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Abstract: With the rapid development of targeted therapies for the treatment of cancer, methods
for predicting response and outcome are in high demand. Non-small cell lung cancer driven by
genomic rearrangements of the anaplastic lymphoma kinase (ALK) gene can be successfully treated
with ALK-targeted therapy. Unfortunately, a subset of patients does not respond, and all patients
ultimately acquire resistance, highlighting the need for better clinical tools to manage these patients.
Here, we performed targeted next-generation sequencing on plasma circulating tumor DNA (ctDNA)
from 24 patients to assess the clinical utility of ctDNA genomic profiling. Patients with detectable
ctDNA prior to treatment had worse progression-free survival (PFS) than those without (median 8.7
vs. 15.2 months, p = 0.028). In addition, the presence of ctDNA within two months after treatment
initiation predicted inferior PFS (median 4.6 vs. 14.5 months, p = 0.028). Longitudinal monitoring of
ctDNA with droplet digital PCR during treatment reflected the radiological response and revealed
potential acquired resistance mutations. Interestingly, an increase in the ctDNA concentration was
evident prior to the determination of progressive disease by conventional radiological imaging, with
a median lead time of 69 days (range 30–113). Genomic profiling of ctDNA is a promising tool for
predicting outcome and monitoring response to targeted therapy.

Keywords: serial monitoring; next-generation sequencing; ALK tyrosine kinase receptor; cell-free
DNA; circulating tumor DNA; targeted therapy

1. Introduction

Targeted therapies are becoming standard treatment for multiple cancer types, and several targeted
therapy options are available for the treatment of non-small cell lung cancer (NSCLC). Rearrangements
of the anaplastic lymphoma kinase (ALK) gene are found in a subset of NSCLC patients and drive
tumor growth. Thus, the tumor cells are susceptible to targeted therapy using small tyrosine kinase
inhibitors (TKIs). Currently, it is recommended that all NSCLC patients with an adenocarcinoma
component are tested for ALK rearrangements in their diagnostic biopsy, and several ALK TKIs are
approved for the treatment of ALK-positive patients [1,2]. Unfortunately, not all patients respond to
the treatment, and all patients eventually acquire resistance and experience disease progression.

The mechanisms of resistance to ALK TKIs have been thoroughly investigated in the last few
years [3,4]. A multitude of ALK kinase domain mutations can confer resistance, and each mutation
imparts unique sensitivity characteristics to the various ALK TKIs [3,5,6]. Other resistance mechanisms
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include activation of bypass signaling pathways, such as the epidermal growth factor receptor (EGFR),
while the mechanism remains unidentified for some patients [3,7]. Thus, genomic profiling of the
tumor at the time of progression may help guide the selection of subsequent therapy. Unfortunately,
the acquisition and application of tumor biopsies is not straightforward. Firstly, tumor biopsies are not
always obtainable, and there is often inadequate material for multiple analyses [8–10]. In addition,
they are spatially limited and may not reflect the inter- and intratumor molecular heterogeneity known
to exist in lung cancer [11,12].

A noninvasive alternative to tumor biopsies is circulating tumor DNA (ctDNA). It comprises a
small component of the total cell-free DNA (cfDNA), which can be found in plasma obtained from a
blood sample. Analysis of ctDNA can provide genomic information on all tumor sites and sub-clones in
a patient, and the ease of repeated sampling enables real-time longitudinal monitoring of the evolving
genomic composition of the tumor [13–17].

In the present study, we performed ctDNA analysis using targeted next-generation sequencing
(NGS) with the cancer personalized profiling by deep sequencing (CAPP-Seq) technology [18,19] on
samples prior to and following ALK-TKI treatment to study the genomic composition of ALK-positive
NSCLC in a real-world setting. Furthermore, we employed droplet digital PCR (ddPCR) to conduct
longitudinal monitoring of select alterations during treatment with multiple lines of ALK TKIs. We
show that upfront ctDNA analysis can predict treatment outcome and that longitudinal ctDNA analyses
mirror clinical and radiological evaluations. Thus, genomic profiling using ctDNA could be a helpful
non-invasive tool for the management of ALK-positive NSCLC patients.

2. Results

2.1. Patient Characteristics

A total of 24 patients with advanced-stage ALK-positive NSCLC were included during the study
period. All patients were diagnosed with an ALK rearrangement in their tumor biopsy. Patient
characteristics are shown in Table 1 and Table S1. The majority of patients (19 of 24) had stage IV
adenocarcinoma and was treatment naïve (14 of 24). The median follow-up time was 21 months (95%
CI: 12–28). At the last follow-up date, 14 patients had experienced disease progression on at least one
ALK TKI, and six patients were deceased. Treatment trajectories can be seen in Figure 1.

Table 1. Patient characteristics at diagnosis (n = 24).

Patient Characteristics

Age, years
Median (range) 58 (34–84)

Gender n (%)
Female 13 (54)
Male 11 (46)

Smoking status
Never 8 (33)

Former 12 (50)
Current 3 (13)
No data 1 (4)

Stage
III 4 (17)
IV 19 (79)

No data 1 (4)
Histology

Adenocarcinoma 22 (92)
NOS 1 (4)

No data 1 (4)
Prior treatment regimens at study inclusion

0 14 (58)
1 7 (29)
≥2 3 (13)

ALK TKI regimens during study period
1 10 (42)
2 13 (54)
4 1 (4)

Abbreviations: NOS, not otherwise specified; ALK, Anaplastic Lymphoma Kinase; TKI, tyrosine kinase inhibitor.
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Figure 1. Individual treatment trajectories. The x-axis depicts months since diagnosis, and the y-axis
depicts each patient. Deceased patients are marked by +, and progression is marked by ×. The small
arrows mark when the patient was included in the present study. PD, progressive disease.

2.2. ctDNA Profiling by Targeted NGS

To evaluate the genomic profile of the patients, cfDNA samples obtained before treatment start and
at progression on any ALK TKI were subjected to targeted NGS with the AVENIO ctDNA Expanded Kit.
A total of 47 cfDNA samples were analyzed, out of which 40 samples were pretreatment samples, and
7 were samples acquired at treatment termination. Genomic alterations were detected in 28/47 samples
(60%) with a median single-nucleotide variant (SNV) allele frequency (AF) of 0.35% (range 0.10–79.5).
The median number of alterations detected per sample was 1 (range 0–6). ALK rearrangements were
found in 15 samples from 9 patients (9/24, 37.5%), and ALK mutations were identified in samples from
four patients (p.C1156Y [PT3], p.G1202R [PT7], p.L1196M + p.G1202R [PT9], p.L11996M + p.D1203N
[PT5]). Additionally, mutations were detected in TP53 in five patients (21%) and KRAS in three (13%)
patients. Copy number variations (CNVs) of EGFR were identified in six patients, while CNVs of MET
were identified in two patients, and CNVs of ERBB2 were found in one patient. In seven patients, no
mutations were found in any samples (29%). An overview of alterations found by targeted NGS can be
found in Figure 2 and Table S2.
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Figure 2. Overview of the basic characteristics and genomic alterations detected in circulating tumor
DNA (ctDNA). The upper panel represents the treatment and outcome of the patients. The middle
panel shows the alterations detected in ctDNA, pre-treatment or at treatment termination. The lower
panel shows the number of alterations found in each sample. SNV, single-nucleotide variant; CNV,
copy number variation; Terminated, sample taken at treatment termination due to progression or death.

2.3. Presence of ctDNA Alterations at Baseline Predicts Outcome

To investigate whether genomic profiling of cfDNA holds predictive power, the patients were
dichotomized based on the presence of somatic alterations at initiation of the ALK TKI treatment. As
some patients were treated with several ALK TKIs during the study period, and thus had more than one
pretreatment sample, 40 pretreatment samples were available from the 24 patients. Alterations were
detected in 22/40 (55%) pretreatment samples. When all pretreatment samples were combined into one
analysis, disregarding the type of ALK TKI administered, patients with detectable ctDNA alterations
prior to treatment had significantly shorter progression-free survival (PFS) (median 8.7 months
(95% CI 5.3–12.1)) than patients with undetectable alterations (median 15.2 months (95% CI 15.0–15.4),
p = 0.028) (Figure 3A). In a subgroup analysis, solely alectinib pretreatment samples (n = 22) were
included in the analysis. CtDNA alterations were found in 13 of these samples, and the presence of
ctDNA alterations was still significantly associated with an inferior PFS (8.7 months (95% CI 6.8–10.6)
vs. 19.3 months (95% CI 12.6–26.0), p = 0.011) (Figure 3B).
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Figure 3. Detection of alterations before or early following ALK TKI start. (A) Kaplan–Meier plot for
patients with detectable (ctDNA+) or undetectable (ctDNA−) alterations prior to start on any ALK TKI.
(B) Kaplan–Meier plot for patients with detectable (ctDNA+) or undetectable (ctDNA−) alterations
prior to alectinib start. (C) Kaplan–Meier plot for patients with detectable (ctDNA+) or undetectable
(ctDNA−) alterations within the first two months on any ALK TKI. The p-values were determined by
the log-rank test.

2.4. Early Changes in ctDNA Alterations Correlate with Outcome

To examine whether the detection of alterations early after treatment initiation could predict
outcome, a sample collected within two months after ALK TKI treatment start was subjected to
targeted NGS (n = 19). The samples were collected a median of 28 days (range 8–56) after treatment
initiation. Patients who had detectable ctDNA alterations in their first sample after treatment initiation
had significantly shorter PFS (4.6 months (95% CI 0.0–12.9) than patients with undetectable ctDNA
alterations (14.5 months (95% CI 3.4–25.6), p = 0.028), irrespective of whether they had detectable
ctDNA in their pretreatment sample (Figure 3C).

2.5. Longitudinal Monitoring of ctDNA SNVs

To explore whether the dynamics of ctDNA SNVs were representative of the treatment responses
in the patients during ALK TKI treatment, longitudinal monitoring of NGS-identified SNVs was
conducted using ddPCR in six patients. Since ddPCR is limited in its capability to quantify ALK
rearrangements, we chose to examine patients that had detectable ALK mutations in their ctDNA
identified by NGS. Furthermore, we also chose patients with other known off-target tumor-associated
SNVs, as not all patients acquire ALK mutations during treatment. All ddPCR data are available in
Table S3.
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For all patients achieving partial response (PR) at their first evaluation following ALK TKI
initiation, a total clearance of the ctDNA mutant allele concentration in the first blood sample following
ALK TKI initiation was observed (PT3, PT4, PT5, PT7, PT9) (Figure 4). This suggested a correlation
between tumor response and decreasing mutant allele concentration. Coherently, the mutant allele
concentration increased in most cases, leading up to progressive disease (PD), where PD was not
determined on the basis of central nervous system (CNS) progression. The increase was detected in
the sample prior to the determination of PD by the Response Evaluation Criteria in Solid Tumors
(RECIST) and in some cases even earlier. The median lead time of PD detection in ctDNA was 69 days
(range 30–113).Cancers 2020, 12, 6 of 13 
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Figure 4. Longitudinal measurements of SNVs. Longitudinal monitoring of SNVs in six patients with
ALK, KRAS, and TP53 mutations by ddPCR during ALK TKI treatment. The x-axis indicates the time
from the start of the treatment in days. The left y-axis indicates the mutant allele concentration of the
SNV in copies/mL plasma, and the right y-axis shows the AF in percent. EML4-ALK rearrangement AFs
from NGS analysis are plotted as well. Representative CT scan evaluations are indicated by gridlines,
and ALK TKI treatments by shaded areas. PR, partial response; SD, stable disease; Mors, deceased; AF,
allele frequency; ND, not detected; CNS, central nervous system; ddPCR, droplet digital PCR.
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Longitudinal monitoring gave significant insight into the clonal tumor evolution of individual
patients during treatment. Two of the patients developed ALK resistance mutations during crizotinib
treatment and were, subsequently, treated with alectinib (PT3 and PT9). The patients achieved PR,
and the ALK mutant allele was cleared from the circulation and remained undetectable until the
last collected sample, approximately one month prior to PD (Figure 4). NGS analysis of the first
sample following alectinib initiation revealed that all somatic alterations were cleared for both patients;
however, in the last sample collected, the native ALK rearrangements were rediscovered (Figure 4).
In PT9, the ALK p.G1202R mutation, known to confer resistance to every ALK TKI with the exception
of lorlatinib [3,5], emerged in connection with the rearrangement. The mechanism of resistance in PT3
remained undetected and may thus be ALK-independent. Another patient acquired an ALK p.L1196M
mutation after multiple lines of ALK TKIs (PT5). The patient then started lorlatinib treatment, which
has demonstrated preclinical activity against this mutation [3]. Nonetheless, the ALK mutant allele
concentration dramatically increased during lorlatinib treatment, and NGS analysis revealed the
emergence of a concurrent ALK p.D1203N mutation as early as in the first sample following lorlatinib
(Figure 4).

In PT7, the dynamics of a TP53 p.R248W mutation present at diagnosis followed the clinical
response evaluation throughout crizotinib and subsequent alectinib treatment (Figure 4). During
alectinib treatment, the ALK p.G1202R mutation emerged in unison with the TP53 p.R248W mutation,
however at a lower concentration.

In PT4, the KRAS p.G12D mutant allele, which was initially cleared, re-emerged at low levels
during the treatment course, even though the patient did not experience PD during the study period
(Figure 4). In PT10, who harbored a KRAS p.G12V mutation, the mutant allele concentration remained
detectable during crizotinib therapy and until PD, although the patient initially achieved stable disease
(SD). (Figure 4). This may be the consequence of monitoring a off-target genomic alteration.

3. Discussion

The success of targeted therapy is highly dependent on molecular analyses that can inform on the
evolution of the genomic composition of a tumor. Since tumor biopsies are not always obtainable or
of sufficient quality, the noninvasive analysis of ctDNA is becoming a promising alternative. In this
prospective study, we demonstrated the value of ctDNA analyses in NSCLC patients harboring
ALK rearrangements in their tumor. Using a highly sensitive, commercial CAPP-Seq assay, we
demonstrated that ctDNA analyses prior to and early following ALK-TKI treatment initiation may
predict clinical outcome and that longitudinal levels of tumor-derived SNVs in the plasma follow
clinical response patterns.

We demonstrated a significant association between detectable ctDNA prior to ALK TKI treatment
start and inferior PFS irrespective of the TKI administered. The same significant association was
found when solely analyzing ctDNA in samples prior to alectinib treatment. Furthermore, we also
demonstrated that the presence of ctDNA shortly after treatment initiation correlated with inferior
PFS. To the best of our knowledge, the current study is the first to show the possible predictive ability
of a comprehensive ctDNA analysis in an ALK-positive NSCLC cohort. Studies conducted with
EGFR-mutated patients receiving targeted therapy have reported similar results, as have studies with
patients with non-actionable mutations and patients receiving immunotherapy [20–23]. These studies
validate our findings and suggest that ctDNA is generally applicable as a predictive biomarker in
lung cancer.

Our descriptive findings of the correlation between longitudinal ctDNA mutant allele
concentrations and treatment response are in agreement with previous studies that mostly investigated
EGFR-mutated NSCLC patients [14,15,24,25], while only few studies have been performed in
ALK-positive patients [26–28]. In our study, we assessed not only the ALK rearrangement driving the
cancer but also other somatic aberrations. We chose to use ddPCR for longitudinal monitoring, as it is
extremely sensitive, inexpensive, and rapid compared to NGS analysis. Yet, ddPCR is limited in its
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capability to quantify structural variants, as a wide variety of genomic breakpoints exist. Nonetheless,
we suggest that it may be feasible to track SNVs that exist concurrently with the ALK rearrangement
for evaluating the response during therapy. For all patients with PR at their first imaging evaluation
after treatment start, the mutant allele became undetectable in the first blood sample, further reflecting
the utility of ctDNA analysis as a surrogate measure of response. Importantly, longitudinal ctDNA
analysis allowed the detection of progression up to months before clinical disease progression was
determined, with a median lead time of 69 days. This is in agreement with studies conducted with
EGFR-positive patients [14,15] and highlights that the ctDNA level likely acts as a surrogate measure
for the overall tumor burden [18,22]. Because tumor burden estimates are standard measures for the
evaluation of treatment efficacy, a combination of this together with ctDNA analysis could improve the
interpretation of imaging. This is particularly relevant for metastatic patients with multiple tumors, for
which RECIST-based tumor burden estimates can be inaccurate.

We detected ALK mutations in ctDNA from four patients, and all of these mutations have
been previously reported as causing resistance to ALK TKI treatment [3,4,6]. The ALK mutations
p.L1196M and p.C1156Y were both detected during crizotinib treatment but became undetectable
as a result of alectinib treatment, which has been shown to have clinical activity against these
mutations [29]. Interestingly, the mutations did not reappear leading up to alectinib-associated
progression, indicating that they existed in sub-clones, which were completely eliminated by alectinib
treatment. This demonstrates the ability of ctDNA analysis to function as a tool for evaluating
clonal evolution.

ALK rearrangements have generally been reported to be mutually exclusive with other driver
alterations in NSCLC such as EGFR and KRAS mutations, although few studies have shown that
they can coexist [30–32]. We found KRAS mutations in three of the examined patients, which likely
represented different tumor clones, indicative of the heterogenous nature of lung cancer. One patient
harbored a KRAS p.G12D mutation in the initial treatment-naïve blood sample (PT4) concurrent with
an ALK rearrangement. The KRAS mutation was not detected in the patient’s peripheral blood cells
(PBCs), making it unlikely to be due to clonal hematopoiesis. In another patient (PT10), we detected a
KRAS p.G12V mutation in the first sample following crizotinib, but unfortunately, the pretreatment
sample was not available. However, the KRAS mutation was found at an AF of 79% in the diagnostic
biopsy taken 5 years earlier in connection with curative-intended stereotactic treatment (Table S3).
Thus, KRAS mutations and ALK rearrangements can coexist, and, interestingly, the three patients
with this genomic profile had response or stable disease at their first evaluation following ALK TKI
start [32].

We identified genomic alterations in the majority of patients (17 out of 24), though ALK
rearrangements were only identified in plasma samples from 9 patients (39%). This is lower than
what was found by other studies with ALK-positive patients [26–28]. However, recent studies have
elucidated the discrepancies in the detection of SNVs and rearrangements in plasma, comparing
different commercial NGS assays [33,34]. Moreover, the capture of structural variants, such as
rearrangements, has been reported to be notoriously complex, and a limitation of the CAPP-Seq
technology is the potentially inefficient capture of rearranged DNA [18]. Biological factors, such as the
number and location of metastatic sites, in individual patients can influence the release of ctDNA to
the blood as well [35]. In our study, three out of the seven patients with undetectable ctDNA either did
not have metastatic disease or simply had intrathoracic disease. Thus, the detection of ctDNA in the
blood is influenced not just by technical limitations but also by features inherent to the tumor and host.

As is often the case when studying ALK-positive patients, the current study is limited by the
number of included patients, which mainly renders it hypothesis-generating [26–28]. Thus, our results
should be validated in a larger cohort of ALK-positive patients. Furthermore, our cohort was slightly
heterogenous, since many different ALK TKIs were administered, although most patients received
alectinib. Nevertheless, as these patients were not part of a clinical trial, this is a reflection of real-world
treatment trajectories for ALK-positive patients. Most of the ctDNA alterations we identified were
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present at low AFs, and their overall importance for the cancer can thus be questioned. However,
we demonstrated that the dynamics of SNVs with low frequencies appeared to follow the clinical
response, and patients treated according to ctDNA analyses have been demonstrated to exhibit clinical
response to treatment, despite low AFs [35]. Thus, the choice of the detection method is important, as
less sensitive methods would not have detected the majority of the mutations reported here.

4. Materials and Methods

4.1. Patients

Patients were prospectively enrolled in the study at the Department of Oncology at Aarhus
University Hospital and Aalborg University Hospital, Denmark, between December 2015 and
November 2018. Two patients had additional samples collected previously in another study [36].
Patients were eligible for enrollment if they were above 18 years of age and had histologically proven,
ALK-positive non-squamous NSCLC. Patients were included at any time during treatment. Testing
for ALK rearrangements was performed as part of the routine diagnostic work-up, using either
immunohistochemistry for screening and fluorescence in situ hybridization (ZytoLight ALK Dual
Color Break Apart, Zytovision GmBH, Bremerhaven, Germany) for verification in equivocal cases
or NGS with the CE-IVD approved Oncomine Solid Tumor DNA and Fusion Transcripts kit (Life
Technologies, Carlsbad, CA, USA). Patients were followed from the day of inclusion and during all
subsequent lines of treatment. Follow-up was performed using computed tomography (CT) scans every
12 weeks, and response was evaluated according to the Response Evaluation Criteria in Solid Tumors
(RECIST) v1.1 [37]. All patients gave informed written consent in accordance with the Declaration
of Helsinki. The study was approved by the Central Denmark Region Committees on Biomedical
Research Ethics (no. 1-10-72-266-15).

4.2. Sampling and Cell-Free DNA Extraction

Peripheral blood samples were collected in connection with routine blood sampling prior to any
treatment and approximately every 4th week. We collected 2 × 10 mL of blood in K2EDTA tubes (BD
vacutainer®, Becton, Dickinson and Company, Franklin Lakes, NJ, USA), and plasma was isolated
within two hours by centrifugation (1400× g for 10 min). Subsequently, the samples were stored at
−80 ◦C. CfDNA was extracted from 2–4 mL plasma using the cobas® cfDNA Sample Preparation Kit
(Roche, Basel, Switzerland) according to the manufacturer’s instructions and eluted in 85 µL elution
buffer. DNA from PBCs was extracted using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. DNA from the diagnostic tissue biopsy was
extracted with the QIA Symphony SDP Mini Kit (Qiagen) according to the manufacturer’s instructions.

4.3. Next-Generation Sequencing

CfDNA was quantified using the Qubit dsDNA High Sensitivity Kit (Life Technologies).
The median DNA input for library preparation was 50 ng. Libraries were prepared with the
AVENIO ctDNA Expanded Kit (Roche Sequencing Solutions, Pleasanton, CA, USA) according to the
manufacturer’s instructions. Multiplex libraries consisting of 10 unique samples were sequenced on a
NextSeq 500 High Output lane (Illumina, San Diego, CA, USA) using 150 bp paired-end runs (median
unique depth 4524×, range 1420–9664). Sequencing data were processed using the AVENIO ctDNA
Analysis Software version 1.1 with the Expanded Panel Workflow (Roche). Variants were accepted
if they were previously reported to the Catalogue of Somatic Mutations in Cancer (COSMIC) or the
Cancer Genome Atlas (TCGA). Variants with a mutant AF > 0.1% in any of the Exome Aggregation
Consortium (ExAC), 1000 Genomes Project, and Single Nucleotide Polymorphism (dbSNP) databases
were excluded. To ensure specificity, variants were required to be present in 3 unique reads and have
AF > 0.1% to be accepted [38].
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4.4. Droplet Digital PCR

DdPCR was performed using the QX200™ AutoDG™ Droplet Digital™ PCR System (Bio-Rad,
Hercules, CA, USA). The reaction volume of 22 µL consisted of 2× Supermix for probes (no UTP),
900 nM primers, 250 nM probes, and 9 or 10 µL of cfDNA. All reagents were purchased from Bio-Rad,
and assays were either purchased from Bio-Rad or custom-designed by Applied Biosystems (Table S4).
All samples were measured as triplicates as a minimum. Wet-lab validated assays were used when
possible, and the remaining assays were designed by Bio-Rad or Applied Biosystems and validated in
the lab. Data were analyzed using QuantaSoft v.1.7.4.0917 software (Bio-Rad). Each run contained
positive and negative controls. Gene Strands (Eurofins Genomics, Ebersberg, Germany) diluted in
cfDNA from anonymous blood donors were used as mutation-positive controls. The limit of detection
for each assay was determined using blood samples from anonymous donors collected from the blood
bank at Aarhus University Hospital, as previously described (Table S4) [39,40]. All mutations chosen
for ddPCR analysis were tested in a corresponding PBC sample to rule out clonal hematopoiesis.
Results are depicted as both mutant allele concentration and mutant AF, as we have recently shown
that the biological variation of ctDNA may affect these two metrics differently [41,42].

4.5. Statistics

Patients were dichotomized according to whether somatic alterations in ctDNA were detectable
(ctDNA+) or undetectable (ctDNA−) at different time points. Survival analyses were performed by the
Kaplan–Meier method, and differences between the groups were determined by the log-rank test. PFS
was defined as time from treatment start until PD, death of any cause, or treatment cessation. Patients
still undergoing treatment at the time of analysis were censored (22 March 2019). PD was defined
as either radiological progression according to RECIST v1.1 criteria or clinical progression. Median
follow-up time was estimated by the inverse Kaplan–Meier method. All p-values were considered
statistically significant if p < 0.05. Data analyses were performed using SPSS version 25.0 (IBM, Chicago,
IL, USA) and GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA).

5. Conclusions

In conclusion, we demonstrated that the presence of ctDNA before treatment initiation is associated
with inferior PFS, as is the presence of ctDNA shortly after the start of ALK TKI treatment. Interestingly,
increased ctDNA levels were identified, leading up to clinical progression, highlighting the potential
of ctDNA for real-time monitoring. Our results show that genomic profiling using ctDNA can be of
value during all stages of ALK TKI treatment of NSCLC patients. These encouraging findings should
be confirmed in prospective, randomized studies to move ctDNA analysis into a clinical setting, which,
hopefully, will translate into improved outcomes for cancer patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/947/s1,
Table S1: Individual patient profiles, Table S2: NGS ctDNA profiles, Table S3: ddPCR ctDNA quantification,
Table S4: ddPCR assay information.
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