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Abstract: Little is known about the effect of oncolytic adenovirotherapy on pediatric tumors. Here 
we present the clinical case of a refractory neuroblastoma that responded positively to Celyvir 
(ICOVIR-5 oncolytic adenovirus delivered by autologous mesenchymal stem cells) for several 
months. We analyzed samples during tumor evolution in order to identify molecular and 
mutational features that could explain the interactions between treatment and tumor and how the 
balance between both of them evolved. We identified a higher adaptive immune infiltration during 
stabilized disease compared to progression, and also a higher mutational rate and T-cell receptor 
(TCR) diversity during disease progression. Our results indicate an initial active role of the immune 
system controlling tumor growth during Celyvir therapy. The tumor eventually escaped from the 
control exerted by virotherapy through acquisition of resistance by the tumor microenvironment 
that exhausted the initial T cell response. 

Keywords: neuroblastoma; oncolytic virotherapy; T lymphocytes (TILs); bioinformatic analysis; 
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1. Introduction 

Our group is developing a unique strategy to deliver an oncolytic adenovirus (ICOVIR-5) [1–3] 
using autologous bone marrow-derived mesenchymal stem cells (MSC) in repeated intravenous 
administration in children and adults with advanced tumors. We named this new advanced therapy 
medicine (ATM) Celyvir, and we recently reported results of the first in human, first in children 
clinical trial [4,5]. Celyvir is a well-tolerated therapy, with very low or no toxicity, that can produce 
clinical responses in some patients, including children with advanced neuroblastoma. 
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ICOVIR-5 is an oncolytic adenovirus developed by Dr. Alemany and colleagues [1,2]. ICOVIR-
5 (HAd5-DM-E2F-K-Δ24-RGD) is derived from human adenovirus serotype 5 (HAd5) and includes 
various genetic modifications that render its replication conditioned to the presence of a deregulated 
retinoblastoma pathway (pRb pathway) in tumor or malignant cells. 

Clinical experiences with oncolytic adenoviruses are scarce [6–8], more so when considering 
systemic and repeated administrations like Celyvir. Little is known about important aspects of this 
new therapy: Pharmakokinetics (PK) and Pharmakodinamics (PD), capacity for tumor homing and 
barriers to reach them, kinetics of antiadenoviral immune responses of patients, among others. We 
and others have studied some of these crucial events in preclinical models [1,3,9,10], but we are in 
much need for information coming from patients. 

Virotherapy is considered a form of immunotherapy [11–14] and so another important aspect of 
oncolytic adenoviruses in the clinical setting is to understand how viral replication in tumors might 
activate an antitumor immune response, how therapy coexists with the antiviral immune response, 
what impact therapy has on tumor immunology, including tumor infiltrating immune cells and the 
tumor microenvironment. 

One patient with metastatic and refractory neuroblastoma was eligible for this study. The 
patient—aged 10—presented a neuroblastoma resistant to three lines of previous therapy (COJEC, E-
SIOP, HR-NBL). Then the patient received Celyvir as sole therapy and showed an exceptional lasting 
response. We obtained biopsies of the primary tumor 4 and 20 months after initiating Celyvir therapy, 
when the disease was stabilized and eventually progressing, respectively. Clinical details of the 
patient were previously reported [4]. 

Outlier survivors of incurable cancers may offer unmatched opportunities for uncovering 
biological information of the disease that may help in designing better treatments for regular patients 
[15,16]. We present here results of a multi-omic analysis of primary tumor samples obtained at 
disease stabilization during oncolytic adenoviral therapy and at final tumor progression. Our study 
may help in understanding the process of tumor escape from the initial control exerted by adenovirus 
virotherapy. 

2. Results 

2.1. The Landscape of Infiltrating Immune Cells during Tumor Evolution under Oncolytic Virotherapy 

We initially reported results of a cohort of patients with relapsed-refractory neuroblastoma that 
received weekly infusions of bone marrow-derived autologous mesenchymal cells carrying an 
oncolytic adenovirus as only therapy. Here we present an in-depth characterization of the patient 
that received the maximum doses of oncolytic virus (70 doses) [4]. 

RNA-Seq data obtained from tumor samples at disease stabilization during therapy and at final 
disease progression were analyzed using different algorithms, in order to ascertain biological 
characteristics of tumor evolution during oncolytic virotherapy pressure. Presence of infiltrating 
stromal/immune cells in tumor tissues was evaluated using ESTIMATE (Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression data) [17]. Major differences were found 
between immune score (p = 0.0025) and stroma score (p = 0.06, Figure 1A) at both stages of the disease. 
We found the stabilized disease was more infiltrated by immune cells compared to progression stage. 
Also, the Immunophenoscore, a measure of the overall immunogenicity of the tumor, was higher in 
stabilization than in progression (p = 0.0005, Figure 1B). Next, MCPcounter software 
(https://omictools.com/mcp-counter-tool) was used to obtain information about specific cell lineages 
infiltration. A predominance of B lymphocytes (score 3.5 vs. 0.5; p = 0.0000003), T lymphocytes (score 
2.2 vs. 1.8; p = 0,0007), CD8 T cells (score 3 vs. 2.8; p = 0.0313), NK lymphocytes (score 0.6 vs. 0.55; p = 
0.0241) and myeloid dendritic cells (score 1.8 vs. 1.1; p = 0,0002) was observed during stabilization. In 
contrast, monocytes were significantly more abundant during progression (score 3.2 vs. 2.9; p = 
0,0005) compared to stable disease. Scores for endothelial cells and fibroblasts were lower at 
progression compared to stable disease (Figure 1C). The estimation of immune populations was also 
done using the QuanTIseq algorithm [18]. QuanTIseq analysis confirmed the presence of significantly 
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more B cells (p = 0.011), dendritic cells (p = 0.024), NK cells (p = 0.026), and T lymphocytes (p < 0.05) 
during stabilization compared to progression. QuanTIseq also showed significantly higher 
abundance of M2 macrophages (p = 0.023) and a trend towards higher abundance of Tregs (p = 0.069) 
during stabilization, classically associated to a less inflamed and more protumoral tumor 
microenvironment (Supplementary Figure S1). We next estimated the relative abundance of 22 
immune cell subtypes in each sample by CIBERSORT [19]. We identified B lymphocytes (naïve B cells 
and memory B cells) as the dominant population during disease stabilization. T CD4 memory 
predominated over CD8 within tumor infiltrating T lymphocytes (TILs) at that time, while M2 
macrophages were the principal subpopulation among myeloid cells. During disease progression 
plasma cells appeared as the main component of B lymphocytes, while CD8 predominated over CD4 
among TILs. Activated NK lymphocytes also appeared more represented at this time, while M2 
macrophages predominated among the myeloid compartment, with increasing proportions of M0 
and M1 macrophages (Figure 1D). In summary, the results of all analysis showed that a higher 
infiltration and activity of cells of the adaptive immunity dominated the immune landscape during 
oncolytic stabilization of the disease, evolving towards a more prominent presence of cells of the 
innate immunity when the tumor eventually progressed out of the control of the oncovirus therapy 
(Figure 1E). 

We observed the significant higher presence of B lymphocytes in stabilized state compared to 
progression state (Figure 1C). However, distinct B lymphocytes subpopulations were 
overrepresented in both tumor samples when analyzed with CIBERSORT tool (Figure 1D). Naïve B 
cells were the most abundant population during stabilization, followed by memory B cells, whereas 
plasma cells were the only B cell subpopulation represented during progression. B cells played an 
active role during all disease stages, though we did not perform more deep analysis for these 
lymphocytes and we focused our analysis in T lymphocytes, more representative in previous 
literature. However, we find these results very interesting for future considerations regarding tumor 
infiltrating leukocytes studies. 

We interrogated the data set to investigate changes in the profile of chemokine expression during 
tumor evolution that might correlated with the differences found in the immune cell infiltration 
already described. We found significantly higher expression of genes related to B lymphocytes 
chemotaxis (CCL [C-C motif Ligand]19, CCL21, CXCL [C-X-C motif) ligand]12, and CXCL13) during 
disease stabilization. Known lymphocytes (CCL19, CCL20, CCL21, and CCL22) and DCs (CXCL12) 
chemokines were also expressed at significantly higher levels at disease stabilization, while 
chemokines that recruit myeloid cells (CCL3, CCL4, CCL5), Treg (CCL4) and activated T 
lymphocytes (CXCL9, CXCL10, and CXCL11) were expressed at significantly higher levels during 
tumor progression (Figure 2). 
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Figure 1. Immune cell estimation in tumor samples. (A) ESTIMATE (Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression data) graphs showed significant higher 
values of immune cells (p = 0.0025) were found in stabilized disease compared to progression, whereas 
no significant differences in stromal component were found between both samples (p = 0.061). (B) 
Immunophenoscore also showed higher number of immune cells during stabilization. (C) 
MCPcounter graphs showed the abundance of distinct immune subpopulations in both tumor 
samples. (D) CIBERSORT showed the proportions of distinct immune cell subpopulations. (E) Graphs 
of the main immune component of each sample. 

D E 



Cancers 2020, 12, 1104 5 of 19 

 

 
Figure 2. Heatmap showed correlations and abundance of distinct sets of chemokines at different 
stages of the disease. Chemokines related to lymphocytes, dendritic cells, and neutrophils were 
overrepresented during stabilization stage. However, chemokines related to both activated T cells 
and myeloid cells appeared to have a higher representation during progression. 

2.2. Tumor Infiltrating T Lymphocytes during Tumor Evolution 

We next focused our analysis on tumor infiltrating T lymphocytes, a population containing 
antitumor T cells. Deep sequencing of T-cell receptor (TCR)beta chain gene analysis showed higher 
numbers of clonal rearrangements coming from the tumor sample obtained during the final 
progression of the disease (Figure 3A). In addition, the relative frequencies of the 10 most abundant 
rearrangements related to the pool of sequences were also higher during tumor progression 
(Supplementary Table S1). This suggests a more diverse TIL infiltration during disease evolution with 
fewer clones dominating the TIL landscape at the time of progression. Fifty percent of the 10 most 
abundant rearrangements found at the time of disease stabilization remained during progression. In 
total, 8% of the sequences present during stable disease also appeared in the tumor during 
progression, indicating the persistent infiltration by the same T cell clones (Figure 3B). 
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Figure 3. T-cell receptor (TCR) profile at both stages of the disease. (A) Total number of clonal 
rearrangements was higher during progression (M6) compared to stabilization (M7). Some of the 
rearrangements (414) were shared between both stages. (B) The abundance of rearrangements was 
higher during progression. Of these total number of rearrangements, 496 were present at both stages 
of the disease. 

We analyzed the expression levels of genes related to T lymphocyte activation. T lymphocytes 
expressed higher levels of granzymes (GZMA, GZMB) and perforin (PRF1) genes (Figure 4A) at the 
time of progression, as well as markers associated to chronic activation (HAVCR2, LAG3, and TIGIT) 
(Figure 4B). We validated these findings by quantitative PCR for the T cell receptors related to T cell 
exhaustion (HAVCR2/TIM3, LAG3, and PD1), and the two most common ligands for each of them 
(HMGB1 and CEACAM; HLA-DR and LSECTIN; and PDL1 and PDL2, respectively), as well as the 
three known isoforms of TGFβ (TGFB1, TGFB2, and TGFB3). The results indicated that the 
microenvironment during tumor progression showed significantly higher expression levels for the 
ligands of the PD1 receptor (PDL1 and PDL2) compared to previous tumor stabilization status. LAG3 
receptor was also significantly overexpressed in progression, but its two ligands (HLA-DR and 
LSECTIN) were significantly downregulated (Figure 4C). Therefore, tumor infiltrating T 
lymphocytes during progression showed higher expression of receptors related to T cell exhaustion 
in a tumor microenvironment that provided higher levels of the corresponding ligands.  

A B 
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Figure 4. T lymphocytes activation / state phenotype was studied. (A) Granzimes and perforins 
showed an increased presence during progression stage, indicating a more activated T lymphocyte 
phenotype. (B) Exhaustion markers for T lymphocytes were also increased during progression. (C) 
Molecules associated to T cell exhaustion and immunosurveillance were analyzed by qPCR in both 
samples. Bars represent gene expression at the time of clinical progression. The result was normalized 
to the values of the sample corresponding to clinical stabilization (* p < 0.05). Fold change indicated 
how many times gene expression was higher/lower during progression compared to stabilization. 
During progression, exhaustion markers TIM3 (HAVCR2), LAG3, and PD1 were significantly 
overexpressed. 

We also analyzed the genetic and molecular programs activated during disease using GSVA 
(Gene Set Variation Analysis). We found caspase/apoptosis pathways and cell cycle activation were 
higher during stabilization (Supplementary Figure S2). 

C 
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2.3. Mutational and Neoepitope Landscape during Tumor Evolution 

We next interrogated our WES data sets to find out variations in the sequence of each tumor 
sample, looking for the mutational landscape. The total number of sequence variations found at 
progression was higher than those detected during disease stabilization, 169 versus 101. Overall, a 
total of 55 single nucleotide variations were common to both samples (Figure 5A). CONDEL software 
[20] was used to identify genetic mutations with a putative functional impact. Table 1 lists mutations 
identified in the sample corresponding to tumor progression that were absent during stabilization.  

Table 1. List of mutations predicted by CONDEL for progression stage. 

Gene Description 
IFT140 Intraflagellar transport 140 

DNASE1 Deoxyribonuclease 1 
DNAH9 Dynein axonemal heavy chain 9 

GALNT15 Polypeptide N-acetylgalactosaminyltransferase 15 
ZNF98 Zinc finger protein 98 

GABBR1 Gamma-aminobutyric acid type B receptor subunit 1 
KIAA0391 KIAA0391 
MIPOL1 Mirror-image polydactyly 1 

RYR1 Ryanodine receptor 1 
UCHL1 Ubiquitin C-terminal hydrolase L1 
EML2 Echinoderm microtubule associated protein like 2 

CELSR3 Cadherin EGF LAG seven-pass G-type receptor 3 
ABHD2 Abhydrolase domain containing 2 
RIPK2 Receptor interacting serine/threonine kinase 2 

IQGAP1 IQ motif containing GTPase activating protein 1 
VWA3B Von Willebrand factor A domain containing 3B 

AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase 
PABPC1 Poly(A) binding protein cytoplasmic 1 

SLK STE20 like kinase 
ALDH2 Aldehyde dehydrogenase 2 family (mitochondrial) 
GLE1 GLE1, RNA export mediator 

LRP1B LDL receptor related protein 1B 
TRPV6 Transient receptor potential cation channel subfamily V member 6 
ASIC5 Acid sensing ion channel subunit family member 5 

SI Sucrase-isomaltase 
CREG1 Cellular repressor of E1A stimulated genes 1 
PSMD1 Proteasome 26S subunit, non-ATPase 1 

COSMIC (Catalog of Somatic Mutations in Cancer) mutational signatures was inferred from 
WES data. Results indicated the unique and common genetic signatures for each sample, as well as 
their relative frequencies (Figure 5B, Table 2). Data was extrapolated from the abundance of each base 
(A, T, G, or C) in the genome of each sample (Figure 5C). There was greater signature variability 
during stabilization compared to progression state. However, relative signature abundances of the 
progression are greater (especially patent in signature 24). Of special interest were two of the 
signatures identified: Signature 18, which is classically associated with neuroblastoma and appears 
during the progression of the disease, and signature 2, which appears during stabilization state and 
is associated to a wide variety of cancers, and was related to the activation of AID/APOBEC 
deaminase. 
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Table 2. Mutational signatures detected in both tumor samples after quantification of DNA bases. 

Stabilization Progression 
Signature Percentage Signature Percentage 

Signature 5 19.1928% Signature 24 40.5295% 
Signature 29 16.4542% Signature 18 20.1733% 
Signature 4 15.7368% Signature 4 15.8887% 
Signature 24 13.4168% Signature 6 13.7232% 
Signature 15 10.7573% Signature 12 6.8523% 
Signature 18 7.0359% Signature 20 1.9288% 
Signature 2 5.6384% Signature 11 0.9041% 
Signature 6 5.289%   
Signature 23 3.6131%   
Signature 21 2.8656%   

 

 

 
Figure 5. Mutational studies of both tumor samples. (A) Total number of mutations was higher during 
progression. (B) Diagrams showing the presence of different mutational signatures associated to 
different types of cancer in both tumor samples. (C) Diagrams showing the abundance of each base 
pair for both tumor samples. This distribution allowed to know the mutational signatures described 
in B. 

B 

C 
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Regarding common mutations in neuroblastoma, both tumors at time of stabilization and 
progression harbored ATRX mutation. We used NetMHC [21,22] to predict neoepitopes based on the 
presence of single nucleotide variants (SNVs) detected in each tumor sample and patient's human 
leukocyte antigen (HLA). This analysis revealed a higher neoepitope candidate load in the tumor at 
progression compared to that during stable disease, 18 versus 5. Interestingly, all 5 candidates found 
during disease stabilization were also detected at progression. (Table 3 and Table 4). 

Table 3. Detailed predicted neoepitopes in both stages of the disease. Predicted neoepitopes in 
stabilized disease.  

Identity (Protein the Peptide Comes 
from) 

Number of Times 
Identity Appears in 

Analysis 
Description 

ASIC5 2 
Acid Sensing Ion Channel Subunit 

Family Member 5 
YLPM1 1 YLP Motif Containing 

SLC38A1 1 Solute Carrier Family 38 Member 1 
HMGB3 1 High Mobility Group Box 3 

Table 4. Predicted neoepitopes in progression disease. 

Identity (Protein the 
Peptide Comes From) 

Number of Times Identity 
Appears in Analysis 

Description 

OR2M2 5 
Olfactory Receptor Family 2 Subfamily M 

Member 2 
UCHL1 1 Ubiquitin C-Terminal Hydrolase L1 

ASIC5 3 
Acid Sensing Ion Channel Subunit Family 

Member 5 
YLPM1 1 YLP Motif Containing 
ZNF98 1 Zinc Finger Protein 98 

AGL 1 
Amylo-Alpha-1, 6-Glucosidase, 4-Alpha-

Glucanotransferase 
GHRL 2 Ghrelin and Obestatin Prepropeptide 

GALNT15 2 
Polypeptide N-

Acetylgalactosaminyltransferase 15 

CELSR3 1 
Cadherin EGF LAG Seven-Pass G-Type 

Receptor 3 
UCHL1 2 Ubiquitin C-Terminal Hydrolase L1 

SLC38A1 1 Solute Carrier Family 38 Member 1 
HMGB3 1 High Mobility Group Box 3 

Once identified neoepitope candidates, we studied the integrity of genes related to antigen 
processing and presentation. RNA-Seq analysis showed no deficit in the expression of antigen 
processing and presentation. In fact, expression of most of these genes was higher at progression 
compared to stabilized disease (Figure 6). These results suggest that the neoepitopes could be 
expressed in HLA molecules at any time during tumor evolution.  
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Figure 6. Gene expression of molecules related to antigen presentation and processing, including 
HLA molecules. 

3. Discussion 

We present here genomic studies of tumor samples at different moments during systemic 
virotherapy in a case of refractory neuroblastoma. The patient may be classified as outlier based on 
her clinical outcome; she survived for 22 months with metastatic neuroblastoma refractory to 3 lines 
of therapy, receiving oncolytic virotherapy as sole treatment. Although limited for coming from a 
single case and the lack of functional validation, the information may help in understanding the 
process of tumor escape from the control exerted by virotherapy, for which scant information 
currently exists [23,24]. The snapshots taken at two different time points of the evolution of this tumor 
showed striking differences that corresponded to different biological behavior and clinical responses. 
Both tumor cells and infiltrating immune ones transited from disease stabilization to progression by 
accumulating changes in many aspects of their biology.  

We did not find evidence that virotherapy exerted significant tumor lytic effect during disease 
stabilization. We do not have data on the antiadenoviral antibody titers for the patient, therefore we 
ignore the effects of a likely immune response against the oncolytic adenovirus. However, we have 
previously shown in mouse [25] and in dogs [26] treated with species-specific oncolytic adenoviruses 
that the presence of a humoral immune response does not prevent the antitumor effect of the virus. 
Detection of adenovirus in tumor samples by highly sensitive real-time PCR showed minimum 
amount of virus at both time (data not shown). All measurable tumor was detectable at any time from 
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starting virotherapy. As already commented in a first report [4], neuroblastoma cells were mainly in 
a quiescent state during disease stabilization, with no signs of tumor lysis. We show here that the 
presence of more proliferative tumor cells at progression was associated with higher numbers of 
genetic alterations in the tumor genome at that time. One third of these mutations were already 
present during stabilization, when they contributed to more than half of the total mutational burden. 
Acquisitions of new mutations during disease progression are expected in the context of an active 
neoplasia that maintained the intrinsic genetic instability of human tumor cells [27–31]. Among all 
mutated genes identified only at progression, CREG1 (Cellular repressor of E1A stimulated genes 1) is 
particularly attractive as a candidate for validation because it represses the activity of the adenovirus 
E1A protein, and also controls the activation and repression of pathways that induce proliferation 
and inhibit differentiation [32–34].  

In parallel, the total number of possible neoantigens was higher comparing progressive tumor 
to stabilized one. Expression of these putative neoepitopes was confirmed at transcription level. 
Moreover, genes related to antigen processing and presentation appeared unaffected in any sample, 
in fact we detected higher level of expression in the sample corresponding to tumor progression. 
Therefore, it seems likely that tumor associated antigens could be efficiently presented to cells of the 
adaptive immune branch at any time during disease evolution.  

Analysis of gene data sets with different algorithms estimated a decreasing proportion of tumor 
infiltrating immune cells from disease stabilization to progressing tumor. More important than 
changes in the relative number of immune cells, the contribution of individual subpopulations also 
varied with time. Cells of the adaptive immune system dominated the immune infiltration landscape 
during oncolytic stabilization of the disease, evolving towards a more prominent innate immunity 
when the tumor eventually progressed out of the control of the oncoadenovirus therapy. The 
presence of the major immune cell populations also corresponded to the chemokine profiles 
responsible for their recruitment, as was the case with those related to B lymphocytes and dendritic 
cells at the time of disease stabilization [35,36].  

CIBERSORT analysis showed that M2 were the most frequent subtype among macrophages at 
both time points, however, during progression the subpopulations of non-polarized and M1-
polarized macrophages increased compared to stable disease. This change suggests an increased 
recruitment of uncommitted macrophages to the tumor mass during tumor progression, with 
eventual differentiation towards M1 and, predominantly, M2 subtypes. All these myeloid cell 
populations have been related to a more pro-tumoral environment [37–40]. 

Within the infiltrating T lymphocytes, we found more diversity of TCRs at time of tumor 
progression than during stabilization. Fewer clonal TCR rearrangements dominated among total 
TCRs at the end compared to the previous stage. The most frequent TCR rearrangements found 
during stable disease were also detected at the end stage. Since we could not do functional studies to 
assess the presence of tumor reactive T lymphocytes, we do not know the reactivity of these TCR 
clone sequences. It has been reported that many non-tumor-specific T lymphocytes infiltrate human 
tumors [41,42], so we cannot conclude that the wider variety of TCRs found in the progressing tumor 
correspond to higher antitumor infiltrating T cells. It is worth noticing though that higher mutational 
and neoepitopes load during tumor evolution were associated to a greater variety of TCRs, even in a 
shrinking population of TILs. Furthermore, TCR diversity in tumor tissue could be associated to poor 
prognosis in some cases [43,44]. The chemokine environment showed enrichment in molecules 
related to the recruitment of activated T lymphocytes during progression. We found that granzymes 
and perforins were more abundant during disease progression compared to stabilization stage. These 
cytolytic effector molecules are associated to T cell and NK cell cytolytic activity [45–47]. T 
lymphocytes that infiltrated the tumor in the final phase of the disease showed higher expression 
levels of chronic activation markers (PD1, LAG3) [48,49], while ligands for PD1 were significantly 
overexpressed in the tumor microenvironment at progression. This suggests that despite immune 
infiltration by T lymphocytes, intratumor conditions at progression favored T cell exhaustion [50–52]. 
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Marked decrease in the B cell compartment from stabilized to progressing tumor was also seen, 
suggesting that B lymphocytes could have also participated in tumor control through production of 
antibodies and complement cascade, or recruiting DC through CXCL12 secretion [53,54]. 

In summary, oncolytic adenoviral therapy could not eliminate the tumor in our patient but 
certainly exerted some control over it and prevented its progression for an exceptional long period 
through immune-related mechanisms. Repeated administration of oncolytic virotherapy initially 
induced local immune infiltrates dominated by adaptive cells, and the patient obtained the 
stabilization of a, so far, refractory disease. The pressure exerted by therapy along time eventually 
selected the acquisitions of resistance mechanisms such as recruitment of myeloid cells into the tumor 
microenvironment and upregulation of T cell exhaustion inducing molecules. In order to improve 
results and prevent tumor escape, we foresee the combination of Celyvir with additional synergistic 
strategies: Radiotherapy (enhances MSCs into irradiated areas [55]), chemotherapies that do not 
cause lymphodepletion [56], or the use of checkpoint inhibitors, as it has already been reported in 
patients with melanoma treated with oncolytic virotherapy [57].  

4. Materials and Methods  

4.1. Patient’s Samples. 

Fresh tumor samples were obtained from surgery in two different moments of disease stage and 
tumor development. The first biopsy was obtained when the patient still responded to oncolytic 
virotherapy treatment (stabilization sample), while the second one was obtained during disease 
progression (progression sample). Both of them were stored at -80 ºC until their processing for this 
study. From each sample we isolated RNA and DNA separately. 

4.2. gDNA Isolation and Quantification. 

For gDNA isolation, we used Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Three samples 
were processed to obtain gDNA. Stabilization sample, progression sample, and control sample. 
Stabilization and progression samples corresponded to response to treatment and progression 
disease, respectively. Control sample consisted on healthy mesenchymal stem cells (MSC) from the 
patient. Tissues or cells were digested with Proteinase K and then processed with reagents from the 
kit. gDNA was measured using Thermo Scientific NanoDrop 1000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, DE, USA). Total gDNA form each sample was diluted in DNAse free 
water and sent to Sistemas Genómicos S.L. (Valencia, Spain) to perform Next Generation Sequencing 
(NGS) studies. 

4.3. Whole Exome Sequencing (WES): Variant Calling and Mutational Signatures. 

WES data was analyzed according to GATK best-practices guidelines 
(https://www.broadinstitute.org/gatk/)[58]. FastQC software 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess reads quality. 
Trimmomatic software was used to make a trimming of the first and second base, due to bad quality. 
Then, reads were mapped over reference human genome (hg19/GRCh38) using BWA MEM tool [59]. 
A base recalibration realignment and a removal of duplicates were done using Picard. Variant calling 
was done with Mutect1 software (https://software.broadinstitute.org/cancer/cga/mutect), using a 
normal paired sample as a reference to filter polymorphisms. Variants with frequency >10 and DP > 
20 were selected and annotated using Annovar software (https://doc-
openbio.readthedocs.io/projects/annovar/en/latest/). The contribution of COSMIC [60] mutational 
signatures was calculated with the R package deconstructSigs (https://cran.r-
project.org/web/packages/deconstructSigs/index.html). Detailed and complete list of each different 
genetic signatures can be consulted online (https://cancer.sanger.ac.uk/cosmic/signatures_v2). In this 
case, the study focused on analyzing each signature of those present in the patient’s tumor tissues. 
Total mutation burden was estimated by considering single nucleotide variants (SNV) from exonic 
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regions. The pathogenicity of the identified missense variants was analyzed by using the 
metapredictor CONDEL [20]. 

4.4. T-Cell Receptor (TCR) Sequencing. 

TCR Sequencing was performed with immunoSEQ Assay by Adaptive Technologies 
(adaptivebiotech.com). Their sequencing protocols are based in a multiplex PCR amplification 
directly from genomic DNA, which allow to sequence and identify CDR3 chains highly represented 
in the population of T cells found in the sample. The full protocol was developed by Carlson and 
colleagues [61]. Graphs were generated using immunoSEQ Analyzer. 

4.5. Neoantigen Prediction 

SNV annotated as missense were used for epitope prediction purposes. To do this, human 
FASTA sequences extracted from UniProt were used to translate information about DNA missense 
mutations into an amino acid change level (only isoforms 1 were taken into account). For each 
missense mutation, a sequence of 19-amino acids centered on the mutation were analyzed for 
potential neoantigens. NetMHCCons was used to infer putative immunogenic peptides (19 aa; 9 mer) 
combining information about HLAs patient’ genotype and peptides harboring missense mutations. 
An immunogenic epitope was defined as a mutated peptide with high affinity for one HLA allele 
IC50 < 50nM. 

4.6. RNA Isolation and Quantification. 

Both samples were minced using a Tissue Homogenizer (VDI 12, VWR International Ltd, 
Leicestershire, England, UK) and tissue RNA isolation was performed using RNeasy Plus Mini Kit 
(Qiagen) which includes genomic DNA elimination columns. RNA was quantified with Thermo 
Scientific NanoDrop 1000 spectrophotometer (absorbance at 260 nm and the ratio of 260/280 and 
260/230). Aliquots of 5 µg of total RNA were prepared to send in a final volume of 50 µL of RNAse 
free water. Both samples were sent to Biotechvana (Parque Científico de Madrid, Spain) for its 
analysis. 

4.7. RNA-Seq Analysis: Expression Matrix, Differentially Expressed Genes, and Functional Analysis. 

Samples were processed by Biotechvana company and studies were performed in Unit of 
Biomarkers and Susceptibility (ICO-Idibell). 

From each sample we obtained 3 technical replicates to work with (6 libraries from 2 samples in 
total). FastQC software was used to assess reads quality. To remove Illumina adaptors, a trimming 
of these sequences was done using Trimmomatic software. Then, reads were mapped over reference 
human genome (hg19/GRCh38) using STAR tool [62]. An annotation file in GTF format (downloaded 
from the UCSC Table Browser, using RefSeq [63] genes table including 23,687 genes and 41,970 
transcript isoforms were used for the indexing step. Finally, RSEM tool [64] was used over aligned 
reads (BAM files) to extract a matrix of gene expression in terms of FPKM (Fragments per Kilobase 
per Million mapped fragments). We filter not expressed genes and finally we performed a TMM 
(trimmed mean of M-values) normalization to reduce variability across samples.  

To identify differentially expressed genes (DEG) between the two conditions, a linear model was 
fitted using the R package Limma [65]. A list of DEG with p-value < 0.01 and logFC > 1 was extracted.  

Then, the Gene Set Enrichment analysis (GSEA) algorithm [66] was used to identify enrichment 
in specific cellular functions and pathways. 

4.8. Immune Profile Analysis 

To analyze which immune populations were most abundant in each analyzed sample we used 
a variety of algorithms optimized for deconvolution of immune cell-types from RNA-Seq data. 
Tumor purity, stromal, and immune status were estimated using the R packages ESTIMATE [17] and 
Immunophenoscore [67]. RNA-Seq analysis data was used to obtain the three scores of ESTIMATE 
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that give us idea of tumor purity and immune infiltration: stromal score (quantifies the presence of 
stroma in tumor tissue); immune score (that represents the infiltration of immune cells in tumor 
tissue) and estimate score (infers tumor purity). Immunophenoscore was then used to calculate the 
immune state of the samples. 

Next, proportion of immune cell infiltration were calculated with QuanTIseq [18], CIBERSORT 
[19] and MCPcounter [68]. The online version of CIBERSORT 
(https://cibersort.stanford.edu/index.php) is able to analyze which immune populations are related 
to overexpressed genes obtained through RNA-Seq analysis. We crossed our RNA-Seq data from 
each sample with pre-settled LM22 leucocyte gene signature matrix. 

To obtain a more detailed picture of immune cell-types infiltration, R package MCPcounter was 
used. MCP-counter (Microenvironment Cell Populations-counter) is a deconvolution method for 
quantification of immune cell’s relative abundances in heterogeneous tissues using marker genes. 
Nine different cell types were interrogated (T cells, Cytotoxic T cells, NK cells, B lineage, monocytic 
lineage, myeloid dendritic cells, neutrophils, endothelial cells, and fibroblasts). Results obtained were 
validated by the analysis with QuanTIseq, which performs an absolute quantification of cell types in 
the samples. 

To analyze which immune populations were most abundant in each analyzed sample we used 
CIBERSORT. This online tool (https://cibersort.stanford.edu/index.php) [19] is able to analyze which 
immune populations are related to overexpressed genes obtained through RNA-Seq analysis. We 
crossed our RNA-Seq data from each sample with pre-settled LM22 leucocyte gene signature matrix. 
Obtained data is discussed on Results section. 

4.9. GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data 

Chemokine profiles from each different sample were inferred through Gene Set Variation 
Analysis (GSVA) algorithm [69]. 

4.10. Statistical Analysis 

For all the obtained scores, assumptions of normality and homoscedasticity were interrogated, 
and all comparisons between variables were analyzed using non-parametric tests (Wilcoxon test). For 
all tests applied, differences were considered significant when p-value < 0.05. 

5. Conclusions 

Extensive analysis of omic information obtained from samples gathered during the evolution of 
a neuroblastoma treated with oncolytic adenovirus helped in understanding the mechanisms of 
tumor escape from the control initially contributed by virotherapy. Tumor progression eventually 
selected the acquisitions of resistance mechanisms including recruitment of myeloid cells into the 
tumor microenvironment and upregulation of T cell exhaustion inducing molecules.  

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/5/1104/s1, Figure 
S1: Immune phenotypes predicted by QuanTIseq for both disease stages; Figure S2: Genomic and molecular 
pathways and processes related to apoptosis and cell cycle for both disease stages, Table S1: Ten most common 
rearrangements for each tumor sample.  
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