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Supplementary Materials: ERK Dephosphorylation
through MKP1 Deacetylation by SIRT1 Attenuates
RAS-Driven Tumorigenesis
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Figure S1. Protective role of SIRT1 in cancer with K-RAS mutation. (A) Distribution of SIRT1 gene
expression levels of human cancers in TCGA Pan-cancer cohort. The RN A-seq data (log,TPM) of 9,345

tumor samples comprising 33 cancer types are shown. SIRT1-high and -low groups were defined
using the median expression as a cut-off. (B) The Kaplan-Meier curves showing the overall survival
(OS) of cancer patients in the TCGA cohorts: pancreatic cancer (PAAD), colorectal cancer
(COADREAD), and lung adenocarcinoma (LUAD). (C) The OS stratified by SIRT1-high and -low
groups. (D) The OS stratified by K-RAS mutation status (wild-type or G12; the missense mutant that
occurred at glycine 12). Hazard ratio (HR) and p-value (P) were calculated using Cox regression and
log-rank test, respectively.
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Figure S2. Establishment of Ctrl-iRas and Sirt1-iRas cell lines (A) Cell enrichment of the inducible H-
Ras in control (Ctrl-iRas) or Sirtl overexpression (Sirtl-iRas) NIH3T3 cells by flow cytometric cell

sorting with humanized Kusabira-Orange fluorescence. (B) Immunoblotting (IB) analysis of H-Ras
and Sirt1 expression in both Ctrl-iRas and Sirt1-iRas NIH3T3 cells after treatment with Dox. (C) The
mRNA expression of endogenous (left) and exogenous (right) SIRT1 in Ctrl-iRas and Sirt1-iRas cells.
(D) Relative mRNA levels of Ras were analyzed by qRT-PCR in Ctrl-iRas and Sirt1-iRas NIH3T3 cells
at indicated time points following Dox treatment. (E) IB analysis for SIRT1 and H-RAS after Dox

treatment (3 h) in a dose-dependent manner. o-tubulin, an equal loading control.
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Figure S3. Regulation of phosphorylated ERK by the SIRT1 activity. (A) IB analysis of phospho-
ERK, H-RAS, and SIRT1 in the Ela-Ras MEF cells after treatment with resveratrol (RSV) or
nicotinamide (NAM). (B) IB analysis of phopho-ERK, ERK2 and a-tubulin in human breast cancer
MDA-MB-231 cells after treatment with NAM for 24 h. (C) IB analysis of phopho-ERK, SIRT1, and
phospho-MEK in Ctrl-iRas and Sirtl-iRas cells exposed to Dox (24 h) with or without U0126.
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Figure S4. Sirtl directly binds to MKP1. (A) The 293T cells were transiently transfected with Flag-
tagged Sirtl and Myc-tagged MKP1 CS and then IP was performed with an anti-Myc antibody,
followed by IB with anti-Flag or anti-MKP1 antibodies. IgG, a negative control for IP. (B) The 293T
cells were transiently transfected with the Myc-Sirt1 vector and then IP was performed with an anti-
Myc antibody, followed by IB with an anti-MKP1 antibody.
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Figure S5. Acetylation of MKP1 mediated by p300. The 293T cells were transiently transfected with
p300 and Myc-tagged MKP1 CS vectors and then IP was performed with an anti-Myc antibody,
followed by IB with anti-Myc or anti-pan-acetyl lysine (panAcK) antibodies.
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Figure S6. MKP1 expression levels in various human cancer types. Gene expression levels of MKP1
in the TCGA pan-cancer cohort grouped by cancer type. The RNA-seq data (log2TPM) of 9,345 tumor
samples comprising 33 cancer types are shown. Cancer types were ordered by the median expression
levels of MKP1.

HR and p-values calculated from each group comparison in Figure 6 are listed as follows:
SIRT1 high (MKP1 high vs low) = HR: 0.63, P: 0.09

SIRT1 low (MKP1 high vs low) =HR: 0.83, P: 0.37

MKP1 high (SIRT1 high vs low) =HR: 0.47, P: 0.0024

MKP1 low (SIRT1 high vs low) = HR: 0.61, P: 0.034

SIRT1 high, MKP high vs SIRT1 low, MKP low = HR: 0.39, P: 0.000019.
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Figure S7. The whole western blot images of Figure 3A-F, Figure 4A-C, Figure 5A-C, Figure S2B,

Figure S3A,B and Figure S4.
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