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Abstract: Targeted radiofrequency (RF) heating induced hyperthermia has a wide range of
applications, ranging from adjunct anti-cancer treatment to localized release of drugs. Focal
RF heating is usually approached using time-consuming nonconvex optimization procedures or
approximations, which significantly hampers its application. To address this limitation, this work
presents an algorithm that recasts the problem as a semidefinite program and quickly solves it to
global optimality, even for very large (human voxel) models. The target region and a desired RF power
deposition pattern as well as constraints can be freely defined on a voxel level, and the optimum
application RF frequencies and time-multiplexed RF excitations are automatically determined. 2D
and 3D example applications conducted for test objects containing pure water (rtarget = 19 mm,
frequency range: 500–2000 MHz) and for human brain models including brain tumors of various size
(r1 = 20 mm, r2 = 30 mm, frequency range 100–1000 MHz) and locations (center, off-center, disjoint)
demonstrate the applicability and capabilities of the proposed approach. Due to its high performance,
the algorithm can solve typical clinical problems in a few seconds, making the presented approach
ideally suited for interactive hyperthermia treatment planning, thermal dose and safety management,
and the design, rapid evaluation, and comparison of RF applicator configurations.

Keywords: RF hyperthermia; thermal intervention; field shaping; field focusing; RF applicator;
hyperthermia treatment planning; thermal magnetic resonance; semidefinite programming

1. Introduction

Vigorous fundamental and (bio)engineering research into electromagnetic field radiation induced
heating of tissue has culminated in an enormous body of literature [1–4]. Localized tissue heating
induced by electromagnetic fields (EMF) has a wide array of applications ranging from thermal therapy
as a potent sensitizer of chemo- and radiotherapy to the controlled release of therapeutics from a
nano-carrier [5–12]. Radiofrequency (RF) heating relies on the interference of electric fields produced
by multiple independent RF sources, which are sought to constructively interfere in the targeted
heating volume while keeping RF power deposition outside the target to a minimum to preserve
healthy tissue. This requirement has spurred consideration of the physics and EMF simulations and
has motivated the development of RF applicator concepts to advance thermal intervention with the
focal point quality being governed by the radiation pattern of the single RF transmit element, the RF
channel count, and the thermal intervention radiofrequency of the RF applicator [13–16].
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The problem of finding the appropriate excitations for each individual RF channel in an RF
applicator to generate the desired specific absorption rate (SAR) pattern is nonconvex. Finding
the global optimum has proven to be challenging and computationally intensive. Time reversal
techniques can be used to maximize RF power deposition at one point, but cannot constrain SAR
in the remaining regions [17,18]. Another approach is to forego direct constraints on localized RF
power dissipation in healthy tissues and instead try to indirectly limit unwanted SAR hot-spots
outside the target region via the tumor-to-hotspot-SAR-ratio [19]. An analytical solution exists to
maximize average RF power inside a target region relative to the total absorbed RF power (SAR
amplification factor, SAF). However, this approach does not preclude strong unwanted localized RF
heating effects [13,20,21]. Closely related approaches try to indirectly suppress unwanted hotspots by
iteratively reweighting the integrated power absorbed in healthy tissues and solving a generalized
eigenvalue problem [21–23]. Investigations into a time-multiplexed application of a set of interference
patterns [23–25] and broadband multi-frequency applicators [26–30] have found a potential use for
these extensions. However, a rigorous algorithm for selecting the globally optimal frequencies and/or
multiplexed excitations does not exist to the knowledge of the authors. A number of proposed methods
seek to apply array synthesis techniques [31] to directly shape the electric fields in a desirable pattern.
The alternating projections algorithm seeks to find the optimum fit of a feasible field pattern to a
desired target, albeit without guarantee of a global optimum and precluding a direct constraint on
undesired hotspots [32,33]. Existing convex approaches to the field shaping problem linearize the
problem by using only the strongest field component at a single or very few point(s) [34–37], which
will not lead to the optimum solution if the assumption of a single dominating component does not
hold true in the target region.

A robust globally optimal solution to the electric field focusing problem would not only significantly
benefit the treatment planning and the treatment efficacy of targeted RF heating induced hyperthermia,
but would also enhance the design and evaluation process of RF applicators. Different RF applicator
designs could be readily compared, and their relative performance accurately benchmarked without
the added uncertainty of a non-optimal solution.

Recognizing this opportunity, this work rigorously derived a convex formulation of the time-
and frequency-multiplexed constrained RF heating problem without unwarranted simplifications and
presents an iterative algorithm to efficiently find its globally optimum solution. Since our proposed
approach provides full control over not only single components, but the whole vector field distribution
using time- and frequency-multiplexing, we termed it multiplexed vector field shaping (MVFS).
The feasibility of this approach was demonstrated in electromagnetic field (EMF) simulations using a
2-dimensional circular water phantom irradiated by 32 broadband localized RF sources created by
a plane wave incident on a small aperture. To advance from phantom setups to a clinical setup, 3D
evaluation of the proposed algorithm was performed in a human brain model including spherical
tumors of various sizes and locations as a target volume using a synthetic broadband RF applicator
comprising a 40-channel helmet grid design.

2. Materials and Methods

2.1. Problem Statement

For time-harmonic electromagnetic fields generated by an array of N interfering sources, power
deposition P and related metrics such as the specific absorption rate (SAR) can be expressed using
quadratic forms [20,38]:

P = xHQx (1)

Here, x denotes the complex (amplitude and phase) excitation vector used to drive the array,
superscript H represents the Hermitian transpose, and Q is a N × N positive-semidefinite (psd) power



Cancers 2020, 12, 1072 3 of 23

correlation matrix obtained by forming correlation integrals of the electric fields inside lossy tissues.
The elements qij of the matrix Q are hence calculated via

qi j =
1
2

∫ ∫ ∫
V

σ(r)E∗i (r)E j(r)dV (2)

where indices i, j denote the source number; σ(r) the electrical conductivity; and Ei(r) represents the
electrical field of the i-th source using a unit excitation. By choosing the volume of integration, matrices
representing said volume can be formed such as a tumor volume or cubes containing a given amount
of tissue mass (e.g., 1 g or 10 g) in order to calculate spatially averaged local SAR.

The goal in localized RF heating applications is to deposit enough RF power in the desired target
region in order to induce localized heating, while keeping RF power deposition in the remaining
regions below a certain threshold to avoid unwanted tissue damage. Due to the additional complexities
of accurate temperature modeling for in-vivo scenarios, local RF power deposition (i.e., local SAR)
is typically used as a proxy for heating. Simple temperature rise models based on the linear bioheat
transfer equation [39] without any time- or temperature-dependent properties can be formulated using
a similar matrix formalism [23,40,41], thus allowing our approach to be directly applied to constrained
temperature optimization. Here, we focused on SAR or RF power.

As both the objective function (SAR in target region) and the constraints (SAR outside target
region) are represented by quadratic forms, the optimization problem to be solved falls within the
class of quadratically constrained quadratic programs (QCQP). With the objective matrix Q, constraint
matrices Si, and associated constraint limits ci, and neglecting the linear and constant terms that do not
arise in the problem at hand, a QCQP in general can be stated as

minimize xHQx
subject to (s.t.) xHSix ≤ ci,

(3)

As long as Q and Si are psd, the problem is convex and can be readily solved. While the matrices
involved in RF heating applications are indeed psd, we did not seek to minimize RF power deposition
but to maximize it. Accordingly, Q in Equation (3) is replaced by the negative semidefinite matrix −Q,
which renders the problem non-convex and thus hard to solve, with the general QCQP being in the
class of non-deterministic polynomial-time (NP)-hard problems [42].

Please note that all spatial field components were explicitly added in the calculation of the
power correlation matrices since the aim was to simply maximize power deposition, irrespective of
the responsible field components. If for any reason direct control over power deposition caused by
individual field components is desired, the integration in Equation (2) can be performed individually for
each component, yielding three distinct matrices to allow directly targeting or constraining individual
vector field components. Similarly, the extension to field magnitudes squared in lossless regions for
general field shaping applications is straightforward [43].

2.2. Semidefinite Relaxation

QCQPs appear in a wide range of fields, and one of the most popular approaches to solve them
is by applying a semidefinite relaxation [42]. In a first step, a trace operation (tr) is applied to the
involved quadratic forms. Since the trace of a scalar is an identity operation, and using the cyclic
property of the trace, any quadratic form expression can be reformulated to

xHQx = tr(xHQx) = tr(xxHQ) = tr(XQ) (4)
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where the rank 1 psd matrix X is formed as the outer product of the excitation vector x with its
Hermitian transpose xH. The optimization problem now reads

mintr(XQ)

s.t. tr(XSi) ≤ ci
X ≥ 0 (X is psd)

rank(X) = 1.

(5)

The non-convexity originates from the rank constraint, and dropping this transforms the problem
into a convex semidefinite program that only has one (global) minimum [44] that can be easily found
using appropriate software tools. Among the most popular are the freely available SeDuMi [45],
SDPT3 [46,47], SDPA [48,49] and CSDP [50]. Commercial solvers such as MOSEK [51] can offer
significantly reduced computation times for large problems. Using these different solvers is conveniently
facilitated by high-level modeling interfaces such as YALMIP [52] or CVX [53].

The remaining difficulty is the retrieval of a solution to the original problem from the relaxation.
In case the solution rank of X is 1, the solution to the relaxed problem is also the solution to the original
problem. x can then be retrieved from X using an eigendecomposition that will only yield one non-zero
eigenvalue λ and its associated eigenvector v. The desired solution vector is then given by x =

√
λv.

In general, the solution is of rank > 1, in which case additional steps are required to get to a
feasible rank 1 solution [42]. However, in the case of localized RF heating, it can be shown that the full
rank solution is of great value and has an actual physical meaning.

2.3. Time-Multiplexed Radiofrequency (RF) Heating

We now consider the case where not one but m distinct excitation pulses are played out in
succession. The power P in this case evaluates to the average RF power delivered in each excitation:

P =
1
m

m∑
k = 1

xH
k Qxk (6)

We can again take the trace of the expression and use the trace’s linear mapping property to
arrive at

tr
(

1
m

m∑
k = 1

xH
k Qxk

)
= 1

m

m∑
k = 1

tr
(
xH

k Qxk
)
= 1

m

m∑
k = 1

tr(QXk) = 1
m tr

(
Q

m∑
k = 1

Xk

)
= 1

m tr(QY)
(7)

This already looks very similar to the previously shown expression for the semidefinite relaxation
approach (Equation (4)). The matrix Y is the sum of the outer products of all excitation vectors with
their Hermitian transpose:

Y =
m∑

k = 1

Xk =
m∑

k = 1

xkxH
k (8)

Several observations about Y can be made. First, Y is psd by construction. Second, depending
on the number of excitation vectors m and whether the individual xk are linearly dependent, the
inequality 1 ≤ rank(Y) ≤ N always holds true, as a Hermitian matrix of dimension N can be of rank N
at most. This means, that for any number of time-multiplexed arbitrary excitation vectors, we can find
at most N alternative excitation vectors uk, resulting in an identical power deposition. With uk being
the orthonormal eigenvectors of Y and λk the associated eigenvalues, Y can be written as a weighted
sum of outer products from its eigenvectors:

Y =
N∑

k = 1

λkukuH
k (9)
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These results of the time-multiplexed excitation case allow us to reach the following conclusions:

1. A rank >1 solution to the semidefinite relaxation corresponds to the time-multiplexed
excitation scenario.

2. The individual excitation vectors for the time-multiplexed application can be retrieved using the
eigendecomposition of X.

3. Any arbitrary number of excitation vectors can be effectively compressed to at most N vectors.

The possibility of compressing an arbitrary number of excitations into at most N vectors is not
a new result, but is already leveraged for the rapid evaluation of local SAR for complex excitation
pulse sequences involving hundreds of segments in parallel transmission magnetic resonance imaging
(MRI) [54–56].

The semidefinite relaxation of the original problem (i.e., dropping the rank = 1 constraint) thus
corresponds to a closely related problem with an actual physical meaning: the time-multiplexed RF
heating scenario. We may not have gotten a free lunch [57], but an N-course dinner menu instead.

2.4. Arbitrary Heating Patterns

At this stage, we have arrived at a convex optimization problem to find the time-multiplexed
excitations to maximize RF power deposition averaged over a chosen volume. For applications such as
heating of large or multiple disjoint regions, it is conceivable that this might lead to solutions where
some regions receive insufficient power deposition and others experience strong focal heating. It
would be more desirable to directly minimize the deviation of local heating from a desired target
pattern. Given M distinct heating target locations, we define a column vector t, whose entries are the
local power depositions at the desired locations:

ti = tr(XQi), i = 1 . . .M (10)

The matrices Qi are the power correlation or SAR matrices of the target regions. Additionally,
we defined a target power vector r, whose entries represent the desired local power deposition and a
diagonal matrix W, where the (i,i) element contains a weighting factor between 0 and 1, which ranks
the importance of the ith target region. The optimization problem can now be stated as a constrained
norm minimization:

min ||W(t− r) ||p
s.t. tr(XSi) ≤ ci

X ≥ 0
(11)

As the norm is a convex function, this problem is again convex and can be tackled using
semidefinite programming. Whether the weighted mean, sum-of-squares, or maximum deviation is
to be optimized can be chosen by selecting the appropriate norm (p = 1,2 or ∞). The target points
are not required to be densely distributed throughout the target volume, as the smallest focusing
sphere has an approximate diameter of λ/3, with λ being the RF wavelength inside the medium [34].
Instead, the spatial distribution could be appropriately undersampled based on the local tissues and
applied frequency.

2.5. Frequency-Multiplexed RF Heating

If an applicator capable of delivering RF power over multiple frequencies is available, the question
arises of which frequency (or frequencies) would be optimal for a specific heating target, and if the
concurrent application of multiple distinct frequency fields leads to an improvement. The current
optimization problem stated in Equation (11) can be easily augmented to the multiple-frequency case.
Since electromagnetic fields at different frequencies do not interfere, their respective heating patterns
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inside the target and healthy regions are entirely additive. Using f as a discrete frequency index
variable, the multi-frequency heating vector tF is defined as

tF =
F∑

f = 1

t( f ) (12)

where F distinct frequencies are used and t(f ) is the heating vector at frequency f. A similar summation
is used to construct the multi-frequency constraint expression

si =
F∑

f = 1

tr
(
X f Si, f

)
(13)

with F distinct optimization matrix variables Xf, and Si,f representing the ith constraint matrix at
frequency f.

The complete optimization problem now reads

min ||W(tF − r) ||p
s.t. si ≤ ci

Xl ≥ 0
(14)

and fully describes the time-multiplexed multi-frequency constrained targeted RF heating problem.
The solution will intrinsically determine which frequency (or frequencies) are most advantageous, and
whether time-multiplexing multiple excitations (determined individually for each frequency) lead to
the best approximation of the desired target pattern.

2.6. Iterative Solution

For a practical application of the derived formulation, the following steps are required:

• EMF simulation of the RF applicator with an appropriate model of the object under investigation
for the desired frequencies.

• Calculation of appropriately averaged SAR matrices for regions targeted for RF heating and for
regions outside the target region for all frequencies.

• Solution of the optimization problem using the calculated SAR and target matrices.
• Retrieval of the individual excitation vectors for each frequency.

While the first two steps can be readily approached using modern computational electromagnetic
field simulation packages, finding a solution can prove computationally demanding. The main obstacle
to overcome is the tremendous number of constraint matrices. SAR matrices are usually calculated on
a three-dimensional voxel grid with a resolution between 1 and 5 mm, resulting in between 105–107

distinct matrices for each individual frequency. Solving an optimization problem of this magnitude is out
of reach for readily available computing workstations and available semidefinite programming solvers.
Different approaches have been suggested to tackle this such as dedicated algorithms incorporating
highly parallel SAR calculation algorithms [56,58,59], or compression algorithms to reduce the number
of constraint matrices to a smaller set of virtual observation points (VOPs) [60–62]. Notwithstanding this
progress, the former is incompatible with readily available semidefinite programming solvers, while
the latter suffers from a significant one-time computational burden to calculate the compressed matrix
set, which will be further exacerbated once multiple frequencies have to be considered. Additionally,
the intrinsic overestimation of the VOPs will produce non-optimal results.

Here, we propose an alternative approach that can readily deal with very large constraint sets,
yielding the optimum solution in a small number of fast iterative calculations, with a runtime only
weakly dependent on the total number of SAR matrices in the model. It is intuitively clear that not
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all constraints will be active at the optimum solution, as not all off-target voxels will experience the
same local heating. It is instead more probable that a small number of “hot-spots” will act as the active
constraints. The idea at the core of our approach is to iteratively assemble this set of active constraints
required for an optimum solution, while leaving out most unused constraints.

The iterative solution algorithm is outlined in Figure 1. The choice of the initial subset and how
many of the violated constraints to add to the next iteration is somewhat heuristic and has an impact
on the total runtime. A good initial choice are all voxels that exhibit the strongest SAR values when
heating with a specific single element, averaged over all frequencies. This results in N initial constraint
matrices, which effectively act as a sort of individual channel forward power constraint. Additionally,
we have found that adding the top N strongest violated constraints to be a good tradeoff between the
number of iterations required and solver speed for a single iteration. In the constraint removal step,
we considered a constraint for removal if it was unused in the previous three iterations.
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Figure 1. Flowchart of the iterative solution algorithm. The algorithm initially selects a small subset of all
healthy (=constraint) voxels to be considered during the targeted heating calculation. After performing
the optimization, the resultant specific absorption rate (SAR) in the unconsidered voxels is calculated to
find regions where the found solution violates the constraints (i.e., leads to undesired heating in healthy
regions). A small number of the healthy voxels experiencing the strongest heating are added to the
constraint subset and the optimization is repeated. This process is iterated until no further constraints
are violated by the solution. The last step in the dashed outline is optional and only required if the
number of constraints has increased to a level that significantly impacts each iterative solution runtime.

2.7. Retrieval of Excitation Vectors

Once the optimization has concluded, the excitation vectors required to achieve the calculated
RF hyperthermia result need to be extracted from the optimizer output. Recalling the formulation
introduced in Equation (12) ff., an optimization using N sources each operating at F distinct frequencies
will yield F distinct (N × N) psd matrices Xf.
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1. Perform an eigendecomposition of each matrix Xf, each yielding N eigenvectors vk and their
associated eigenvalues λk. Very often, the solutions will be strongly rank-deficient, having only a
few large eigenvalues. Each individual excitation vector is given by vk

√
λk.

2. Compute the local SAR distribution for each of the N · F excitations and evaluate their respective
influence on the target region (e.g., by calculating their maximum and mean SAR inside the
target region).

3. Discard all excitations that do not significantly contribute to the solution (e.g., all excitations
whose maximum SAR contribution to the target region falls below a certain threshold). In our
examples, we chose to discard all vectors contributing less than 0.1% to the overall solution.

4. Scale the remaining vectors for time-multiplexing. If M solutions belonging to the same frequency
remain, this indicates that time-multiplexing is required (i.e., the excitations are played out in
succession during the application and each solution vector needs to be scaled by

√
M. Excitations

at different frequencies do not interact coherently and can in principle be played out concurrently
(i.e., their SAR patterns are purely additive). If the different frequency solutions are also applied
in a time-multiplexed fashion, a similar scaling needs to be performed.

Once the solution vectors are extracted, the time-averaged power required for each excitation
can be calculated via their norm. It should be noted that the algorithm does not prescribe how the
time-averaged power is to be reached. There is a degree of freedom in deciding, for example, whether
two time-interleaved excitations are played out for the same duration with the computed level of
total forward power, or if the identical forward power is prescribed for both excitations and different
application durations for the respective pulses are used to reach the required relative power levels.

2.8. Implementation and Validation

The described algorithm was implemented in MATLAB (The Mathworks, Natick, CA, USA)
using the high-level optimization modeling toolbox YALMIP [52]. This toolbox allows one to directly
formulate the objective function and constraints as they are stated in the equations, and automatically
translates them into a format that can be parsed by a chosen low-level semidefinite programming
solver. In our work, we utilized MOSEK, which offers a significant speedup for large problem sizes
compared to other solvers. All optimization tasks were performed on a Workstation computer with a
10-core Intel Xeon W-2155 processor and 256 GB of RAM. Typical memory footprints of the performed
optimizations stayed significantly below the maximum available RAM, requiring about 32 GB at most.

The proposed algorithm was applied to two different setups in order to demonstrate its features
and help intuitively elucidate the “inner workings” of the algorithm. All simulations were performed
using the time-domain solver of CST Microwave Studio 2020 (Dassault Systèmes, Vélizy-Villacoublay,
France). The resultant field data were exported to MATLAB for further processing.

The first setup, shown in Figure 2, was comprised of a 2-dimensional circular water phantom
irradiated by 32 broadband localized sources created by a plane wave incident on a small aperture.

A 2-dimensional model was recreated in the 3D domain by using periodic boundary conditions on
the z-directed boundaries. The spatial mesh resolution was set to 0.75 mm. Water was modeled using
the single-pole dispersion model provided by CST. The plane wave excitation bandwidth spanned
500–2000 MHz, with steady state frequency domain monitors recording fields at 100 MHz steps within
this range. The time-domain convergence criterion was set to −80 dB. Local SAR matrices were
calculated on the computational grid of 0.75 mm and subsequently rebinned to a 2.5 mm grid using a
locally and globally energy conservative algorithm [63], thus reducing computational burden without
sacrificing accuracy. All shaped heating computations were carried out on this grid without spatially
averaging the SAR over multiple adjacent voxels.

This synthetic example was chosen because the low-loss pure water sample has the advantage of
allowing deep field penetration over a wide range of frequencies, which will serve as a benchmark to
demonstrate the main features of the algorithm. Both single- and multi-frequency optimization for
simple circular as well as more complex shapes will be demonstrated.
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Figure 2. Depiction of the simulated 2D setup using a pure water phantom. A plane wave with
EZ-polarization incident on a 2 cm aperture in a perfectly conducting shield is used as an excitation
source to mimic a localized broadband radiofrequency applicator. In consecutive simulations, the
aperture was rotated around the sample in 32 steps to provide completely circumscribing field sources.
An exemplary E-Field plot is shown on the right.

The second setup involves the realistic high-resolution human voxel model MIDA [64], which
differentiates 153 different structures at a spatial resolution of 500 µm. For excitation, a helmet-like
structure enclosing the upper head of the head model was designed. Two different tumor geometries
were embedded in the voxel model as heating targets for analysis. The first geometry features a single
spherical tumor (r = 2 cm) approximately centered in the applicator. For the second geometry, two
disjoint spherical tumors of different radii (r1 = 3 cm, r2 = 2 cm) were embedded at off-center locations.
The simulated setup is shown in Figure 3.
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recorded in 100 MHz steps within the range. The simulation mesh resolution was variable, with a 
minimum mesh step size of 2 mm. Tissue dielectric properties were simulated using dispersive Cole–
Cole models taken from the IT’IS database [66]. The tumor properties were also modeled as 
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Figure 3. (a) Synthetic 40-channel helmet grid applicator for 3D evaluation of the proposed algorithm.
The conductive paths conform to the contours of the head and can generate electromagnetic fields
with varying polarizations. Simulated power sources are marked as red arrows. The RF applicator
is shielded by a continuous conformal perfectly conducting shield positioned 2 cm away from the
conductors (grey shaded area). (b) Sagittal and (c) coronal view of a spherical tumor (radius 2 cm) that
was incorporated into the brain of the human voxel model and positioned at the center of the applicator
(light green shaded area). (d) and (e) show oblique slices through the center of the second tumor model
using two differently sized tumors (radius 2 and 3 cm).
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The grid-like structure contains 40 sources, which can be driven independently and generate
varying current distributions on the conductors. The mesh-like structure of the helmet applicator
was inspired by similar approaches that are utilized to help design optimum RF coil arrays for
MRI [65]. Excitation was performed with broadband pulses (100–1000 MHz) and steady-state fields
again recorded in 100 MHz steps within the range. The simulation mesh resolution was variable, with
a minimum mesh step size of 2 mm. Tissue dielectric properties were simulated using dispersive
Cole–Cole models taken from the IT’IS database [66]. The tumor properties were also modeled as
dispersive based on the literature data of human glioma [67]. Since the available literature did not
contain any data for glioma above 500 MHz, dielectric properties were extrapolated to 1000 MHz.
For the extrapolation, a mixed model of grey matter, white matter, and cerebrospinal fluid was fitted
to the tumor dielectric properties between 100 and 500 MHz, which was then used to extrapolate
up to 1000 MHz. This approach is motivated by preserving the relative dielectric behavior of the
tumor compared to its surrounding tissues, which was found to have a 30% higher conductivity and
permittivity compared to surrounding tissues between 5 and 500 MHz [67].

Local SAR matrices were again computed directly on the computational mesh and subsequently
rebinned to an isotropic 5 mm grid, resulting in approximately 30,000 matrices per frequency sample
(300,000 in total). SAR matrices for the tumor were extracted from this unaveraged dataset. To generate
the healthy constraint matrices, all SAR matrices belonging to the tumor were set to zero to create
a dataset containing only power deposition in healthy tissues. Subsequently, these matrices were
convolved with a 10 cm3 spherical averaging kernel [68] as an approximation to spatially averaged
10 g SAR [19]. Voxels containing more than 10% air after the averaging procedure were discarded.

Targeted RF hyperthermia optimization was performed on the single tumor model for both
single- and multi-frequency applications. For the two-tumor model, the multi-frequency solution with
different relative weightings between the two tumors was explored. The results were quantified with
SAR statistics over the tumor volume along with the TC25, TC50, and TC80 values, which detail the
fraction of the tumor enclosed in the 25%, 50%, and 80% isolines of peak SAR, respectively [69–72].

For comparison with an established algorithm, we computed solutions to the single-tumor case
using an implementation of the focused constrained power optimization (FOCO) algorithm [37] and
compared it to the MVFS approach. For this purpose, we selected the central tumor voxel as the target
and performed a rank-1 approximation of the corresponding SAR matrix. Any unaveraged (point)
SAR matrix has a maximum rank of 3 as it is composed as a sum of the SAR matrices calculated from
each of the field components in the x, y, and z direction. Hence, performing a rank-1 approximation
is equivalent to picking the dominating field direction as is done in FOCO. Using this matrix inside
our optimization yielded the same result as FOCO, except for a possible global phase factor which is,
however, irrelevant for the power deposition. The result was then compared to several increasingly
complex MVFS scenarios using the full rank center matrix, a single matrix averaged over the whole
tumor, and spatial shaping over the tumor volume with different target values and norms.

Extensive benchmarking was performed to demonstrate the performance of the algorithm using
the single-tumor human model. The optimization was performed with a set of reduced channels
(4–40 in steps of 4) and frequencies (1, 2, 4, 6, 8, and 10) in order to show the runtime dependence on
these parameters. This parameter sweep was performed for full target sampling (257 points inside the
tumor) and for 8-fold spatial undersampling (32 points). Finally, we compared the iterative approach
to an optimization using all constraints at once. Computation times for all shown results outside the
benchmark cases were also reported. For some selected cases, run times were compared to values
reported in the literature for particle swarm optimization and FOCO [34] as well as a scalar field
shaping case [43].
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3. Results

3.1. Phantom Setup Using a 32-Channel 2D Applicator

Most of the algorithm’s properties can best be understood from the examples in the 2-dimensional
setup. The excitation of a spherical region (r = 19 mm) inside the water phantom is detailed in Figure 4.
The desired target SAR was arbitrarily set to 1000 W/kg in order to maximize power deposition. SAR
outside the target was constrained to 40 W/kg. The first optimization in (a) was performed using only
the 500 MHz source, aiming to minimize the sum-of-squares deviation (i.e., 2-norm) from the target.
The strongest contribution came from a focused mode with a bright central spot, however the algorithm
provided two additional modes that deposit power in the periphery of the target while having much
lower deposition in the center. Being at the same frequency, these three modes would have to be played
out in a time-multiplexed manner to achieve the overall power deposition pattern. The overall mean
and peak SAR values reached were 147.1 and 246.9 W/kg, respectively. For the next example shown in
(b), all frequencies between 500 MHz and 2000 MHz could be used. The algorithm identified four modes
at four distinct frequencies (500–800 MHz) as the optimum solution. At 500, 700, and 800 MHz, the
excitations provided strongly focal heating in the center, with the 600 MHz excitation adding only very
little SAR in the periphery. Mean and maximum SAR increased to 178.2 and 379.9 W/kg, corresponding
to an improvement over the single-frequency result of 21 and 54%, respectively. The explanation for the
improved performance is marked with arrows in (a) and (b): At 500 MHz, a circular region outside the
target is mostly spared from power deposition. The higher-frequency excitations can “squeeze” their
power deposition outside the target into this region, generating a complementary SAR distribution
on the outside while simultaneously adding up their contributions inside the target. This is a key
behavior of the proposed approach and one of its main working principles. Whereas the 2-norm
was minimized in the first two examples, the optimization for (c) targeted the worst-case deviation
(i.e., infinity-norm) from the target. While the mean value was about on par with the single-frequency
result (a), the standard deviation of the local SAR inside the target was markedly reduced from 49.3
to 19.8 W/kg. Power was deposited much more homogeneously throughout the target, albeit at the
cost of a reduced peak value. This homogenization is enabled by utilizing six excitations over four
different frequencies. In this case, the excited modes showed complementary behavior both inside and
outside the target. At both 1200 and 800 MHz, two modes with an almost orthogonal pattern emerged,
offering high power deposition at complementary positions inside the target “avoiding” each other’s
power deposition on the outside. It is important to note that not all the resulting excitations need to
be used in the final application. The progression in (d) shows the cumulative effects of the first five
modes identified as part of the solution in (c). While power deposition increases and homogenizes
with each added mode, diminishing returns are to be expected at a certain point.

In principle, arbitrarily complex shapes with varying target values can be approximated, as
is demonstrated in Figure 5. Here, the target SAR was chosen to be composed of 60 and 80 W/kg
regions, which was lower than the previous example and allowed for trading off peak and mean power
deposition for homogeneity [16]. While the target distribution (a) featured sharp edges, the weight
distribution (c) was smoothed using a lowpass filter in order to reduce the impact of sharp edges,
similar to that typically done in shaped excitation in the context of MRI [73]. This allows the algorithm
to more strongly deviate from the target in the boundary regions of the desired shape. Together
with an exclusion zone around the target as shown in Figure 4, this allows boundary regions of the
target to be treated with flexibility. The achieved shaped power deposition pattern shown in (d) was
almost perfectly flat, while most of the outside regions were very close to or at the constraint limit
of 40 W/kg. As in previous examples, this is due to the complementary effects of multiple time- and
frequency-multiplexed modes. A total of 43 different excitations was required to generate the shown
pattern, with the first nine shown in (e). While this example is rooted in a Gedankenexperiment, it
conveniently demonstrates the versatility of the proposed approach.
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Figure 4. Demonstration of shaped RF power deposition in the 2D water sample. The target region is
delineated with a cyan contour (r = 19 mm), and the region between the cyan and magenta contour
indicates a “safety margin” where no constraints are enforced. (a) Optimization result using only
500 MHz sources minimizing the 2-norm. The large plot on the left details the total achieved local SAR
deposition, with statistical measures of SAR within the target region detailed in the header (Mean ± SD
(Min–Max)). The smaller plots to the right show the contributions of multiple time-multiplexed modes
scaled to their respective maximum, with their respective peak contribution inside the target region
shown in the header. In (b), all frequencies between 500 and 1500 MHz could be used, resulting in an
improved power deposition pattern. The green arrows indicate a region where SAR in the constrained
regions is spread out between the different frequencies, which demonstrates a key principle of the
proposed algorithm. For (c), the optimization was set to minimize the worst-case deviation from the
target. This resulted in a much more homogeneous power deposition, albeit with lower mean and peak
values. Again, all excitations contributed to the target region but occupied complementary regions
outside it as indicated by arrows. The image succession in (d) shows the cumulative effects of the first
five excitations from (c) to demonstrate how the different patterns build up the final superposition.
Here, the resulting mean value is given in the header.
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Figure 5. Excitation of a complex disjoint shape inside the water phantom (the logo of the first author’s
affiliation). The top row shows the target pattern with 60 and 80 W/kg regions (a), constraints of
40 W/kg (b), and weighting distribution (c) used for the optimization. The achieved heating pattern
is shown in (d), which requires time- and frequency-multiplexed excitation using 43 different modes
between 500 and 2000 MHz. The first nine modes with the strongest peak impact are shown in (e).
Measures of SAR within the target region are detailed in the header (Mean ± SD (Min–Max)).

3.2. Human Brain Model Setup Using a 40-Channel 3D Helmet Grid Applicator

Moving from the realm of instructive academic examples to scenarios more closely resembling the
intended application of the proposed algorithm, the results from the targeted RF heating simulations
using the human head model with a single central tumor are shown in Figure 6. Using only one
frequency (600 MHz), the resultant target pattern is shown in (a) and (b). Strong focal heating becomes
evident with a mean SAR in the tumor of 76 W/kg, an increase of a factor of 1.9 over the allowed healthy
tissue SAR of 40 W/kg. As before, the individual contributing modes are shown in a different color map
in (c,d). Again, both modes contribute in the center of the target region and occupy complementary
regions inside the healthy tissues. To elucidate the electric vector fields belonging to these power
deposition patterns, the computed excitation vectors were imported into CST and used for result
combination, which allows for visualization of the associated fields, as is shown in (e,f). The two power
deposition patterns are generated by two counterrotating circularly polarized electric fields inside
the tumor region, with the rotation direction indicated by the two circular arrows. This is a notable
distinction to previous approaches [35,37], which rely on picking a dominating field component and
performing the optimization using only this direction. Not only are multiple electric field components
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mixed in one resulting mode of the proposed approach, but multiple polarizations are identified as
complementary excitations to achieve an improved target heating pattern.
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Figure 6. Results of the 3D heating example using the human head model. The target is again outlined
in cyan and target SAR was set to 150 W/kg, minimizing the 2-norm of the deviation from this value.
Measures of SAR within the target region are detailed in the header (Mean ± SD (Min–Max)), along
with TC25, TC50, and TC80 values for the tumor. Images (a) and (g) show sagittal slices through
the tumor center, whereas the other SAR plots represent axial maximum intensity projections over
the whole volume. Images (a) and (b) show the achieved power deposition pattern when using
only 600 MHz fields. This pattern is achieved by two time-multiplexed modes, whose patterns are
shown scaled to their individual maximum in (c) and (d) analogous to the previous figures. These two
modes correspond to two counterrotating circularly polarized electric fields inside the tumor. E-field
vector snapshots and the rotation direction are shown in (e) and (f). This example demonstrates
that the algorithm can arbitrarily mix polarizations within a single excitation (a circular polarization
being comprised of two linear components) as well as yield differently polarized time-multiplexed
complementary solutions. The second row of results in (g–l) shows the optimum result when allowing
the use of all frequencies between 100 and 1000 MHz. From a target coverage standpoint, this solution
performed only slightly better, with an identical mean but modestly lowered maximum, elevated
minimum, and lower standard deviation.

Allowing all frequencies between 100 and 1000 MHz to contribute yielded the heating pattern
shown in (g–l). The overall performance was only slightly increased compared to the single
frequency optimization.
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The results for the two-tumor model are summarized in Figure 7. At first, RF induced heating was
individually optimized for each tumor, which is shown in (a) and (b). For each target, different optimal
frequencies were determined. This is due to the size and location of each tumor, with the larger tumor
having the dominant mode at 400 MHz as opposed to 500 MHz for the smaller tumor. The second
strongest contribution to the large tumor model lay at 700 MHz and 600 MHz for the small tumor.
This indicates that size and tumor location are important for the optimum RF heating frequency, with
higher frequencies supporting smaller focal spots at the cost of a reduced penetration depth.
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3.3. Runtimes of Demonstration Examples 

The runtimes and corresponding solver parameters for all shown examples are summarized in 
Table 1. The benchmarked 2D setups required a higher number of iterations and constraints 
compared to the 3D human model examples. This is because RF power dissipation inside the water 

Figure 7. Results for the differently weighted two-tumor optimization. The leftmost image column
displays axial slices through the target center; all other images are axial maximum-intensity projections
with the results for individual contributing frequencies and modes being scaled to their individual
maximum that is stated above them along with the frequency. Measures of SAR within the target
region are detailed in the header (Mean ± SD (Min–Max)) along with TC25, TC50, and TC80 values for
the tumor. Targeting each tumor separately leads to SAR patterns shown in (a) and (b). From (c) to
(e), the weight of the smaller tumor increased from an equal to threefold weighting. Due to their
different sizes, the target voxels belonging to the smaller tumor require a higher relative weighting for
an approximately equal SAR deposition.
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For concurrent heating of both tumors, the results are shown in rows (c)–(e). For equal weighting
(c), the large tumor was strongly favored, which intuitively makes sense because it contributes more
voxels to the optimization and is thus more highly weighted on average. Increasing the relative
weighting of the smaller tumor by a factor of 2 equalized the relative peak SAR in both tumors (d)
whereas a relative weighting of 3 shifted the focus more strongly to the smaller tumor (e).

In general, it can be observed that the applied power is not “smeared out” over the whole
available frequency spectrum, but rather that one or very few distinct frequencies have a strongly
dominant contribution.

3.3. Runtimes of Demonstration Examples

The runtimes and corresponding solver parameters for all shown examples are summarized in
Table 1. The benchmarked 2D setups required a higher number of iterations and constraints compared
to the 3D human model examples. This is because RF power dissipation inside the water phantom
is much more uniform due to the lack of any dielectric interfaces. This results in a larger set of
active constraints at the optimum solution, which accordingly takes longer to assemble. The shaped
logo excitation required the longest computation time due to the high number of target points and
frequencies employed in the example. For all human model examples, significantly less than 1% of
all possible constraint voxels were active at the solution, indicating that only a few hotspots limit the
power deposition.

Table 1. Overview of the problem size and required computational time for all examples.

Example
Figure #

# of
Channels

# of
Target
Points

# of
Frequencies

# of
Constraint

Voxels

% of Used
Constraint

Voxels

# of
Iterations

Computation
Time

[hh:mm:ss]

4 (a) 32 149 1 4952 17.4 25 00:00:52
4 (b) 32 149 10 4952 15.3 10 00:03:21
4 (c) 32 149 10 4952 13.9 16 00:04:42

5 32 8693 16 22,289 1.7 19 02:36:18
6 (a–f) 40 257 1 29,914 0.7 9 00:00:22
6 (g–l) 40 257 10 29,914 0.8 10 00:03:24
7 (a) 40 247 10 29,908 0.6 8 00:03:10
7 (b) 40 67 10 29,908 0.4 9 00:02:52
7 (c) 40 314 10 29,908 0.6 8 00:03:04
7 (d) 40 314 10 29,908 0.5 9 00:03:16
7 (e) 40 314 10 29,908 0.6 8 00:03:03

3.4. Iterative vs. Non-Iterative Approach

The single-tumor problem with 10 frequencies and 40 channels was solved in 10 iterations using
230 out of the total 30,000 constraint voxels. Not relying on the iterative algorithm, but directly using
all 30,000 constraints prolonged the solution time from 204 s to 5290 s, an increase by a factor of 26.
Using larger or more highly resolved models, the non-iterative solution time would become even
more prohibitive. The iterative solver on the other hand can deal with larger models. Increasing
the rebinning resolution from 5 mm to 2.5 mm with a corresponding 8-fold increased the number of
constraint voxels (240,000), the iterative solver finished after 17 iterations in 430 s. This constituted a
2-fold increase in runtime, indicating a significantly sublinear runtime scaling with model size. To keep
all other parameters constant and allow a fair comparison, the target volume was undersampled by a
factor of eight to maintain the same number of target points.

3.5. Dependence on Frequency and Channel Number

The result of the parameter sweep used for the evaluation of the impact of channel and frequency
number on the optimization runtimes is summarized in Figure 8. The required time increases
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approximately with N3
− N4 and shows an almost linear dependence on the number of frequencies F.

Due to the heuristic nature of the iterative solver, the performance graph is not entirely monotonic.
Reducing the number of target points by a factor of 8 decreased the runtimes by 30% on average.Cancers 2020, 12, x 18 of 24 
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Figure 8. Runtime dependence on the number of available RF channels and frequencies used during
the optimization. Since performance varied from the sub-second range up to about three minutes
for the most complex scenario, a logarithmic scale was used. All calculations were performed by the
iterative algorithm using the single-tumor model with 257 target points and approximately 30,000 total
constraint voxels. For typical clinical problem sizes (single frequency, maximum of 20 channels during
the planning stage [34]), the optimization times stayed below 2.5 s. The largest problem with all 40
channels and 10 frequencies was completed in 3 min and 24 s.

Based on these results, a rough performance comparison to other approaches can be attempted.
Bellizzi et al. reported average optimization times of 21.6 s for FOCO and 36.6 s for a particle
swarm global optimization approach [34] using a 20-channel array for the treatment of head and neck
tumors, of which 12 active elements were selected during hyperthermia planning. A single frequency
20-channel optimization required 2.5 s using MVFS, whereas a 12-channel run finished in merely 0.7 s.
A scalar field shaping example using two target points and 96 single-frequency sources was reported to
take 2 h to compute [43]. Extrapolating from the data shown in Figure 8 for a single frequency, MVFS
would require approximately 12–13 min for a problem of similar complexity. It should be noted that
the performance comparison is in no way definite due to the large number of unknowns having to be
considered for a proper performance evaluation such as implementation details, available hardware,
exact problem size, etc.

3.6. Comparison of Multiplexed Vector Field Shaping (MVFS) to Focused Constrained Power
Optimization (FOCO)

The comparison between our FOCO implementation and multiple MVFS scenarios are summarized
in Table 2. All computations were done using all 40 channels at 600 MHz since this frequency was
identified as the most efficient for the target volume. Compared to using the dominating field
component in FOCO, just utilizing the full-rank central SAR matrix (“Center” column) already provides
an increase in power deposition with mean, maximum, and minimum SAR increased by 9%, 12%, and
24%, respectively. Tumor coverage TC50 was slightly decreased, however, this coverage metric was
measured relative to peak SAR and the increased maximum value led to a decrease in TC50. The direct
field shaping examples, denoted with “S”, demonstrate the capability of MVFS to distribute power
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throughout the target more uniformly. As an example, using the infinity norm with a target SAR of
150 W/kg (“S∞150”) achieves the same mean SAR as FOCO, but raised the minimum value inside the
target by 55% and increased TC50 from 0.87 to 0.95. All MVFS results differed over the given metrics,
which would allow for weighing different treatment aspects and choosing the optimum result for
the given treatment scenario. As demonstrated in Figure 8, computation times for current clinical
channel numbers were shown to be 2.5 s for 20 channels and 0.7 s for 12 channels. These short runtimes
conveniently allow solving for multiple target patterns to iteratively approach a power deposition
pattern that is expected to perform best.

Table 2. Comparison of multiplexed vector field shaping (MVFS) to focused constrained power
optimization (FOCO) for the single tumor model using 40 channels and single frequency fields at 600
MHz. Results are separated into SAR statistics, tumor coverage, and solution details. FOCO was
performed using a rank-1 approximation of the central tumor SAR matrix and compared to six different
MVFS application scenarios. “Center” uses the full-rank central SAR matrix, “Averaged” utilizes a
single target matrix built from averaging over the whole tumor volume. The remaining four examples
used all 257 tumor SAR matrices to derive a field shaping (“S”) result. Here, the subscript defines the
target norm used (either 2 or∞) and the following number stands for the target SAR in W/kg (either 75
or 150 W/kg). The “Rank” row describes how many time-interleaved solutions were identified for the
respective solution. As expected, the FOCO solution was of rank 1 while MVFS provided multiple
excitations to better cover the target volume. The results for S2150 are visualized in Figure 6a–f.

Performance MVFS
Metrics FOCO Center Averaged S2 150 S2 75 S∞ 150 S∞ 75

Local 10 g-SAR
[W/kg]

Mean 69 75 76 76 68 69 68
Max 107 120 123 122 95 103 99
Min 33 41 43 43 45 51 51
SD 15 17 17 17 11 12 12

Coverage
TC25 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TC50 0.87 0.80 0.77 0.79 0.99 0.95 1.00
TC80 0.13 0.14 0.12 0.12 0.23 0.16 0.18

Solution
Time [s] 16.5 14 22.2 22.8 21.7 24 26

Rank 1 2 2 2 3 3 3

4. Discussion

This work introduces and evaluates the multiplexed vector field shaping (MVFS) approach, a
convex formulation of the time- and frequency-multiplexed constrained RF heating problem without
unwarranted simplifications and provides an iterative algorithm to efficiently find its globally optimum
solution. It was shown that allowing multiple time-interleaved excitations removes the non-convexity
arising in the classical RF heating problem, which seeks only one single superposition. For an N-channel
array, up to N distinct excitations per operating frequency can theoretically contribute to the heating
pattern, however, the solutions found for realistic human body models have been typically of low
rank with only two or three contributing modes. Our results demonstrated the validity of the derived
method using a 2D circular water phantom irradiated by 32 broadband localized RF sources. While not
representing a direct clinical application, the excitation of a highly detailed shape within the phantom
serves as a proof-of-principle demonstration of the algorithm.

Given appropriate RF applicators, we demonstrated that even complex regions can be excited
using a 3D human brain model including a spherical tumor in conjunction with a 40-channel broadband
helmet RF applicator. Using the relative weighting feature, it was shown that an optimum balance for
targeting disjoint or intricately shaped regions can be determined to equalize RF power distribution.
Further studies are required to establish a guideline on how to best choose a relative weighting for
disjoint or otherwise complex regions.
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Extensive performance benchmarks have demonstrated the applicability of MVFS for time-critical
applications. Typical clinical problem sizes using a single frequency and a maximum of 20 channels
were solved in 2.5 s or less, lending the algorithm to an explorative approach for finding the best power
deposition pattern for the envisioned treatment plan. At the other end of the spectrum, extraordinarily
complex scenarios using up to 10 different frequencies and 40 channels were solved in around three
minutes or less, which allows for extensive design optimizations in an offline setting. The iterative
solution procedure was demonstrated to significantly reduce the required computational workload.
The presented approach is not limited to hyperthermia and supports RF induced thermal intervention
planning for temperature ranges with T > 48 ◦C.

The proven global optimality of our approach primes it to be a valuable tool not only for RF
hyperthermia planning, but also for the development and comparison of multiple applicator designs
to improve upon the available hardware options. Previous approaches such as field focusing or
FOCO [28,34,35] can be viewed as special cases of the presented general solution of the time- and
frequency-multiplexed problem. For example, picking a single point with a dominating field component
as the optimization target corresponds to only using a rank-1 approximation of the respective target
SAR matrix in our approach. It was demonstrated that MVFS can provide multiple complementary
excitations that effectively homogenize power distribution throughout the target compared to using
only a single target point and field polarization.

Arbitrary target patterns and weights supported by our generalized approach provide numerous
degrees of freedom to best deliver RF energy at the desired locations. In particular, vulnerable locations
such as the eyes with high electrical conductivity can easily be protected by applying more strict
constraints to local power deposition in these regions. If appropriate constraints are employed, the
presented solution can also be used for modulation of the electric-field distribution of a RF array to
generate reduced E-field zones or even electric field-free zones in the body without significantly altering
the transmit sensitivity used for magnetic resonance imaging (MRI) [74,75]. This approach would
facilitate the reduction of RF induced heating in passive, conductive implants through modification of
the electric field of the transmit RF array. This would benefit the development of implant-friendly
RF coils and promote MRI patient safety in the presence of (biodegradable) implants. It would also
afford alleviation of absorbed RF power around deep brain stimulation devices in MRI [76]. Finally,
the presented approach can be directly applied to temperature rise matrices instead of SAR matrices,
which would permit a more direct approximation of the desired temperature distribution [23,40].

It is a recognized limitation of our approach that individual RF channel constraints for a
single excitation such as limits on available power for a single RF channel cannot be enforced in a
straightforward manner. A potential extension could be to constrain the maximum eigenvalue of the
solution matrices X (i.e., its 2-norm), which comprises a convex constraint and is thus valid within the
proposed framework. While this does not limit individual RF channel power, it nevertheless constrains
total forward power over all channels during a single excitation. Additionally, since local SAR itself
acts as a dampening factor preventing a single channel to be overly dominant, we do not expect overly
unrealistic solutions to arise in other setups [77,78].

5. Conclusions

In this work, we have proposed, derived, and demonstrated an approach to quickly solve the
time- and frequency-multiplexed RF heating problem to global optimality. This methodology, termed
multiplexed vector field shaping (MVFS), provides a technological foundation for the advancement
of RF hyperthermia as an adjunct anti-cancer treatment option including sophisticated treatment
planning and safety management as well as the hardware design side. Since the field shaping question
is also relevant for other disciplines [43], we anticipate that our approach also spurs innovation outside
of our first targeted applications.
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