been caused by its high cellularity and viscosity and shows the low ADC values [29]. Abscesses 
and thrombi impede the diffusivity of water molecules because they have a hyperviscous nature 
[30,31]. The median ADC value (0.877 × 10−3 mm2/s) of abscesses was significantly lower than that 
(2.118 × 10−3 mm2/s) of phlegmon (p < 0.001) and that (3.008 × 10−3 mm2/s) of edema (p < 0.01) [32]. In 
our article, the ADCs of lung cancers were distributed over 0.9 to 1.6 × 10−3 mm2/s. As a result, the 
ADC of a lung cancer with necrosis became lower than that of a lung cancer without necrosis because 
the ADC value of the abscess was lower. If the ADC value of another tumor was lower than that of 
the abscess, the ADC of a tumor with necrosis would become higher than that of a tumor without 
necrosis. In DWI, 22% of benign lesions exhibited restricted diffusion in images with high b-values 
[33]. The articles for the characteristics of abscesses and thrombi can show false-positive results in 
DWI for some benign pulmonary nodules and masses with abscesses.  

On the other hand, mucinous carcinomas were usually hypointense and showed higher ADC 
values, which could be misdiagnosed as benign lesions in DWI [26]. Mucinous carcinomas had lower 
DWI signal intensities and higher ADC values than tubular adenocarcinomas in the ano-rectal region, 
because mucinous carcinomas present lower cellularity than tubular adenocarcinomas [34]. 

DWI and FDG-PET/CT have their own advantages [35]. DWI provides quantitative information 
regarding tissue cellularity and the diffusion of water molecules which are not necessarily related to 
cancer aggressiveness. FDG-PET/CT expresses glucose uptake and presents the aggressiveness of 
neoplasia of inflammation. Gallivanone et al. [36] reported that FDG-PET/CT predicted patient 
prognosis and DWI response to neoadjuvant chemotherapy, and both examinations provide useful 
complementary information for biological characterization and neoadjuvant chemotherapy response 
prediction in breast cancer. DWI could be added for the differential diagnosis of benign lesions and 
malignant lesions of not only lungs but also other organs. The differential diagnosis could become 
possible if we understand the strengths and weaknesses of DWI.  

We should keep in mind that the study had three limitations. First, it was a retrospective study 
and was conducted at a single institution. Second, our ADC measurements were repeated three times 
and the minimum ADC value was obtained. There is no consensus for the optimal DWI techniques 
and image analysis procedure in the literature, including region of interest (ROI) size and placement. 
Third, in some cases, image quality could make calculating the true ADC value more difficult. This 
might be a limitation of this technique compared to PET.  
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Further studies would be necessary to evaluate the performance of DWI for pathological 
characteristics. 

4. Patients and Methods 

4.1. Eligibility 

The study protocol for examining DWI and FDG-PET/CT in patients with lung cancer was 
approved by the ethical committee of Kanazawa Medical University (the approval number: No. I302). 
Written informed consent for MRI and a pathological examination of resected materials were obtained 
from each patient after discussing the risks and benefits of the examinations with their surgeons.  

4.2. Patients 

There were three patients who were excluded due to lower imaging quality. Finally, 226 patients 
with primary lung cancer were enrolled in this study (Table 2). They underwent DWI and FDG-
PET/CT examination before pulmonary resection with nodal dissection from May 2009 to February 
2014. Our previous article [26] dealt with 189 patients with pulmonary nodules and masses 
prospectively that underwent FDG-PET/CT and DWI. There were 143 lung cancers, 17 metastatic 
lung tumors, and 29 benign pulmonary nodules and masses. The 143 lung cancers were included in 
this study. None of the patients had received prior treatment. Out of the 226 patients, 133 were male 
and 93 were female. Their mean age was 68 years old (range 37 to 85). 

Table 2. Patients’ characteristics. 

Age 37–85 Mean 68 

Sex Male 133 
Female 93 

Cell Type 

Adenoca. 167 
Squamous cell ca. 44 

Small cell ca. 5 
LCNEC 3 

Large cell ca. 3 
Other cell types 4 

Operation 

Pneumonectomy 7 
Bilobectomy 3 
Lobectomy 178 

Segmentectomy 2 
Partial resection 36 

pN 
N0 179 
N1 30 
N2 17 

Pathological Stage 

IA 112 
IB 49 
ⅡA 20 
ⅡB 13 
ⅢA 25 
ⅢB 1 
Ⅳ 6 

Cell Differentiation 

Well differentiated 109 
Moderately differentiated 73 

Poorly differentiated 37 
Undifferentiated 7 

There were 167 adenocarcinomas, 44 squamous cell carcinomas, 5 small cell carcinomas, 3 large 
cell neuroendocrine carcinoma (LCNEC), 3 large cell carcinomas, and 4 carcinomas of other cell types. 
Three LCNECs were all combined LCNEC and adenocarcinoma. TNM classification and the lymph 
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node stations of lung cancer were classified according to the new definition of UICC (Union for 
International Cancer Control) 7 [37]. There were 77 pathological T1a (pT1a) carcinomas, 41 pT1b 
carcinomas, 66 pT2a carcinomas, 13 pT2b carcinomas, 26 pT3 carcinomas, and 3 pT4 carcinomas. 
There were 179 pathological pN0 (pN0) carcinomas, 30 pN1 carcinomas, and 17 pN2 carcinomas. 
There were 112 pathological Stage IA (pStage IA), 49 pStage IB, 20 pStageIIA, 13 pStage IIB, 25 pStage 
IIIA, 1 pStage IIIB, and 6 pStage IV. 

4.3. MR Imaging 

All MR images were produced with a 1.5 T superconducting magnetic scanner (Magnetom 
Avanto; Siemens, Erlangen, Germany) with two anterior six-channel body phased-array coils and 
two posterior spinal clusters (six-channels each). The conventional MR images consisted of a coronal 
T1-weighted spin-echo sequence and coronal and axial T2-weighted fast spin-echo sequences. DWIs 
using a single-shot echo-planar method were applied with a slice thickness of 6mm under SPAIR 
(spectral attenuated inversion recovery) with a respiratory triggered scan with the following 
parameter: TR/TE/flip angle, 3000–4500/65/90; diffusion gradient encoding in three orthogonal 
directions; b value = 0 and 800 s/mm2; field of view, 350 mm; matrix size, 128 × 128. After image 
reconstruction, a two-dimensional (2D) round or elliptical region of interest (ROI) was drawn on the 
lesion which was detected visually on the ADC map with reference to T2-weighted or CT image by 
a radiologist (M.D.) with 25 years of MRI experience who was unaware of the patients’ clinical data. 
The procedures were repeated three times and the minimum ADC value was obtained. The 
radiologist (M.D.) and one pulmonologist (K.U.) with 28 years of experience evaluated the MRI data. 
They eventually reached the same consensus. The OCV of ADC for diagnosing malignancy in DWI 
was determined to be 1.70 × 10−3 mm2/s using the receiver operating characteristics curve as 
previously reported [21].  

4.4. Pathological Findings 

The parameters of pathological findings were adopted according to pathological reports: cell 
type, sub-cell type, T factor, N factor, pathological stage, cell differentiation, presence of mucin, and 
presence of necrosis.  

4.5. Statistical Analysis 

The data is expressed as the mean ± standard deviation. A two-tailed Student-t test was applied 
for comparison of ADC values in several prognostic factors. The statistical analyses were performed 
using the computer software program StatView for Windows (Version 5.0; SAS Institute Inc. Cary, 
NC, USA). A p value of <0.05 was considered statistically significant.  

5. Conclusion 

The sensitivity of DWI for lung cancer was 92% and DWI would be a useful tool for clinical 
diagnosis and evaluation of lung cancer. DWI would have an advantage in qualitative evaluation of 
lung cancer. 
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