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Abstract: The acidic tumor microenvironment modifies malignant cell behavior. Here, we study
consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast
cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j
mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and
tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from
breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass
spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine
incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ±
0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median
latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3

therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for
cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with
breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast
carcinomas. Changes in protein expression patterns—observed by high-throughput proteomics
analyses—between cancer and normal breast tissue and in response to oral NaHCO3 therapy
reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and
cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment
of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation
without net effect on breast cancer development or tumor growth. We demonstrate unexpected
pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously
reported anti-neoplastic effects.
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1. Introduction

The acidic tumor microenvironment is a hallmark of solid cancer tissue with multifaceted
consequences for cancer cells, adjacent normal cells, and their interactions [1,2]. Enhanced metabolic acid
production in cancer tissue is a consequence of accelerated glycolysis and/or oxidative phosphorylation
that provide energy and chemical intermediates for cancer cell proliferation [3]. Cancer cells export the
increased acid load to the extracellular space via acid-base transporters in their cell membranes [4–6].
Inadequate perfusion further amplifies local interstitial accumulation of acid [7]. The electroneutral
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Na+, HCO3
–-cotransporter NBCn1 (Slc4a7) is upregulated in human and murine breast cancer tissue

compared to normal breast tissue; and acting in parallel with the Na+/H+-exchanger isoform 1
(NHE1, Slc9a1), NBCn1 is the predominant path for net acid extrusion from breast cancer cells [8–11].
Cellular elimination of lactate and H+ from glycolytic metabolism can also occur via monocarboxylate
transporters [12,13]. Acid-base transport processes across membranes, within the cytoplasm, and
through the tortuous extracellular space can be accelerated by carbonic anhydrases that catalyze the
reaction CO2 + OH− � HCO3

− [14–16]. The functional consequences of carbonic anhydrases have
hitherto been studied mostly in model systems and need to be confirmed in breast cancer tissue.
Despite the high metabolic rate and low extracellular pH (pHo), efficient net acid extrusion maintains
the cytoplasm of breast cancer cells more alkaline than normal breast epithelial cells under the same
conditions [8,9]. The characteristic compartmentalization of acidity in solid cancer tissue—with very
low pHo and relatively high intracellular pH (pHi)—is an early event in carcinogenesis and a promising
therapeutic target [4,17,18].

Local extracellular acidity is believed to promote cancer development and progression but
it is a point of contention whether pHo within tumors can reach levels so low that it restricts
functions of acid-adapted cancer cells [17]. Advancement through specific cell cycle checkpoints
depends on transient increases in pHi [19,20], and acidosis typically inhibits cell cycle progression
and hence proliferation of cultured cancer cells [21]. However, opposing facilitatory roles of
acidosis on proliferation are possible as extracellular H+ acting directly on H+-sensing receptors
or H+-activated ion channels may elicit signals that favor proliferation [17]. Despite these uncertainties,
it is well-accepted that cancer cells show improved resistance to acidosis compared to normal cells [8]
and that the evolutionary selection pressure of the acidic microenvironment can favor more malignant
phenotypes [22]. The overall consequences of the tumor microenvironment depend on the degree of
acidification; and adaptive processes initiated by tumor acidosis likely enhance cancer cell function
particularly if they later encounter less acidic environments, for instance, during invasion [17].

Acidosis can influence cellular functions by modulation of enzymatic activities, and particularly
the acid-sensitivity of enzymes in the glycolytic pathway has attracted attention [23]. Cancer cells
respond to sustained acidosis by reshaping their metabolic phenotype and over time shift towards
glutamine metabolism and fatty acid oxidation [24–26]. Acidosis also has cancer type-dependent
effects on autophagy as illustrated by the stimulatory effect of low pHo in melanoma cell lines yet
inhibitory effect in breast cancer cells [27,28]. Cancer-promoting effects of low pHo include degradation
of extracellular matrix—through acid-mediated activation of matrix metalloproteinases, cathepsins,
lysosomal proteases, and hyaluronidase [29–32]—and induction of cell death in surrounding normal
cells [33]. The low pHo of the tumor microenvironment also purportedly inhibits immune cell
functions [17,34]. Together, these processes facilitate tumor expansion and metastasis and are essential
for the prognosis of cancer patients.

Ingestion of base, through dietary intake or buffer therapy, has been proposed to reduce the
risk of cancer development and metastasis [35,36]. Although oral administration of NaHCO3—in
order to neutralize the tumor microenvironment—does not affect primary breast tumor growth in
murine xenograft models [32], it lowers the number of metastases and prevents recurrence [32,37].
As xenograft models involve in vivo implantation of already transformed malignant cells, they are
not well suited for studying processes whereby normal cells transform into cancer cells. Supporting
a role of pH during carcinogenesis, oral NaHCO3 therapy impairs primary tumor growth in the
transgenic adenocarcinoma of the mouse prostate (TRAMP) model [38], and knockout of NBCn1
delays carcinogen- and ErbB2-induced breast cancer development and decelerates tumor growth [9,10].
Evidence from human intervention and observational studies is still insufficient to support or exclude
that an alkaline diet can be used for prevention or treatment of cancer [39]. Initial studies, showing
promising effects of alkaline therapy on renal function in patients with chronic kidney disease, suggest
that alkaline supplements can be administered to humans without unacceptable adverse effects [40].
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In the current study, we explore consequences of oral NaHCO3 therapy during breast
carcinogenesis. Contrary to our expectation, the elevated pHo of the tumor microenvironment
in response to oral NaHCO3 therapy shows no overall net effect on breast tumor-free survival or
primary tumor growth. We reveal unexpected pro-neoplastic effects of oral NaHCO3 therapy in
breast tissue—including increased capacity for cellular net acid extrusion and accelerated in vitro
proliferation—that likely cancel out previously reported benefits of oral buffer therapy. Consistent
with this model of mixed pro- and anti-neoplastic consequences of tumor acidosis, we show—based
on high-throughput proteomics analyses—that oral NaHCO3 therapy differentially influences protein
expression patterns related to cell signaling, metabolism, cytoskeleton, and cell-cell and cell-matrix
interaction during breast carcinogenesis.

2. Results

2.1. Oral NaHCO3 Therapy Alkalinizes Tumors, Urine, and Arterial Blood

The microenvironment of breast cancer tissue in vivo is highly acidic reaching an average pH of
6.68 ± 0.04 (Figure 1A), which is consistent with previous reports [41]. Chronic oral administration of
NaHCO3 elevates tumor pH by 0.35 ± 0.13 (Figure 1A).
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Figure 1. Oral NaHCO3 therapy alkalinizes breast tumors and increases [HCO3
–] and pH of arterial

blood and urine. It also leads to marked protein expression changes related to immune function,
cytoskeleton, and cell-cell and cell-matrix interaction. (A–C). Tumor pH (A) along with pH (B)
and standard-[HCO3

–] (C) of arterial blood from NaHCO3-treated mice and control mice (n = 6–11)
mechanically ventilated to normocapnia (expiratory end-tidal CO2 fraction of 3.8%). (D,E). Urine pH
(D) and [HCO3

–] (E) of NaHCO3-treated mice and control mice (n = 9–10). (F–H). Protein expression
changes related to immune function, cytoskeleton, and cell-cell and cell-matrix interaction. We
compare breast cancer tissue vs. normal breast tissue from control mice (F), breast cancer tissue from
NaHCO3-treated mice vs. control mice (G), and normal breast tissue from NaHCO3-treated mice vs.
control mice (H). Data in panel C were log-transformed in order to improve normal distribution. Data
in panel A were compared by unpaired two-tailed t-test with Welch’s correction for unequal variance,
data in panel B through D were compared by unpaired two-tailed Student’s t-tests, and data in panel
E were compared by the non-parametric Mann-Whitney test. p-values in panel F through H were
calculated based on Fisher’s right-tailed exact test. *p < 0.05, **p < 0.01 vs. Control.
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Sustained oral NaHCO3 therapy also elevates pH (Figure 1B) and standard-[HCO3
−] (Figure 1C)

of arterial blood although the alkalinizing effect is considerably smaller than for tumors. We performed
recordings on and collected blood samples from mice mechanically ventilated to normocapnia in order
to avoid stress-induced hyperventilation or anesthesia-induced hypoventilation. Accordingly, pCO2 of
arterial blood was similar (p = 0.78, unpaired two-tailed Student’s t-test) for NaHCO3-treated mice
(45.10 ± 2.23 mmHg) and control mice (47.85 ± 2.31 mmHg). At steady-state, intake and output of
NaHCO3 must balance, and we indeed document dramatic increases in urinary pH (Figure 1D) and
[HCO3

–] (Figure 1E) during oral NaHCO3 therapy.

2.2. Oral NaHCO3 Therapy Modifies Protein Expression Related to Cytoskeleton, Cell-Cell and Cell-Matrix
Interaction, and Immune Function

We identify marked differences in protein expression patterns related to cell-cell and cell-matrix
interactions, cytoskeletal dynamics, and immune-related functions between organoids freshly isolated
from breast cancer tissue and matched normal breast tissue (Figure 1F and Figure S1A). These effects
are anticipated based on the changes in cytoskeleton, extracellular matrix, and cell-cell interactions
that occur during cancer development [17]. Our data suggest that oral NaHCO3 therapy amplifies or
perturbs carcinogen-induced protein expression changes in breast cancer tissue (Figure 1G and Figure
S1B) and even cause related changes in matched macroscopically normal breast tissue (Figure 1H and
Figure S1C). These data imply that acidosis of the breast cancer microenvironment in some respects
limits the cellular alterations taking place during carcinogenesis.

Acidosis of the tumor microenvironment purportedly attenuates immune-mediated anti-neoplastic
responses in cancer tissue [42]. In congruence, we find that signaling pathways of
particular relevance for macrophage and neutrophil function are perturbed in the breast tissue
of NaHCO3-treated mice, including chemokine signaling downstream of interleukin (IL)-8,
N-formyl-methionyl-leucyl-phenylalanine (fMLP), and the C-X-C motif chemokine receptor (CXCR)4,
Fcγ-receptor-mediated phagocytosis, and macrophage production of NO and reactive oxygen species
(ROS) (Figure 1G,H). The detailed mechanisms of macrophage infiltration and function in solid cancer
tissue are not well understood but subtype-dependent differences have been described with M1-like
macrophages predominantly suppressing and M2-like macrophages predominantly promoting tumor
growth [43]. Variable influences [44–48] of the immune-relevant signaling pathways that we find
perturbed by oral NaHCO3 therapy (Figure 1G,H) likely reflect the complexity of the interaction between
immune cells, cancer cells, and the tumor microenvironment. Overall, our findings support that
interventions, such as oral NaHCO3 therapy, to neutralize the acidity of the tumor microenvironment
modify protein expression patterns (Figure 1G,H and Figure S1B,C) that may otherwise contribute to
immune evasion in solid cancer tissue.

2.3. Oral NaHCO3 Therapy does not Affect Tumor Burden, Tumor-Free Survival, or Histopathology

After carcinogen-based induction, breast tumors develop with a median latency of 85.5 ± 8.2 days
in NaHCO3-treated mice compared to 82.0 ± 7.5 days in control mice (Figure 2A). One of 45 control
mice and 3 of 42 NaHCO3-treated mice did not develop breast tumors within the 9-month observation
period starting from cancer induction.

We measure the size of all breast tumors with calipers upon excision 2 weeks after first detection
and observe no significant difference in breast tumor burden between control mice and NaHCO3-treated
mice (Figure 2B). Because oral NaHCO3 therapy is not expected to influence our ability to detect
tumors by palpation—which is usually possible when tumors are 3–4 mm in diameter [9,49]—tumor
burden after 2 weeks is a measure of the tumor growth rate.



Cancers 2020, 12, 891 5 of 19

The various breast cancer histopathologies occur with similar frequencies in NaHCO3-treated
mice and control mice (Figure 2C): most numerous are squamous carcinomas and Wnt tumors, whereas
adenocarcinomas, adenosquamous carcinomas, solid tumors, myoepitheliomas, solid nodular tumors,
and metaplastic carcinomas are less common, consistent with earlier reports [9].
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Figure 2. Tumor-free survival, tumor burden, and breast tumor histopathology are similar in
NaHCO3-treated mice and control mice. (A). Tumor-free survival of NaHCO3-treated mice and control
mice after carcinogen-based breast cancer induction. Median tumor-free survival of NaHCO3-treated
mice was 85.5 ± 8.2 days (n = 42) compared to 82.0 ± 7.5 days for control mice (n = 45). Data were
compared by Gehan-Breslow-Wilcoxon test. (B). Tumor burden was similar in NaHCO3-treated mice
and control mice (n = 37–41) two weeks after first tumor detection. Tumors were typically 3–4 mm at
first detection consistent with previous reports [49]. Data were log-transformed in order to improve
normal distribution and then compared by unpaired two-tailed Student’s t-test. (C). Distribution of
breast tumors from NaHCO3-treated mice and control mice (n = 37–41) between histopathological
subtypes. (D). Plot of matched data for histopathology, tumor burden, and tumor latency of breast
tumors from NaHCO3-treated mice and control mice (n = 37–41). NS: Not significantly different
vs. Control.

Breast tumor-free survival and breast tumor burden depend on histopathology, but we observe
no systematic differences between NaHCO3-treated mice and control mice (Figure 2D).

2.4. Metabolic Activity Changes during Carcinogenesis and Oral NaHCO3 Therapy

Dramatic changes in energy fluxes occur during carcinogenesis as supported by the massively
perturbed protein expression profile in breast cancer tissue compared to normal breast tissue (Figure 3A).
Most notably, enzymes of the glycolytic pathway increase substantially (Figure 3A and Figure S2A)
supporting their dominant contribution to supply of energy and chemical components for cell
proliferation in cancer tissue [50]. We also see enrichment of the pentose phosphate pathway (Figure 3A
and Figure S2A). In sharp contrast, the majority of enzymes in other—particularly oxidative—catabolic
pathways show reduced expression levels as demonstrated for acetyl-CoA biosynthesis, the tricarboxylic
acid cycle, and oxidative phosphorylation (Figure 3A and Figure S2A). Reduced or perturbed expression
levels are also evident for catabolic pathways involving amino acids (valine, leucine, isoleucine, lysine,
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and tryptophan), fatty acids (L-carnitine shuttle and fatty acid β-oxidation), ketone bodies, and ethanol
(Figure 3A and Figure S2A). These protein expression changes support the Warburg effect, favoring
energy production through fermentative glycolysis rather than oxidative phosphorylation. Interestingly,
we also see disturbances in cholesterol and stearate biosynthesis (Figure 3A and Figure S2A).
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Figure 3. Metabolic pathways are dramatically perturbed during breast carcinogenesis but glycolytic
metabolism in breast cancer tissue and normal breast tissue in vivo is unaffected by oral NaHCO3

therapy. (A, B). Protein expression changes for metabolic pathways. We compare breast cancer tissue
vs. normal breast tissue from control mice (A) and breast cancer tissue from NaHCO3-treated mice vs.
control mice (B). p-values were calculated based on Fisher’s right-tailed exact test. (C–E). Interstitial
concentrations of glucose (C) and lactate (D) and corresponding [glucose]/[lactate]-ratios (E) measured
in microdialysis samples from breast cancer tissue and matched normal breast tissue of NaHCO3-treated
mice and control mice (n = 8–9). Data were compared by repeated measures to-way ANOVA followed
by Sidak’s post-tests. NS: not significantly different vs. Control. ***p < 0.001.

Oral NaHCO3 therapy partly reverses the downregulation of oxidative phosphorylation in the
breast cancer tissue without influencing the upregulation of glycolysis (Figure 3A,B and Figure S2B),
and the intervention to neutralize the acidity of the tumor microenvironment thus potentially improves
energy supply to the cancer cells. Surprisingly, despite the marked differences in cancer cell pHi

(Figure 4) and pH of the tumor microenvironment (Figure 1A), our proteomics analysis reveals no other
significant changes of metabolic pathways in the tumor tissue in response to oral NaHCO3 therapy.

We sampled interstitial solution by microdialysis in order to functionally evaluate glycolytic
metabolism in breast cancer tissue and normal breast tissue in vivo. Consistent with the protein
expression patterns (Figure 3A,B), we observe (a) decreased [glucose] (Figure 3C) and increased
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[lactate] (Figure 3D) in the tumor interstitium as signs of elevated glycolytic activity compared to
normal breast tissue and (b) no difference in [lactate]/[glucose]-ratio—which is a measure of glycolytic
metabolism—between NaHCO3-treated mice and control mice (Figure 3E).

2.5. Oral NaHCO3 Therapy Increases the Capacity for Net Acid Extrusion in Breast Tissue

Earlier reports demonstrate that Na+, HCO3
–-cotransport and Na+/H+-exchange constitute the

major components of net acid extrusion from breast tissue [8–11]. In accordance, pHi recovery after
NH4

+-prepulse-induced acidification is largely Na+-dependent in organoids from normal breast tissue
and breast cancer tissue irrespective of whether they are isolated from control mice or NaHCO3-treated
mice (Figure 4A,B).

As expected, the intracellular buffering power of the breast tissue varies as function of pHi

(Figure 4C); and consistent with a previous report [9], we find a tendency towards higher intracellular
buffering capacity in the breast cancer tissue compared to normal breast tissue although this does not
reach statistical significance (Figure 4C). Otherwise, the intracellular buffering capacity is unaffected
by oral NaHCO3 therapy.

The capacity for net acid extrusion is strongly increased in breast carcinomas compared to normal
breast tissue particularly when experiments are performed in presence of CO2/HCO3

– (Figure 4D,E).
This finding is consistent with the previously reported key role of NBCn1 for net acid extrusion from
breast cancer tissue [9,10] and the upregulated NBCn1 protein expression in breast cancer tissue
compared to normal breast tissue (Figure 5A,B). We also observe upregulation of NHE1 protein
expression during breast carcinogenesis (Figure 5A,C). Supporting the pathophysiological relevance of
local acid-base dynamics for malignancy, we show that the capacity for net acid extrusion correlates
negatively with breast tumor-free survival as tumors developing with the shortest latencies show the
highest acid extrusion capacities (Figure 4F).

To our surprise, oral NaHCO3 therapy increases the capacity for net acid extrusion in breast
cancer tissue and normal breast tissue (Figure 4A,B,D,E). The elevated net acid extrusion is evident
from the ability of the breast tissue from NaHCO3-treated mice to extrude intracellular acid at more
alkaline pHi [8–10] and is apparent whether organoids are investigated in physiological buffer or are
acutely deprived of CO2/HCO3

− (Figure 4D,E). Thus, the data demonstrate that oral NaHCO3 therapy
increases Na+/H+-exchange activity and maybe has additional effects on Na+, HCO3

−-cotransport.
Oral NaHCO3 therapy has no additional effect on the upregulation of NBCn1 or NHE1 protein
expression during breast carcinogenesis (Figure 5A-C) suggesting that the acid-base transport activity
is post-translationally regulated by oral NaHCO3 therapy.

2.6. Oral NaHCO3 Therapy Increases Steady-State pHi in Breast Tissue

Consistent with the increased net acid extrusion capacity, steady-state pHi is significantly elevated
in organoids isolated from normal breast tissue (Figure 4G) and breast cancer tissue (Figure 4H) of
NaHCO3-treated mice compared to control mice irrespective of whether the intracellular acid-base
conditions are studied at pHo 7.4 or 6.8.

2.7. Oral NaHCO3 Therapy Increases ex vivo Proliferation in Organoids

Proliferative activity is elevated in breast cancer tissue compared to normal breast tissue [9] and
accompanied by increased expression of pathways for nucleotide and protein synthesis (Figure 6A).
As shown in Figure 6B,C, we observe mixed consequences of oral NaHCO3 therapy, which for some
signaling pathways (phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), Rho family guanosine
triphosphatases (GTPases), and 5’ adenosine monophosphate-activated protein kinase (AMPK))
amplify or resemble the protein expression changes seen during breast carcinogenesis (Figure 6A).
Other signaling pathways (eukaryotic initiation factor 2, protein kinase A (PKA), phospholispase C
(PLC), and Sirtuin) are oppositely affected by oral NaHCO3 therapy (Figure 6B,C) and carcinogenesis
(Figure 6A).
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Cell proliferation is significantly increased in breast cancer organoids isolated from
NaHCO3-treated mice compared to control mice, and this effect is observed at both pHo 7.4 (Figure 6E)
and 6.8 (Figure 6F) but only when experiments are performed in the presence of CO2/HCO3

–. These
findings show that oral NaHCO3 therapy fundamentally influences cancer cell functions and support
that the effect of oral NaHCO3 therapy depends on local acid-base conditions.
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Figure 4. The capacity for net acid extrusion is increased in both normal breast tissue and breast cancer
tissue from NaHCO3-treated mice compared to control mice. (A,B). Average traces of pHi-dynamics
during NH4

+-prepulse experiments performed on normal breast tissue (A) and breast cancer tissue (B)
from NaHCO3-treated mice and control mice (n = 7). Experiments were conducted in both the presence
and absence of CO2/HCO3

–. (C). Intracellular intrinsic buffering capacity of organoids of both cancer
and normal tissue from NaHCO3-treated and untreated mice (n = 7). Linear regression showed no
significant difference in buffering capacity between NaHCO3-treated and control mice. (D,E). Cellular
net acid extrusion in epithelial organoids isolated from normal breast tissue (D) and breast cancer
tissue (E) displayed as a function of pHi. Experiments were based on tissue from NaHCO3-treated
mice and control mice (n = 7) and performed in both the presence and absence of CO2/HCO3

–. Data
were compared by least-squares linear regression analyses. (F). Breast tumor-free survival plotted as
function of net acid extrusion capacity displayed as the pHi value corresponding to net acid extrusion
of 14 mM/min. The higher the pHi value, the greater the capacity for net acid extrusion. (G,H).
Steady-state pHi values measured from normal breast tissue (G) and breast cancer tissue (H) isolated
from NaHCO3-treated mice and control mice (n = 7) and investigated at pHo 7.4 (closed symbols) and
6.8 (open symbols). Data were compared by three-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001 vs.
Control under similar conditions or as indicated.
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Figure 5. NBCn1 and NHE1 protein expression is increased in organoids from breast cancer tissue
compared to normal breast tissue, but unaffected by oral NaHCO3 therapy. (A–C). Representative
immunoblots (A) and quantified protein expression levels for NBCn1 (B) and NHE1 (C) in breast
cancer tissue and normal breast tissue from NaHCO3-treated mice and control mice (n = 11–12). Equal
amounts of total protein were loaded in each lane of the gels. The band densities for NBCn1 and NHE1
are normalized to that of pan-actin. Data were compared by repeated measures two-way ANOVA
followed by Bonferroni post-tests. **p < 0.01, ***p < 0.001. NS: not significantly different vs. Control.
The Full uncropped images of immunoblots please find in Figure S4.
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Figure 6. Breast cancer organoids from mice undergoing oral NaHCO3 therapy show increased
proliferative activity in vitro at both pHo 6.8 and 7.4 but only when investigated in the presence of
CO2/HCO3

– buffer. (A–C). Protein expression changes for cellular signaling cascades. p-values were
calculated based on Fisher’s right-tailed exact test. We compare breast cancer tissue vs. normal breast
tissue from control mice (A), breast cancer tissue from NaHCO3-treated mice vs. control mice (B),
and normal breast tissue from NaHCO3-treated mice vs. control mice (C). (D). Original image of
breast cancer organoid fluorescently labeled using an anti-bromodeoxyuridine (BrdU) antibody (red).
Nuclei are stained with SYTO16 (green). (E, F). BrdU proliferative index in breast cancer organoids
from NaHCO3-treated mice and control mice (n = 7–21) investigated at pHo 7.4 (E) and 6.8 (F). The
BrdU proliferation index is the fraction of cells positive for BrdU after 6 h incubation and represents
the rate of cell division during this period. Data were compared by two-way ANOVA followed by
Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, NS: not significantly different vs. Control under
similar conditions.
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3. Discussion

Oral NaHCO3 therapy elevates pH of the tumor microenvironment (Figure 1A) but—contrary
to our expectation—has no net beneficial effect on breast cancer development or tumor growth
(Figure 2). This finding is unlike previous studies showing delayed and reduced onset of prostate
cancer development in mice treated with NaHCO3 [38]. Consistent with the absence of a net
beneficial treatment effect on breast carcinogenesis and early tumor progression, we observe that
oral NaHCO3 therapy upregulates the cellular capacity for net acid extrusion (Figure 4A–E), which
correlates with earlier tumor development (Figure 4F), enhances proliferative activity in breast cancer
tissue (Figure 6D–F), and maintains expression of enzymes involved in oxidative phosphorylation
(Figure 3A,B). The effects of carcinogenesis and NaHCO3 therapy on protein expression are widespread
and—in addition to intermediary metabolism (Figure 3)—encompass signaling pathways related to
cell-cell and cell-matrix interactions, cytoskeletal dynamics, and immune functions (Figure 1F–H) as
well as growth factor signaling, cell proliferation, and apoptosis (Figure 6A–C). The perturbation of
granulocyte-macrophage colony-stimulating factor (GM-CSF) in breast cancer tissue (Figure 1F and
Figure S1A) is particularly interesting as GM-CSF secretion from orthotopic primary breast tumor
models was previously found to depend on carbonic anhydrase activity and lead to recruitment of
granulocytic myeloid-derived suppressor cells to pre-metastatic niches in the lung [51]. Based on the
consequences of oral NaHCO3 therapy, our data suggest that the acidic tumor microenvironment keeps
in check some elements of cancer cell function—that are enhanced or reduced compared to normal
cells—whereas others are exacerbated.

Upregulation of net acid extrusion is crucial for tumor progression [5,52,53] and associated with
poor prognosis [6,54]. The current study demonstrates that elevated net acid extrusion capacity is
associated with accelerated breast cancer development (Figure 4F). The enhanced Na+/H+-exchange
activity takes place despite unchanged overall NHE1 protein expression levels as was previously
reported in MCF7 breast cancer cells with overexpression of an NH2-truncated ErbB2 receptor [55] and
in smooth muscle cells with disrupted expression of NBCn1 [56]. Elevated pHi has also been linked to
increased protein and DNA synthesis leading to accelerated cell proliferation [57]; and indeed, we
observe increased proliferation rates in vitro in breast cancer organoids from NaHCO3-treated mice
(Figure 6). This could, in part, relate to elevated pHi and NaHCO3 therapy (Figure 3, 4) facilitating
intermediary metabolism [4]. In human breast cancer tissue, NBCn1 and NHE1 are predominantly
co-expressed in cytokeratin-19-positive epithelial cells [11] although limited stromal expression of
NBCn1 and NHE1 is consistent with the important function of these transporters in resistance
arteries [56,58,59].

Immune cell infiltration and function are among previously reported targets of acidic pHo [17,42].
In congruence, oral administration of NaHCO3 has been found to increase T cell infiltration in
tumors and potentiate anti-cancer responses during immunotherapy [34]. These effects are consistent
with the observed proteomics signs of enhanced chemokine signaling and macrophage activation in
the current study (Figure 1G,H). Because we used a model of carcinogen-induced breast cancer in
immunocompetent mice, it is surprising that the more neutral tumor pH as result of the oral NaHCO3

therapy (Figure 1A) did not cause prominent anti-cancer effects. Differences in the magnitude of the
pHo-increase attained by oral NaHCO3 therapy may determine whether beneficial or detrimental
effects dominate the overall treatment outcome. We observe that tumor pH in response to oral NaHCO3

therapy increases to around 7.0 in breast carcinomas (Figure 1A) whereas other studies have reported
pHo values anywhere between 7.0 and 7.8 [32,34,60].

We previously found that inhibition of net acid extrusion from breast cancer cells by genetic
disruption of Na+, HCO3

–-cotransporter NBCn1 results in tumors of less malignant phenotype [9,10].
The microenvironmental alkalinisation observed in response to oral NaHCO3 therapy does not have
a similar effect (Figure 2C). This difference is likely explained by contrasting effects on pHi, which
is lowered in cancer cells from NBCn1 knockout mice [9,10] but elevated during NaHCO3 therapy
(Figure 4G,H). The substantial sensitivity of pHi to extracellular acidification also in breast cancer cells
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(Figure 4G,H) is consistent with previous findings from human and murine breast cancer tissue [8–10]
and is likely explained by the prominent inhibition of NBCn1 (~60%) and NHE1 (~85%) activity
when pHo is lowered to 6.8 [61]. These findings reinforce the suggestion [17] that upregulated net
acid extrusion capacity favors malignant functions particularly when cancer cells, for instance during
invasion, encounter environments of more neutral pH.

Increased systemic pH could be of concern when orally supplying NaHCO3 for cancer therapy [62].
Urinary alkalinization has been observed during increased NaHCO3 intake [37] but without significant
changes in blood pH [32,37]. Differing from prior studies, we find that oral NaHCO3 therapy increases
arterial blood pH although the effect is of modest magnitude (~0.04 pH-units, Figure 1B). We collected
arterial blood from anesthetized, endotracheally intubated mice that were mechanically ventilated
to a fixed expiratory end-tidal CO2 fraction whereas other investigators have drawn blood from
euthanized mice [37] or used tail bleeds [32]. Although intubating and ventilating mice might eliminate
a respiratory compensation of the metabolic alkalosis, it is extremely difficult to obtain reliable blood
samples from awake mice without causing stress-induced hyperventilation [63]. With our approach,
we sample blood under tightly controlled conditions, which allows us to identify even small changes
in acid-base conditions brought about by a metabolic disturbance.

In conclusion, the current study of murine breast carcinogenesis reveals that oral NaHCO3 therapy
is a double-edged sword that can have both pro- and anti-neoplastic effects. The precise mechanisms
modifying cancer development and progression are multifaceted, likely cancer type-dependent, and
still not comprehensively understood. Oral NaHCO3 therapy increases the capacity for net acid
extrusion in breast tissue, which is associated with poor prognosis. We also observe increased
proliferation in breast cancer organoids from NaHCO3-treated mice and complex changes in protein
expression patterns that can facilitate cancer development and progression. Rather than using buffer
therapy—with the risk of elevating pHi and promoting cancer development and progression—we
propose that the acidic microenvironment of breast cancer tissue can be targeted more successfully
based on inhibitors of acid-base transport.

4. Materials and Methods

Mice from Janvier Labs (France) were housed in the animal facility at Department of Biomedicine,
Aarhus University, under a 12-h light/12-h dark cycle with constant room temperature and humidity.
The Danish Animal Experiments Inspectorate approved the animal procedures (2014-15-0201-00330).

4.1. Tumor Induction and Oral NaHCO3 Therapy

Medroxyprogesterone acetate pellets (50 mg, 90 day release; Innovative Research of America,
Sarasota, FL, USA) were implanted subcutaneously in 6 weeks old female C57BL/6j mice that were
subsequently treated at 9, 10, 12, and 13 weeks of age with dimethylbenz(α)anthracene through oral
gavage [64].

At beginning of tumor induction, mice were randomly assigned to receive either water containing
200 mM NaHCO3 (treated) or regular water (control) [32,38]. From completion of breast cancer
induction, we palpated the mice twice weekly for early tumor detection. Fourteen days after first
tumor detection, the mice were anesthetized by intraperitoneal injection of ketamine (80 mg/kg
Ketaminol® vet; Intervet International, Boxmeer, Netherlands) and xylazine (8 mg/kg Narcoxyl®

vet; Intervet International, Boxmeer, Netherlands) and subjected to microdialysis sampling or tumor
pH measurements.

4.2. Microdialysis

We measured [glucose] and [lactate] in microdialysates using a CMA 600 Microdialysis Analyzer
(CMA Microdialysis AB, Kista, Sweden) [8,9]. Samples were collected by inserting microdialysis
probes (CMA 20 Elite, 4 mm membrane length; CMA Microdialysis AB, Kista, Sweden) into breast
tumors and matched normal breast tissue guided by needles and split tubing. Dual syringe pumps
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(Pump 33; Harvard Apparatus, Holliston, MA, USA) perfused the probes at 0.5 µL/min; and after a
60-minute washout period, 6 µL sample was collected for analysis.

4.3. Tumor pH

Anaesthetized mice were endotracheally intubated and kept on a ventilator (Minivent type 845,
Hugo Sachs Electronic, March, Germany). The expiratory end-tidal CO2 fraction was measured by
capnography (Capnograph type 340; Hugo Sachs Electronic, March, Germany) and maintained at
~3.8% throughout the experiments. Glass pH microelectrodes (pH 500; Unisense, Aarhus, Denmark)
were advanced stepwise into the tumors 2 mm at a time, and the reference electrode placed in the
intraperitoneal space. We observed pH decreases as the electrode tip advanced deeper into the tumor
and pH increases when the electrode moved towards more superficial tumor regions. Figure 1A
displays the lowest pH for each tumor. We measured intraperitoneal pH at the end of each experiment
and included mice where intraperitoneal pH was between 7.1 and 7.7.

4.4. Tumor Size and Histopathology

Tumors were removed postmortem and measured in 3 perpendicular dimensions (s, m, l) with
calipers. Tumors were considered ellipsoid, and their volume (V) calculated as V=s·m·l·π/6.

Tissue samples fixed in formalin for 30 min (normal tissue) or 1 h (cancer tissue) were stored in
phosphate-buffered saline, paraffin-embedded, cut to 3-µm sections, and stained with hematoxylin and
eosin. An experienced breast pathologist evaluated histopathology according to previous studies [9].

4.5. Organoid Isolation

Finely chopped excised breast cancer tissue and matched normal breast tissue incubated for
4 hours on a shaking table (set at 60 rpm) at 37 ◦C in advanced DMEM/F12 culture medium (Life
Technologies, Nærum, Denmark) aerated with 5% CO2/balance air and supplemented with 10% fetal
bovine serum (Biochrom, Cambridge, UK), 1% Glutamax (Gibco, Invitrogen, Roskilde, Denmark), and
450 IU/mL collagenase type 3 (Worthington Biochemical Corporation, Lakewood, NJ, USA). Organoids
are 100–150 µm in diameter and consist primarily of cytokeratin-19-positive cancer cells with smaller
numbers of other cell types (e.g., myofibroblasts and tumor-associated macrophages) [8,9]. From the
partially digested breast tissue, organoids were isolated by sedimentation for 20 min and used directly
for experiments without culture in order to avoid changes in expression profile or phenotype.

4.6. Intracellular pH

We performed fluorescence-based pHi measurements on freshly isolated breast epithelial organoids
using a Diaphot 200 wide-field microscope (Nikon, Tokyo, Japan) equipped with an R1 or SRV CCD
Retiga fluorescence camera (QImaging, Surrey, Canada) controlled through VisiView software (Visitron
Systems, Puchheim, Germany). Organoids maintained at 37 ◦C were loaded with 3 µM BCECF-AM
(Invitrogen, Roskilde, Denmark) in 0.1% DMSO for 20 min. During experiments performed with
CO2/HCO3

– present, the bath solution was continuously bubbled with 5% CO2/balance air. Organoids
were excited alternatingly at 495 and 440 nm and emission light collected at 510 nm. Fluorescence
ratios were calibrated to pH based on the high [K+]-nigericin technique [65]. Net acid-base transport
activity was determined from the pHi recovery rate after NH4

+-prepulse-induced intracellular
acidification [8,9,66]. Intrinsic buffering capacity calculated from NH4Cl-induced changes in pHi

under CO2/HCO3
–-free conditions did not significantly differ between NaHCO3-treated mice and

control mice or between organoids from breast cancer tissue and normal breast tissue (Figure 4C). We
quantified the intracellular acid load using the Henderson-Hasselbalch equation, assuming equilibrium
of NH3 across cell membranes. Contribution of CO2/HCO3

– to intracellular buffering capacity was
calculated from β = 2.3·[HCO3

–]i [58,67].
Physiological saline solutions for functional experiments consisted of (in mM): 4 K+, 140 Na+,

1.6 Ca2+, 1.2 Mg2+, 122 Cl–, 1.18 H2PO4
–, 22 HCO3

−, 10 HEPES, 5.5 glucose, 0.03 EDTA, 1.2 SO4
2–,
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aerated with 5% CO2/balance air, adjusted to pH 7.4 at 37 ◦C. In experiments performed at pHo 6.8, the
concentration of HCO3

– was reduced to 5.5 mM through substitution with Cl–. In Na+-free solutions,
N-methyl-D-glucammonium replaced Na+, except for NaHCO3 that was replaced with choline-HCO3.
All solutions contained 5 mM probenecid in order to inhibit BCECF extrusion by the organic anion
transporters [8,9].

4.7. Cell Proliferation

Freshly isolated organoids from breast cancer tissue incubated 6 hours with 0.1%
bromodeoxyuridine (BrdU, Invitrogen, Roskilde, Denmark) at 37 ◦C. We performed experiments with
CO2/HCO3

– under control circumstances (pH 7.4, 5% CO2, 22 mM HCO3
–), respiratory acidosis (pH

6.8, 20% CO2, 22 mM HCO3
–), and metabolic acidosis (pH 6.8, 5% CO2, 5.5 mM HCO3

–). Experiments
without CO2/HCO3

– were performed at pH 7.4 and 6.8. All solutions contained 10 mM HEPES. After
incubation, organoids were fixed in 75% ethanol for 2 min and then denatured in 1 M HCl. We
identified dividing cells by immunofluorescence imaging using anti-BrdU mouse monoclonal primary
antibody (#5292, Cell Signaling Technology, Danvers, MA, USA), Alexa488-labelled donkey anti-mouse
secondary antibody (#A21202, Invitrogen, Roskilde, Denmark), and a LSM510META confocal laser
scanning microscope (Zeiss, Oberkochen, Germany) [68]. Nuclei were co-stained with SYTO16
(Life Technologies, Nærum, Denmark). We manually calculated proliferation indices (BrdU-positive
cells/SYTO16-positive nuclei) for 3 different focal planes in each organoid using ImageJ software (NIH,
Bethesda, MD, USA).

4.8. Immunoblotting

Organoids were homogenized in a lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 5 mM EGTA
(pH 7.5), 10 mM NaF, 20 mM sodium β-glycerophosphate, and HALT protease and phosphatase
inhibitor cocktail (Thermo Scientific, Waltham, MA, USA)) using pellet pestles (Sigma-Aldrich, St.
Louis, MO, USA), sonicated for 45 s, and centrifuged at ~16,000 g for 10 min at 4 ◦C. We measured total
protein concentrations in the supernatants based on a bicinchoninic acid protein assay kit (Thermo
Scientific, Waltham, MA, USA). 10 µg total protein diluted in Laemmlie sample buffer was loaded in
each lane of a sodium dodecyl sulfate polyacrylamide gel (Bio-Rad, Hercules, CA, USA), separated
by gel electrophoresis, and transferred to polyvinylidene difluoride membranes blocked with 0.3%
i-block (Applied Biosystems, Foster City, CA, USA). Although boiling can limit protein aggregation
and improve solubility—that may otherwise lead to smears—we did not heat the lysates as we find
that this markedly reduces the ability of the antibodies to recognize their specific epitopes. Membranes
were probed with rabbit anti-NBCn1 (1:200; kind gift from Dr. Jeppe Praetorius, Aarhus University,
Aarhus, Denmark) [69] or mouse monoclonal anti-NHE1 (1:500; #sc-136239, Santa Cruz Biotechnology,
Dallas, TX, USA) [9] primary antibody, and then with species-matched goat anti-rabbit (1:2,000; #7074,
Cell Signaling Technology, Danvers, MA, USA) or horse anti-mouse (1:2,000; #7076, Cell Signaling
Technology, Danvers, MA, USA) secondary antibody conjugated to horseradish peroxidase. Bound
antibody was detected by enhanced chemiluminescence (ECL Plus; GE Healthcare, Chicago, IL, USA)
and quantified using Image Studio Lite version 5.2 (LI-COR Biosciences, Lincoln, NE, USA). NBCn1
and NHE1 expression was normalized to pan-actin expression.

4.9. Label-Free Quantitative Nano Liquid Chromatography-Tandem Mass Spectrometry (LFQ nLC-MS/MS)

Organoids from Wnt type breast cancer tissue and matched normal breast tissue were snap
frozen in liquid N2, stored at –80 ◦C, homogenized in lysis buffer (5% sodium deoxycholate, 20 mM
triethylammonium bicarbonate), and sonicated on ice [70]. Protein concentrations were measured by
IR spectrometry (Direct Detect Spectrometer, Merck, Kenilworth, NJ, USA). Up to 100-µg protein was
reduced, alkylated, and digested using filter-aided preparation (Microcon 30K centrifugal filter device,
Merck, Kenilworth, NJ, USA). Peptide concentrations were measured by tryptophan fluorescence [70],
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and 1 µg peptide injected from each sample. Two of 28 samples from 7 NaHCO3-treated mice and 7
control mice could not be run due to irregularities with chromatographic peptide separation.

Peptide mixtures were separated by nano Liquid-Chromatography (Ultimate 3000; Thermo
Scientific, Waltham, MA, USA) coupled to an Orbitrap Fusion Tribrid mass spectrometer through an
EASY-Spray nano-electrospray ion source (Thermo Scientific, Waltham, MA, USA). A µ-Precolumn
(300 µm × 5 mm, C18 PepMap100, 5 µm, 100 Å; Thermo Scientific, Waltham, MA, USA) and analytical
column (EASY-Spray Column, 750 mm × 75 µm, PepMap RSCL, C18, 2 mm, 100 Å; Thermo Scientific,
Waltham, MA, USA) trapped and separated peptides, respectively. Peptides were eluted with a flow
of 300 nL/min. The elution gradient was made by mixing a buffer containing 99.9% water and 0.1%
formic acid with a buffer containing 80% acetonitrile, 20% water, and 0.1% formic acid. The universal
method setting was used for mass spectrometry detection with full Orbitrap scans (m/z 400–1500) at a
resolution of 120,000, an automatic gain control (AGC) target of 4·105, a maximum injection time of
50 ms, and a cycle time of 3 s. The most intense precursors were selected with an intensity threshold
of 5·103. Charge states 2–7 were included. MS2 scans were performed in the linear ion trap at rapid
scan rate with collision-induced dissociation energy at 35%, an AGC target of 2·103, and a maximum
injection time of 300 ms. The precursor ions were isolated using the quadrupole set with an isolation
window of 1.6 m/z. Dynamic exclusion was set to 60 s. Internal mass calibration was used by activating
the Easy-IC using fluoranthene.

The 26 raw data files were used to search the Mus musculus database from Uniprot downloaded
on 21 March 2018 using MaxQuant (version 1.5.5.1) for LFQ analysis [71]. Carbamidomethyl (C) was
used as fixed modification. The false discovery rate for PSM, protein identification hits, and proteins
identified by site were each set at 1%. The LFQ minimum ratio count was set to 1. MS/MS was required
for LFQ comparisons. Unique and razor peptides, unmodified and modified with oxidation (M) or
acetyl (protein N-terminal), were used for protein quantification with a minimum ratio count of 2. The
match between runs function was used. Revert sequences were used for decoy search. Contaminant
sequences were included in the search. The generated results file was then entered into Perseus (version
1.6.1.1) [72] where data were log2 transformed and filtered (at least 2 unique peptides for identification
in at least 70% of samples in each group). This approach identified ~2500 proteins (Table S1) that we
analyzed using Ingenuity Pathway Analysis software (version 49932394, Qiagen, Hilden, Germany).

4.10. Blood and Urine

We treated C57BL/6j mice with oral NaHCO3 for 151 days (average treatment duration for mice
undergoing cancer induction) and collected spontaneously released urine on Parafilm®. We then
anaesthetized and mechanically ventilated mice to normocapnia (expiratory end-tidal CO2 fraction
of ~3.8%), as described above, for 10 min prior to blood sampling by carotid artery puncture. We
analyzed urine and blood immediately after collection with an ABL80 FLEX (Radiometer, Brønshøj,
Denmark). We excluded a few blood samples due to signs of hemolysis ([K+] > 6 mM) or inadequate
ventilation (pO2 < 80 mmHg and/or pCO2 > 60 mmHg).

4.11. Statistics

Data are expressed as mean ± SEM. p < 0.05 is considered statistically significant; n equals number
of mice, except in proliferation experiments where n equals number of organoids. We compared one
variable between two normally distributed groups of equal variance using two-tailed Student’s t-tests
(paired or unpaired, as appropriate). For 2 groups of unequal variance, we used t-tests with Welch’s
correction; and for data that are not normally distributed, we used non-parametric Mann-Whitney tests.
We compared one variable between more than 2 groups using repeated measures one-way ANOVA
followed by Sidak’s post-tests. We tested effects of 2 variables on a third variable using repeated
measures two-way ANOVA followed by Bonferroni post-tests and effects of 3 variables on a fourth
variable using three-way ANOVA. We compared Kaplan-Maier curves by Gehan-Breslow-Wilcoxon
test. We assessed linear relationships based on least-squares regression analyses. Right-skewed data
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were log-transformed before analyses to obtain normal distribution. Analyses were performed using
Prism 7.03 (GraphPad, San Diego, CA, USA) except for mass spectrometry data analyzed by Fisher’s
right-tailed exact test in Ingenuity Pathway Analysis software (Qiagen, Hilden, Germany).

5. Conclusions

Oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the
capacity for cellular net acid extrusion, and accelerates proliferation without net effect on breast cancer
development or tumor growth. These unexpected pro-neoplastic consequences of oral NaHCO3

therapy in breast tissue cancel out previously reported anti-neoplastic effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/891/s1,
Figure S1–S3: Illustrated results of Ingenuity Pathway Analyses, Figure S4: Full uncropped images of immunoblots
from Figure 5, Table S1: Mass spectrometry data.
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