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Abstract: Circular ribonucleic acids (circRNAs), which are a type of covalently closed circular RNA,
are receiving increasing attention. An increasing amount of evidence suggests that circRNAs are
involved in the biogenesis and development of multiple diseases such as digestive system cancers.
Dysregulated circRNAs have been found to act as oncogenes or tumour suppressors in digestive
system cancers. Moreover, circRNAs are related to ageing and a wide variety of processes in tumour
cells, such as cell apoptosis, invasion, migration, and proliferation. Moreover, circRNAs can perform
a remarkable multitude of biological functions, such as regulating splicing or transcription, binding
RNA-binding proteins to enable function, acting as microRNA (miRNA) sponges, and undergoing
translated into proteins. However, in digestive system cancers, circRNAs function mainly as miRNA
sponges. Herein, we summarise the latest research progress on biological functions of circRNAs
in digestive system cancers. This review serves as a synopsis of potential therapeutic targets and
biological markers for digestive system cancer.
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1. Introduction

Digestive system (oral cavity, oesophagus, stomach, colorectum, liver, and pancreas)-related
cancers seriously affect human health. To date, multiple digestive system cancers have been identified.
Oral cancer is a general term for malignant tumours that occur in the mouth, ninety percent of which
are oral squamous cell carcinomas (OSCCs) [1]. Globally, a large number of new cases of OSCC are
diagnosed every year [2]. Oesophageal cancer, mainly oesophageal squamous cell carcinoma (ESCC),
is not only the eighth most common cancer but also the sixth most common cause of death from
cancer throughout the world. There are geographical differences in the morbidity and mortality of
ESCC. For example, China has a high incidence of oesophageal cancer [3]. Furthermore, gastric cancer
(GC) is also commonly diagnosed and is identified as a cause of death from cancer [4]. Colorectal
cancer (CRC) is the third and the second most frequently diagnosed cancer in males and females,
respectively. In most parts of the world, the CRC incidence ratio is higher in men than in women [5].
Hepatocellular carcinoma (HCC), which is the most common malignant liver tumour, is the second
primary cause of cancer-related death globally [6]. In addition, pancreatic cancer (PC) is a highly lethal
disease in older adults, for which the mortality closely parallels the incidence [7]. Consequently, a more
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profound comprehension of the molecular mechanisms of cancer progression in the digestive system
is indispensable, which provides new ideas for the identification of new prognostic and diagnostic
biomarkers for their prevention and treatment.

The term “circular ribonucleic acids (circRNA)” generally refers to a newly identified class of
endogenous noncoding RNAs (ncRNAs). CircRNAs are covalent closed-loop structures without
the 5′ caps or 3′ poly (A) tails that linear RNAs possess, which makes them more resistant to RNA
exonucleases [8]. Furthermore, as shown in Figure 1A, circRNAs can originate from exons, introns
(including intron lariats), or both exons and introns [9]. Importantly, different subclasses of circRNA
molecules are produced by distinct biogenesis mechanisms [10,11]. The formation mechanism
of exonic circRNAs (ecircRNAs) and exon-intron circRNAs (EIciRNAs) mainly includes three
models: exon-skipping or lariat-driven circularisation, direct back-splicing or intron-pairing-driven
circularisation, and RNA-binding-protein-driven circularisation [10]. The formation of intronic
circRNAs (ciRNAs) depends on 2’,5’-phosphodiester formation from three different pathways [11].
In the 1970s, circRNAs were initially discovered as viroids in RNA viruses [12]. With the continuous
improvement of high-throughput sequencing technology and bioinformatics, abundant and diverse
circRNAs have been identified in various developmental stages and physiological conditions in
numerous organisms, including humans [13], mice [13], and monkeys [14]. Many reports have
revealed that circRNAs are indispensable in various physiological and pathological processes [15–19].
Recently, multiple possible biological functions of circRNAs have been discovered (Figure 1B).
Typically, circRNAs function as efficient microRNA sponges or competing endogenous RNAs
(ceRNAs) to affect gene expression [20]. In addition, circRNAs can regulate transcription [21] and
protein functions [22]. Importantly, circRNAs are considered ncRNAs and have coding abilities [23].
In addition, circRNAs have been gradually confirmed to be related to ageing processes and
various human diseases, including nervous system disorders, cardiovascular disorders, and cancers
(e.g., gastrointestinal cancers) [24,25]. In this article, we highlight recent research on the latest
progress in circRNA research on digestive system cancer and gut ageing. Finally, the future of
circRNA research progress and directions for the diagnosis and targeted therapy of digestive system
cancers are discussed.
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Figure 1. The classification and molecular functions of circular ribonucleic acids (circRNAs).
(A) According to their sequences, circRNAs are divided into 3 main categories: (a) exonic circRNAs
(ecircRNAs), (b) exon-intron circRNAs (EIciRNAs), and (c) intronic circRNAs (ciRNAs). (B) CircRNAs
have four potential functions: (a) microRNA (miRNA) sponging: some circRNAs serve as efficient
miRNA sponges, regulating the activity of miRNA target genes. (b) Coding ability: some circRNAs
encode peptides or proteins and affect their biological function. (c) and (d) regulation: circRNAs affect
protein function directly and regulate transcription.

2. CircRNAs Dysregulated in Digestive System Cancers

With the continuous improvement of high-throughput sequencing technology, numerous
differentially expressed circRNAs have been identified in digestive system cancers (Table 1).
For example, Sun et al. performed a comparative analysis of the global circRNA expression profiles
between the malignantly transformed oesophageal carcinoma cell line SHEEC and the immortalised
human oesophageal epithelial cell line SHEE [26]. They identified 813 significantly upregulated
and 445 downregulated circRNAs [26]. Through differential gene expression analysis of ESCC and
adjacent non-neoplastic tissues, 267 circRNAs—92 upregulated and 175 downregulated—were found
to be dysregulated in ESCC tissues compared with non-neoplastic tissues [27]. Similarly, Shi et al.
unearthed 744 dysregulated circRNAs in ESCC tissues [28]. The greater number of differentially
expressed circRNAs found in the cell lines than in corresponding cancer tissue samples may be due to
the differences between the simulated in vitro environment and the in vivo environment. Furthermore,
different numbers of dysregulated circRNAs were found in the same kind of samples, possibly because
of differences in the RNA quality, sequencing equipment, sequencing reagents, etc. The final results
of high-throughput sequencing are affected by several factors, including the sample type, quantity,
and quality; the sequencing equipment and reagents; and the subsequent data processing methodology.
In conclusion, circRNAs might be implicated in the oncogenesis and evolution of digestive system
cancers and could serve as new clinical diagnostic markers and therapeutic targets.
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Table 1. Overview of differentially expressed circRNAs identified in digestive system cancers.

Cancer Type Sample Number of Dysregulated
CircRNAs (Up, Down) References

OSCC Cancer tissue and adjacent
normal tissue 16 (8, 8) 2018 [29]

ESCC SHEE and SHEEC cell lines 1258 (813, 445) 2017 [26]

ESCC Cancer tissue and adjacent
normal tissue 267 (97, 175) 2017 [27]

ESCC Cancer tissue and adjacent
normal tissue 744 (469, 275) 2018 [28]

GC Cancer tissue and adjacent
normal tissue 713 (191, 522) 2017 [30]

CRC Cancer tissue and adjacent
normal tissue 10245 (6264, 3981) 2018 [31]

HCC Cancer tissue and adjacent
normal tissue 127 (113, 14) 2017 [32]

PDAC Cancer tissue and adjacent
normal tissue 351 (209, 142) 2016 [33]

3. The Functions of CircRNAs in Digestive Tract Cancers

Recently, increasing evidence has demonstrated that many circRNAs potentially exhibit biological
functions in digestive system cancers. Via influencing cell migration, proliferation, apoptosis,
and invasion in digestive system cancer, circRNAs act as either oncogenes or tumour suppressors.
Some mechanisms have been identified, such as serving as miRNA sponges and regulating protein
functions. Among these, the principal mechanism of circRNAs unearthed in digestive system cancers
is miRNA sponging. The mechanisms and functions of dysregulated circRNAs in digestive system
cancers are displayed in Table 2.
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Table 2. CircRNAs in digestive tract cancers.

Cancer Type CircRNA Dysregulation MiRNA Sponge Target Gene Function References

OSCC CircDOCK1/hsa_circ_100721 Down miR-196a-5p BIRC3 Apoptosis (-) [34]
Hsa_circ_0008309 Down miR-136-5p/miR-382-5p ATXN1 - [35]

ESCC Hsa_circ_0067934 Up - - Proliferation (+), migration (+) [36]
Circ-TTC17/hsa_circ_0021771 Up - - Proliferation (+), migration (+) [37]
Circ-DLG1/hsa_circ_0007203 Up - - Proliferation (+) [38]

Hsa_circ_0001946 Down - - Proliferation (−), invasion (−),
migration (−) [39]

Circ-SMAD7/hsa_circ_0000848 Down - - Proliferation (−), migration (−) [37]
GC CircPVT1 Up miR-125 - Proliferation (+) [15]

CircRNA_001569/hsa_circ_001569 Up miR-145 NR4A2 Apoptosis (−) [18]
Hsa_circ_0047905 Up - - Proliferation (+), invasion (+) [19]
Hsa_circ_0138960 Up - - Proliferation (+), invasion (+) [19]

Hsa-circRNA7690-15 Up - - Proliferation (+), invasion (+) [19]
CircYAP1/has_circ_0002320 Down miR-367-5p p27Kip1 Proliferation (−), invasion (−) [40]

CircLARP4 Down miR-424 LATS1 Proliferation (−), invasion (−) [41]
CircRNA_100269/has_circ_100269 Down miR-630 - Proliferation (−) [42]

Circ-ZFR Down miR-130a/miR-107 PTEN, p53 Proliferation (−), apoptosis (+) [43]
CircPVRL3/has_circ_0066779 Down - - Proliferation (−), migration (−) [44]

Circ-104916/has_circ_104916 Down -
E-cadherin,

N-cadherin, Vimentin
and Slug

Proliferation (−), invasion (−),
migration (−) [45]

CRC CircCCDC66 Up miRNA-33b/miR-93 MYC Proliferation (+), invasion (+),
migration (+) [46]

CircRNA-ACAP2 Up miR-21-5p Tiam1 Proliferation (+), invasion (+),
migration (+) [47]

Hsa_circ_0000069 Up - - Proliferation (+), invasion (+),
migration (+) [48]

Circ-BANP Up - - Proliferation (+) [49]
Hsa_circ_0007534 Up - - Proliferation (+), apoptosis (−) [50]
Hsa_circ_0020397 Up miR-138 TERT, PD-L1 Invasion (+), apoptosis (−) [51]

CircITGA7/hsa_circ_0026782 Down - Ras signalling
pathway, ITGA7 Proliferation (−), migration (−) [52]

Cir-ITCH Down - Wnt/β-catenin
pathway, ITCH Proliferation (−) [53]

Circ_0026344/hsa_circ_0026344 Down miR-21/miR-31 - Proliferation (−), invasion (−) [54]
Hsa_circ_0000567 Down - - Proliferation (−), migration (−) [55]

Note: (+) means promotion and (−) means suppression.
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3.1. Oral Cancer

CircDOCK1 (hsa_circ_100721) is associated with the apoptosis of OSCC cells, and the
circDOCK1-miR-196a-5p-BIRC3 axis has great importance in OSCC [34]. Both circDOCK1 silencing
and an increase in the miR-196a-5p mimic level led to increased apoptosis and decreased BIRC3
expression in OSCC cells [34]. In addition, in OSCC cell lines, hsa_circ_0008309 may exert an
anti-cancer effect by manipulating the hsa_circ_0008309-miR-382-5p/miR-136-5p-ATXN1 pathway [35],
and hsa_circ_0008309 overexpression inhibited miR-382-5p and miR-382-5p expression and increased
ATXN1 expression. In summary, circDOCK1 and hsa_circ_0008309 act as tumour suppressors of OSCC
and may be latent biomarkers for OSCC (Figure 2a).

Figure 2. Dysregulated circRNAs act as oncogenes or tumour suppressors and have diagnostic value in
digestive system cancers. (a) Oral cavity, (b) oesophagus, (c) stomach, (d) colorectum, (e) liver, and (f)
pancreas. Green indicates circRNAs with potential diagnostic value in digestive system cancers.

3.2. Oesophageal Cancer

A previous study discovered that 3 circRNAs (hsa_circ_0067934, circ-TTC17, and circ-DLG1)
act as oncogenes in ESCC (Figure 2b) [36–38]. In vitro, hsa_circ_0067934 silencing blocked cell cycle
progression and inhibited the cell migration and proliferation of ESCC [36]. Similarly, circ-TTC17
knockdown significantly decreased the migration and proliferation of ESCC cells [37]. Furthermore,
circ-DLG1 knockdown significantly reduced the proliferation of ESCC cells. Prediction and annotation
analyses revealed that circ-DLG1 can sponge 20 miRNAs and affect 60 corresponding target mRNAs [38].
Importantly, 2 circRNAs (hsa_circ_0001946 and circ-SMAD7) were found to act as tumour suppressors
in ESCC [37,39]. The overexpression of hsa_circ_0001946 restrained ESCC cell invasion, migration,
and proliferation [39]. In addition, hsa_circ_0001946 was verified to predict disease-free survival
(DFS), overall survival (OS) and recurrence in FFPE and frozen tissues. Furthermore, circ-SMAD7
knockdown promoted cell migration and proliferation ability, whereas circ-SMAD7 overexpression
showed the opposite effect in ESCC [37]. Thus, these findings provide new ideas for screening for
ESCC biomarkers.
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3.3. Gastric Cancer

To date, 11 circRNAs—five upregulated (cancer-promoting) and six downregulated (cancer-
suppressing)—have been found to be involved in GC (Figure 2c). The action mechanisms of six of
these circRNAs have been described, revealing the pathological process of GC and providing new
approaches for the prevention and therapy of GC.

3.3.1. CircRNAs that Act as Oncogenes in GC

By sponging members of the miR-125 family, the oncogenic circRNA circPVT1 may facilitate GC cell
proliferation [15]. In addition, circRNA_001569 overexpression promoted cell viability and decreased
GC apoptosis by suppressing miR-145 expression, which is mediated by NR4A2 [18]. Furthermore,
inhibition of 3 circRNAs (circRNA0047905, circRNA0138960 and circRNA7690-15) restrained the cell
invasion and proliferation of GC in vitro [19]. Future research should focus on the mechanism of action
of these newly discovered circRNAs in GC.

3.3.2. CircRNAs that Act as Tumour Suppressors in GC

Six circRNAs—circYAP1, circLARP4, circRNA_100269, circPVRL3, circ-ZFR, and circ-104916—
have been reported to act as tumour suppressors in GC (Table 2). Previous studies analysed the
functional mechanisms of circYAP1, circLARP4, circRNA_100269, and circ-ZFR and found that they
are ceRNAs that bind to miRNAs to inhibit GC. For example, circYAP1 restrained the invasion
and proliferation of GC cells by binding miR-367-5p to inhibit p27Kip1 expression [40]. In addition,
circLARP4 restrained the biological behaviours of GC cells through sponging miR-424 [41]. Furthermore,
by targeting the LATS1 gene, miR-424 facilitated the cell invasion and proliferation of GC [41].
CircRNA_100269 was found to target miR-630, suppressing tumour cell growth [42]. In addition,
miR-630 could obstruct the function of circRNA_100269 [42]. Circ-ZFR induced cell cycle arrest,
suppressed GC cell proliferation, and promoted apoptosis through sponging miR-107/miR-130a and
adjusting PTEN, and circ-ZFR regulated the expression level of p53 protein in vivo [43].

Moreover, these circRNAs act through other mechanisms. In particular, circPVRL3 may have
protein-coding ability in view of the structure of its open reading frame, internal ribosomal entry sites,
and m6A modification [44]. Knockdown of circPVRL3 promoted the cell migration and proliferation of
GC [44]. Circ-104916 overexpression in vitro effectively suppressed the cell migration, proliferation and
invasion abilities of GC [45]. In addition, circ-104916 downregulated N-cadherin, Vimentin, and Slug
and upregulated E-cadherin, which suggests that circ-104916 may participate in epithelial–mesenchymal
transition (EMT) [45]. Therefore, overexpression of circRNAs in GC could be an effective method to
prevent the progression of GC.

3.4. Colorectal Cancer

Ten circRNAs—six upregulated in CRC (cancer-promoting) and four downregulated
(cancer-suppressing) circRNAs—have been determined to be involved in the regulation of CRC
(Table 2 and Figure 2d). These circRNAs are related to the cell migration, proliferation, and apoptosis
of CRC and participate in the regulation of signalling pathways (e.g., the Ras signalling pathway and
Wnt/β-catenin pathway). Knowledge about these circRNAs facilitates a deeper understanding of
CRC pathogenesis.

3.4.1. CircRNAs that Act as Oncogenes in CRC

Six circRNAs have been found to be upregulated during the progression of CRC, and knockdown
of circCCDC66 [46], circRNA-ACAP2 [47], and hsa_circ_0000069 [48] notably restrained CRC cell
migration, invasion, and proliferation. In addition, circ-BANP [49] and hsa_circ_0007534 [50]
participate in the regulation of CRC cell proliferation. Among these six circRNAs, circCCDC66 [46],
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circRNA-ACAP2 [47], and hsa_circ_0020397 [51] could be miRNA sponges that regulate the expression
level of their targets.

The circRNA circCCDC66 was found to serve as a miRNA sponge to protect MYC mRNA from
attack through miR-93 and miRNA-33b [46]. CircRNA-ACAP2 acted as a miRNA sponge to increase
the expression of T lymphoma invasion and metastasis protein 1 (Tiam1) through abolishing the
inhibitory function of miR-21-5p for Tiam1 expression, thereby promoting the invasion, migration, and
proliferation of SW480 colon cancer cells [47]. Moreover, hsa_circ_0020397 inhibited apoptosis and
promoted the cell invasion and viability of CRC through enhancing the expression of programmed
death-ligand 1 (PD-L1) and telomerase reverse transcriptase (TERT), which are the target genes of
miR-138, whereas miR-138 had the opposite effect [51]. Specifically, hsa_circ_0000069 knockdown
caused G0/G1 period cell cycle detention in vitro [48]. These findings provide in-depth insights into
CRC progression and a reference for the design of therapeutic targets.

3.4.2. CircRNAs that Act as Tumour Suppressors in CRC

Several circRNAs, including circITGA7, cir-ITCH, circ_0026344, and hsa_circ_0000567, have been
found to be downregulated in CRC. CircITGA7 acted as a suppressor to repress the cell metastasis
and proliferation of CRC by stimulating the transcription of its host gene ITGA7 and inhibiting the
Ras signalling pathway [52]. Furthermore, through heightening the level of ITCH and restraining
the Wnt/β-catenin pathway, cir-ITCH suppressed the proliferation of CRC cells [53]. In addition,
circ_0026344 reduced the cell invasion and growth of CRC while accelerating apoptosis through
sponging miR-31 and miR-21 in CRC [54]. Moreover, hsa_circ_0000567 knockdown promoted CRC
cell migration and proliferation in vitro [55]. Therefore, overexpression of these circRNAs might
regulate CRC.

4. CircRNAs Play Important Roles in Digestive Gland Cancers

Digestive gland cancers comprise HCC and PC. Previous studies have reported that circRNAs
participate in the regulation of HCC cell migration, invasion, and proliferation and in pancreatic ductal
adenocarcinoma (PDAC) cell invasion and proliferation [56–58] (Table 3). These circRNAs play a very
important role in promoting or inhibiting the growth of digestive gland cancers.

4.1. Hepatocellular Carcinoma

A total of 18 circRNAs, 11 of which are upregulated in HCC (cancer-promoting) and the other 7 of
which are downregulated (cancer-suppressing), have been found to be involved in HCC (Table 3 and
Figure 2e).

4.1.1. CircRNAs that Act as Oncogenes in HCC

Eleven circRNAs have been found to participate in the regulation of HCC cell migration,
proliferation, and invasion by two action mechanisms (as ceRNAs and by binding to proteins)
(Table 3). CircFBLIM1 [59] and hsa_circ_0078710 [58] promoted HCC cell proliferation, invasion,
and migration as ceRNA sponges. CircFBLIM1 was shown to regulate FBLIM1 expression by sponging
miR-346 [59]. In addition, in HCC, hsa_circ_0078710 increased HDAC and CDK2 levels by sponging
miR-31 and promoted HCC cell cycle progression, invasion, cell proliferation, and migration in vitro,
as well as tumour formation by HCC cells in vivo [58]. Cullin 2 (Cul2) circular RNA (circ-10720) and
circRNA_104075 have a functional mechanism similar to that of their upstream regulator. A recent
study reported that through binding to the Cul2 promoter, Twist1 stimulates its transcription and
selectively upregulates Cul2 circular RNA expression. These circRNAs can sponge miRNAs that target
Vimentin, thus increasing the expression of Vimentin during EMT [60]. In addition, Cul2 circRNA
stimulated the cell invasion, migration and proliferation of HCC [60], and circ_104075 acted as a ceRNA
to encourage tumorigenesis by increasing the expression of YAP through sponging miR-582-3p [61].
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Mechanistically, HNF4a binds to the -1409 to -1401 region of the circ_104075 promoter to increase the
expression of circ_104075.

The remaining circRNAs act as oncogenes in HCC by binding to different miRNAs and
influencing different signalling pathways (Table 3), which differentially affect the progression of
HCC. Hsa_circ_101280 (hsa_circ_SLAIN1 and hsa_circ_0100929) greatly facilitated HCC tumorigenesis
through upregulating JAK2 and adsorbing miR-375, which restrained apoptosis and enhanced
proliferation of HCC cells [62]. Hsa_circ_0103809 promoted cell migration and proliferation and
inhibited apoptosis in HCC through regulating the miR-490-5p/SOX2 signalling pathway [63]. These
findings suggest that circRNAs play a pivotal role in HCC and could help us screen potential biomarkers
and targets for the prevention and diagnosis of HCC.
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Table 3. CircRNAs in digestive gland cancers.

Cancer Type CircRNA Dysregulation Upstream
Regulator MiRNA Sponge Target Gene Function References

HCC Circ-10720/hsa_circ_10720 Up Twist1 - Vimentin Proliferation (+), invasion (+),
migration (+) [60]

CircFBLIM1/hsa_circ_0010090 Up - miR-346 FBLIM1 Proliferation (+), invasion (+),
apoptosis (-) [59]

Circ-ZEB1.33 Up - miR-200a-3p CDK6 Proliferation (+) [64]
CircRNA_104075/circ_104075 Up HNF4a miR-582-3p YAP - [61]

CircRNA_100338/hsa_circRNA_100338 Up - miR-141-3p - Migration (+) [65]
Hsa-circ-0046600 Up - miR-640 HIF-1α Migration (+) [66]

Hsa_circ_0016788 Up - miR-486 CDK4 Proliferation (+), invasion (+),
apoptosis (−) [67]

Hsa_circ_101280/hsa_circ_SLAIN1/hsa_
circ_0100929 Up - miR-375 JAK2 Proliferation (+), apoptosis (−) [62]

Hsa_circ_0103809 Up - miR-490-5p SOX2 Proliferation (+), migration (+),
apoptosis (−) [63]

Hsa_circ_0000673 Up - miR-767-3p SET Proliferation (+), invasion (+) [68]

Hsa_circ_0078710 Up - miR-31 HDAC, CDK2 Proliferation (+), invasion (+),
migration (+) [58]

CircARSP91/hsa_circ_0085154 Down AR-ADAR1 - - - [69]

Hsa_circ_0001445/cSMARCA5 Down DHX9 miR-17-3p/miR-181b-5p TIMP3 Proliferation (−), invasion (−),
migration (−), apoptosis (+) [70,71]

CircMTO1/hsa_circRNA_0007874/
hsa_circRNA_104135 Down - miR-9 p21 Proliferation (−), invasion (−) [72]

CircADAMTS14/hsa_circ_0018665 Down - miR-572 RCAN1 Proliferation (−), invasion (−),
apoptosis (+) [73]

CircRNA SMAD2/hsa_circ_0000847 Down - miR-629 - Invasion (−), migration (−) [74]

CircC3P1 Down - miR-4641 PCK1 Proliferation (−), invasion (−),
migration (−) [75]

CircZKSCAN1/hsa_circ_0001727 Down - - - Proliferation (−), invasion (−),
migration (−) [76]

PDAC CircRNA_100782/hsa_circ_100782 Up - miR-124 IL6, STAT3 Proliferation (+) [57]

Circ-PDE8A/hsa_circ_0036627 Up - miR-338 MACC1, MET,
ERK, AKT Invasion (+) [56]

Note: (+) means promotion and (−) means suppression.
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4.1.2. CircRNAs that Act as Tumour Suppressors in HCC

Seven circRNAs have been found to serve as antitumour factors via multiple action mechanisms
in HCC. CircARSP91 (hsa_circ_0085154) expression was influenced by the upstream regulator
AR-ADAR1 [69]. The androgen receptor (AR) contributes to sex disparity in HCC. AR suppressed
circARSP91 expression by upregulating ADAR1 p110 in HCC. In addition, circARSP91 repressed
HCC tumour growth both in vivo and in vitro [69]. Similarly, DHX9 could induce downregulation
of cSMARCA5 (hsa_circ_0001445) in HCC. cSMARCA5 overexpression facilitated apoptosis and
repressed the invasion, migration, and proliferation of HCC cells, and this circRNA upregulated TIMP3
by adsorbing miR-181b-5p and miR-17-3p [70,71]. Furthermore, circMTO1 [72], circADAMTS14 [73],
the circRNA SMAD2 [74], and circC3P1 (miR-4641/PCK1) [75] could serve as miRNA sponges to
restrain HCC cell tumorigenic behaviours. Moreover, overexpression of both circZKSCAN1 and
ZKSCAN1 mRNA repressed the invasion, migration, and proliferation of HCC cells; however, the
mechanism of action of circZKSCAN1 was not related to its parental gene ZKSCAN1 (a zinc finger
family gene). Overall, circARSP91 and miR-4641/PCK1 could be the most promising biomarkers
because of their inhibitory effects on HCC cell migration, invasion, and proliferation and their clear
mechanism of action.

4.2. Pancreatic Cancer

CircRNA_100782 and circ-PDE8A, which are upregulated in PC, are involved in the regulation
of PDAC as miRNA sponges. Chen et al. found that circRNA_100782 knockdown inhibited the
proliferation of PDAC cells by decreasing the expression of signal transducer and activator of
transcription 3 (STAT3) and interleukin-6 receptor (IL6R), which are the target genes of microRNA-124
(miR-124) [57]. In addition, a study revealed that tumour-released exosomal circ-PDE8A serves as a
miRNA sponge for miR-338 to adjust MACC1 and promotes the invasion of PDAC cells through the
MACC/MET/ERK or AKT pathways [56]. These findings suggest that circRNA_100782 and circ-PDE8A
act as oncogenes in PDAC and could be biomarkers for PDAC (Figure 2f).

5. Common CircRNAs Involved in Digestive System Cancers

With increasing research on circRNAs in digestive system cancers, we found that
six circRNAs—cerebellar degeneration-related protein 1 antisense RNA (ciRS-7 or Cdr1as),
circRNA_100290, circHIPK3, circAGO2, hsa_circ_0014717, and hsa_circ_0001649—are dysregulated
and perform similar functions in different cancers (Table 4). In digestive system cancers, the expression
of ciRS-7, circRNA_100290, circHIPK3, and circAGO2 is upregulated, while that of hsa_circ_0014717
and hsa_circ_0001649 is downregulated. Among these six common circRNAs, ciRS-7 is involved in
four digestive system cancers, namely, ESCC, GC, CRC, and HCC, through sponging miRNA-7 and
different targets [77–81]. However, it is unclear how hsa_circ_0001649 affects the progression of CRC
or HCC. Next, we explain the functions and mechanisms of these six circRNAs.



Cancers 2020, 12, 770 12 of 27

Table 4. Common circRNAs in digestive system cancers.

CircRNA Cancer Type Dysregulation Upstream
Regulator MiRNA Sponge Target Gene Function References

CiRS-7/Cdr1as ESCC Up - miR-7 HOXB13,
NF-κB/p65

Proliferation (+), migration (+),
invasion (+) [77]

KLF4, NF-κB Migration (+), invasion (+) [78]
GC Up - miR-7 PTEN/PI3K/AKT Migration (+), apoptosis (-) [79]

CRC Up - miR-7 EGFR/RAF1/MAPK Proliferation (+), migration (+),
invasion (+), apoptosis (−) [80]

EGFR, IGF-1R Proliferation (+), invasion (+) [81]
HCC Up - miR-7 CCNE1, PIK3CD Proliferation (+), invasion (+) [82]

CircRNA_100290/
hsa_circRNA_100290 OSCC Up - miR-29b CDK6 Proliferation (+) [83]

CRC Up - miR-516b FZD4,
Wnt/β-catenin

Proliferation (+), migration (+),
invasion (+), apoptosis (−) [84]

CircHIPK3/hsa_circ_0000284 GC Up - miR-124/miR-29b COL1A1, COL4A1,
CDK6 Proliferation (+) [85]

CRC Up c-Myb miR-7 FAK, IGF1R,
EGFR, YY1

Proliferation (+), migration (+),
invasion (+), apoptosis (−) [86]

CircAGO2/hsa_circ_0135889 GC/CRC Up - - HuR Proliferation (+), invasion (+),
migration (+) [87]

Hsa_circ_0014717 GC Down - - - - [35]
CRC Down - - p16 Proliferation (−) [88]

Hsa_circ_0001649 CRC Down - - - - [89]

HCC Down - - - Proliferation (−), migration (−),
invasion (−), apoptosis (+) [90]

Note: (+) means promotion and (−) means suppression.
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5.1. CiRS-7

CiRS-7, also called Cdr1as, serves as a super sponge for miR-7 and possesses over 60 common
binding sites [20]. The overlapping co-expression of ciRS-7 and miR-7 was observed in the mouse
brain, suggesting a high degree of endogenous interaction [91]. A study has found that ciRS-7 may
affect the progress of sporadic Alzheimer’s disease (AD) through the miRNA-7/UBE2A signalling
circuit [92]. In addition, ciRS-7 has been found to participate in the pathogenesis of multiple tumours
(Figure 3A), which demonstrates that ciRS-7 may be a novel therapeutic target and prognostic marker
for these deadly diseases.

Recent research revealed that ciRS-7 overexpression in ESCC encouraged cell invasion, migration
and proliferation in vitro, as well as lung metastasis and tumour growth in vivo, by abolishing the
tumour-suppressive effects of miR-7. Importantly, ciRS-7 served as a sponge for miR-7, resulting
in the activation of the NF-κB/p65 pathway mediated by HOXB13 [77]. In addition, knockdown
of the stem cell marker Kruppel-like factor-4 (KLF-4), which is a target gene of miR-7, attenuated
cell invasion induced by ciRS-7 overexpression. Moreover, BAY 11–7082, an NF-κB inhibitor, also
counteracted, to some extent, ciRS-7-mediated cell invasion [78]. Furthermore, ciRS-7 overexpression
could block miR-7-induced tumour suppression, including reductions in cell migration and apoptosis,
by counteracting the PTEN/PI3K/AKT pathway mediated by miR-7 in GC [79]. CiRS-7 overexpression in
CRC cells dramatically reduced the tumour-suppressive activity (repression of cell invasion, migration
and proliferation, and acceleration of apoptosis) of miR-7, and ciRS-7 regulated the EGFR/RAF1/MAPK
pathway through suppressing the activity of miR-7 [80]. Intriguingly, ciRS-7 silencing inhibited CRC
cell invasion and proliferation and decreased IGF-1R and EGFR expression, which could be rescued, in
part, through a miR-7 inhibitor [81]. In HCC, ciRS-7 knockdown reduced the expression of PIK3CD
and CCNE1, the direct targets of miR-7. In addition, ciRS-7 knockdown restrained HCC cell invasion
and proliferation by adsorbing miR-7 [82]. Thus, ciRS-7 has a complex action mechanism in four
digestive system cancers and could thus have great potential among the abovementioned six circRNAs
as a therapeutic target for digestive system cancers.

5.2. CircRNA_100290

CircRNA_100290 (hsa_circRNA_100290) may serve as a ceRNA to adjust the expression of
CDK6 by adsorbing miR-29b in OSCC [83] (Figure 3B). Knockdown of circRNA_100290 inhibited the
proliferation of OSCC cells in vitro and in vivo [83]. Furthermore, silencing circRNA_100290 greatly
decreased the rate of proliferation, restrained the invasion and migration abilities, and encouraged the
apoptosis of CRC cells in vitro [84]. CircRNA_100290 is also a ceRNA for FZD4 that sponges miR-516b,
resulting in Wnt/β-catenin pathway activation in CRC [84]. Therefore, circRNA_100290 may be an
ideal biomarker for OSCC and CRC.

5.3. CircHIPK3

CircHIPK3 (hsa_circ_0000284) promoted cell proliferation through serving as a miRNA sponge
for miR-124/miR-29b in GC. COL1A1, COL4A1 and CDK6 might play important functions mediated
by the circHIPK3-miR-29b/miR-124 axes in GC [85] (Figure 3C). In addition, circHIPK3 knockdown
markedly curbed cell invasion, migration, and proliferation, boosted the apoptosis of CRC in vitro, and
inhibited CRC metastasis and growth in vivo. Furthermore, circHIPK3 overexpression significantly
counteracted the miR-7-mediated repression of malignant phenotypes of CRC cells through upregulating
the proto-oncogenes (FAK, IGF1R, EGFR, and YY1) targeted by miR-7. An upstream regulator of
circHIPK3 expression in CRC is c-Myb, which is a transcription factor [86]. These findings suggest
that circHIPK3 may be a therapeutic biomarker for GC and CRC. In addition, circHIPK3 regulates
the proliferation, migration, invasion and apoptosis of non-small-cell lung cancer (NSCLC) cells
through miR-149-mediated FOXM1 expression regulation, potentially providing novel insight into the
pathogenesis of NSCLC [93].
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Figure 3. The mechanisms of three circRNAs (CiRS-7/Cdr1as, CircRNA_100290 and CircHIPK3)
in different diseases. (A), Mechanism of ciRS-7 in ESCC, GC, CRC, and HCC. (B), Mechanism of
circRNA_100290 in OSCC and CRC. (C), Mechanism of circHIPK3 in GC and CRC.

5.4. CircAGO2

CircAGO2 (hsa_circ_0135889), an intronic circRNA produced from the AGO2 gene, was
upregulated in both GC and CRC and promoted the invasion, metastasis and cell growth of cancer
in vitro and in vivo [87]. In addition, circAGO2 facilitated its enrichment and activation on the
3’-untranslated region of target genes by interacting with human antigen R (HuR) protein, reducing
argonaute 2 (AGO2) binding and repressing the silencing of AGO2/miRNA-mediated genes related
to cancer progression [87]. Overall, circAGO2 might regulate cancer progression by facilitating the
human antigen R (HuR)-inhibited effects of argonaute 2 (AGO2)-miRNA complexes. These results
demonstrate that circAGO2 may be a potential therapeutic and diagnostic target for GC and CRC.

5.5. Hsa_circ_0014717

The overexpression of hsa_circ_0014717 induced G0/G1 period cell cycle arrest, restrained
colony formation and CRC cell proliferation in vitro and inhibited xenograft tumour growth in vivo.
Furthermore, hsa_circ_0014717 upregulated the expression of the cell cycle inhibitory protein p16 [94],
and the knockdown of p16 reversed the inhibition of hsa_circ_0014717 on CRC cell growth [94]. Shao
et al. discovered that hsa_circ_0014717 is stable in human gastric juice and that its characteristics make
it suitable for use in clinical detection methodologies [88]. These results suggest that hsa_circ_0014717
may be a useful diagnostic marker for CRC.

5.6. Hsa_circ_0001649

Hsa_circ_0001649 overexpression inhibited cell invasion, migration, and proliferation and
stimulated apoptosis in HCC [89]. In addition, the expression of hsa_circ_0001649 was heightened in
serum samples from patients with CRC after surgery [90]. However, the concrete mechanism of action
of hsa_circ_0001649 in HCC and CRC is not clear. Future studies should emphasise the function and
mechanism of hsa_circ_0001649 and its potential as a biomarker in HCC and CRC.
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6. The Clinical Significance of CircRNAs in Digestive System Cancers

6.1. Diagnostic Value Assessment

To date, circRNAs have been reported as potential diagnostic targets based on several efficient
indicators in five digestive system cancers, such as receiver operating characteristic (ROC) curves,
sensitivity and specificity (Table 5).

The diagnostic value of the combined circRNAs is higher than that of the single circRNAs in
OSCC and PC. Three circRNAs have been identified as potential biomarkers for the diagnosis of OSCC,
including hsa_circ_001242 [95], hsa_circ_0001874 and hsa_circ_0001971 [96]. Notably, the AUC (0.922)
of the combination of hsa_circ_0001874 and hsa_circ_0001971 was larger than that of a single circRNA.
A similar result was found in PC. Recent research revealed that circ-LDLRAD3 may be a new biomarker
in the diagnosis of PC [97]. The expression of circ-LDLRAD3 in PC tissues was correlated with clinical
stage, T classification, venous invasion, and lymphatic invasion, and in the plasma of patients with PC,
it was significantly associated with CA19-9, N classification, venous invasion, clinical stage, metastasis,
and lymphatic invasion [97]. Moreover, the AUC of circ-LDLRAD3 was 0.67. When combined with
CA19-9, the AUC was increased to 0.87. These results suggest that the higher diagnostic value of the
combination circRNAs could be an important choice for digestive system cancers.

The diagnostic values of circRNAs in different tissues differ in GC and PC. Six
circRNAs—hsa_circ_002059 [98], hsa_circ_0000190 [99], hsa_circ_0000745 [100], hsa_circ_0000520 [26],
hsa_circ_0000181 [101], and has_circ_0074362 [102]—may be potential novel biomarkers for the
diagnosis of GC (Table 5). Of the six circRNAs, plasma hsa_circ_0000520 had the highest AUC (0.8967),
sensitivity (0.8235), and specificity (0.8444) [26] and could therefore be a suitable diagnostic target
for carcinoembryonic antigen (CEA) of GC patients’ plasma. Furthermore, hsa_circ_0000190 had a
relatively higher diagnostic value for the combination of GC cancer tissue and patient plasma with AUC
(0.775), sensitivity (0.712), and specificity (0.75) [103]. In PC patients, circRNA_104075 (hsa_circ_104075)
in cancer tissues and patient serum had the highest AUC (0.973), sensitivity (0.96), and specificity
(0.983) for diagnosis [61]. Thus, circRNAs can be selected as diagnostic targets for different digestive
system cancer tissues.

6.2. Therapeutic Potential of CircRNAs

CircRNAs could have several advantages as potential targets for the treatment of digestive
system cancers. First, circRNAs are stable molecules that may be relatively abundant in cells, tissues,
and developmental stages. In addition, circRNAs are resistant to RNase R activity and exist in
tissue [101], blood [104], saliva [96], and exosomes [105]. Moreover, circRNAs are highly conserved
among species [106]. To date, multiple circRNAs involved in the regulation of digestive system cancer
progression have been by in vivo and in vitro experiments [68,107]. A previous study suggested that
circRNAs offer new opportunities to design innovative therapeutic strategies for cancer treatment [106].
Thus, circRNAs are very promising as treatment targets. For example, CiRS-7/Cdr1as is a miR sponge
that is upregulated and involved in the regulation of ESCC [77], GC [78], CRC [79], and HCC [80]
by different pathways, which suggests that the downregulation of ciRS-7/cdr1as expression might
provide an effective treatment method. CircRNAs can act as sponges for miRNAs. Artificial circRNA
sponges resistant to nuclease digestion could be synthesised using simple enzymatic ligation steps [108].
The synthetic circular miR-21 (scRNA21) sponge inhibited cancer cell proliferation and suppressed the
activity of miR-21 on downstream protein targets, including the cancer protein DAXX [108]. Therefore,
by studying the structure of endogenous circular RNA sponges to design and develop effective artificial
sponges, we could eventually regulate the function of miRNAs in diseases.
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Table 5. The diagnostic value of circRNAs in digestive system cancers.

Cancer Type CircRNA Dysregulation Sample Clinicopathological Factors AUC Sensitivity Specificity References

OSCC Hsa_circ_001242 Down Cancer tissue Tumour size, T stage 0.784 0.725 0.775 [95]
Hsa_circ_0001874 Up Patients’ saliva TNM stage, tumour grade 0.863 0.7444 0.9024 [96]
Hsa_circ_0001971 Up Patients’ saliva TNM stage 0.845 0.7556 0.878 [96]
Hsa_circ_0001874

+
hsa_circ_0001971

- - - 0.922 0.9268 0.7778 [96]

GC Hsa_circ_002059 Down Cancer tissue Distal metastasis, TNM stage, gender, age 0.73 0.81 0.62 [98]

Hsa_circ_0000190 Down Cancer tissue Tumour diameter, lymphatic metastasis, distal metastasis,
TNM stage, CA19-9 0.75 0.721 0.683 [103]

Patients’ plasma CEA 0.6 0.414 0.875
Cancer tissue +

Patients’ plasma - 0.775 0.712 0.75

Hsa_circ_0000745 Down Cancer tissue Tumour differentiation - - - [100]
Patients’ plasma TNM stage 0.683 0.855 0.45

Patients’ plasma +
CEA - 0.775 0.8 0.633

Hsa_circ_0000520 Down Cancer tissue TNM stage 0.6129 0.5357 0.8571 [9]
Patients’ plasma CEA 0.8967 0.8235 0.8444

Hsa_circ_0000181 Down Cancer tissue Tumour diameter, lymphatic metastasis, distal metastasis,
CA19-9 0.756 0.539 0.852 [101]

Patients’ plasma Differentiation, CEA 0.582 0.99 0.206
Hsa_circ_0074362 Down Cancer tissue Lymphatic metastasis, CA19–9 0.63 0.362 0.843 [102]

CRC Hsa_circ_001988 Down Cancer tissue Differentiation, perineural invasion 0.788 0.68 0.73 [109]
Hsa_circ_0003906 Down Cancer tissue Lymphatic metastasis, differentiation 0.818 0.803 0.725 [45]
Hsa_circ_0000567 Down Cancer tissue Tumour size, lymph metastasis, distal metastasis, TNM stage 0.8653 0.8333 0.7647 [55]
Hsa_circ_0026782 Down Cancer tissue Tumour size, lymph metastasis, distant metastasis, TNM stage 0.8791 0.9275 0.6667 [52]
Hsa_circ_0000069 Up Cancer tissue TNM stage, age - - - [48]

HCC Hsa_circ_0003570 Down Cancer tissue Tumour diameter, differentiation, microvascular invasion,
BCLC stages, TNM stages, serum AFP 0.7 0.449 0.868 [110]

Hsa_circ_0001445 Down Cancer tissue The number of tumour foci - - - [71]
Patients’ plasma Serum AFP 0.862 0.712 0.942

Hsa_circ_104075 Up Cancer tissue - - - - [61]
Patients’ serum - 0.973 0.96 0.983

Hsa_circ_0016788 Up Cancer tissue - 0.851 - - [67]

PC Circ-LDLRAD3 Up Cancer tissue Venous invasion, lymphatic invasion, clinical stage, T
classification 0.67 0.5738 0.7049

[97]

Patients’ plasma CA19-9, N classification, venous invasion, lymphatic invasion,
clinical stage, metastasis

Circ-LDLRAD3
+ CA19-9 - - - 0.87 0.8033 0.9355 [97]
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7. Human Disease-Related CircRNA Databases

Following the application of high-throughput RNA sequencing and various modern computational
approaches, a large number of human circRNA-related datasets have been established (Table 6).
The circRNA basic information integration and analysis databases are circBase [111], CIRCpedia
v2 [112], circView [113], and circBank [114]. It is worth noting that circBase and circBank provide
the system nomenclature for circRNAs. However, circBase may fail to achieve accurate classification
and positioning. CIRCpedia v2, circView, and circBank achieve more comprehensive and expert
basic information integration regarding human circRNA. There are seven databases for the functional
annotation of circRNAs (Table 6). The DeepBase v2.0 database focuses on the identification, expression,
evolution, and function of circRNAs [115]. The CircInteractome and circNet databases emphasise
circRNA-miRNA-gene and circRNA-protein regulatory networks [116]. The circFunBase database
specifically provides the experimentally validated and computationally predicted functions of circRNA
and circRNA-miRNA interaction networks [117]. The system nomenclature, function, and regulatory
networks of human circRNAs (including digestive system cancer-related circRNAs) could be obtained
from the above databases.

Moreover, the CSCD [118], circ2Traits [119], exoRBase [104], circRNA disease [120], circR2Disease [121],
and somamiR 2.0 [105] databases integrate circRNA-human disease networks. Specifically, the
circR2Disease (experimentally supported circular RNAs associated with various diseases) and somamiR
2.0 (miRNA-circRNA network) databases provide circRNA references in GC, CRC, HCC, and PC.
The circRNA disease database presents experimentally supported circRNA-disease associations,
including GC, CRC, and HCC [120]. Furthermore, a previous study demonstrated that exosomes can
modulate the behaviour of recipient cells and may be used as circulating biomarkers for diseases [122].
ExoRBase aids researchers in identifying molecular signatures in blood exosomes and discovering new
exosomal biomarkers and functional implications for human diseases, such as CRC, HCC, and PC [105].

In summary, these databases help researchers understand the essential information on circRNAs
in digestive system cancers and other human diseases and promote understanding of the occurrence
and development of disease as well as its diagnosis and prognosis.
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Table 6. Human disease circRNA-related databases.

Name Website Description References

CircRNA basic information integration and analysis databases

CircBase http://www.circbase.org/
CircRNA database for six species (human, mouse, worm, Latimeria chalumnae,

Latimeria menadoensis) [111]

CIRCpedia v2 http://www.picb.ac.cn/rnomics/circpedia Comprehensive circRNA annotation from over 180 RNA-seq datasets across six
different species (human, mouse, rat, zebrafish, fly, worm) [112]

CircView http://gb.whu.edu.cn/CircView/
A user-friendly visualisation tool for circRNAs detected by existing tools and
regulatory elements, such as microRNA response elements and RNA-binding

protein binding sites (human, mouse, zebrafish, fly, worm)
[113]

CircBank http://www.circbank.cn/
A comprehensive database for human circRNA with standard nomenclature,

miRNA binding sites, conservation of circRNAs, m6A modification of circRNAs,
mutation of circRNAs and protein-coding potential of circRNAs.

[114]

CircRNA-related function analysis database

DeepBase v2.0

https://www.rna-seqblog.com/deepbase-v2-0-
identification-expression-evolution-and-

function-of-small-rnas-lncrnas-and-circular-
rnas-from-deep-sequencing-data/

Identification, expression, evolution and function of small RNAs, lncRNAs and
circular RNAs from deep-sequencing data across 19 species [115]

CircInteractome https://omictools.com/circinteractome-tool

Exploring circular RNAs and their interacting proteins and microRNAs,
identifying potential circRNAs which can act as RBP sponges, designing

junction-spanning primers for specific detection of circRNAs of interest, siRNAs
for circRNA silencing, and potential internal ribosomal entry sites (IRES).

[116]

CircNet http://circnet.mbc.nctu.edu.tw/

Providing the following resources: novel circRNAs, integrated miRNA-target
networks, expression profiles of circRNA isoforms, genomic annotations of
circRNA isoforms, sequences of circRNA isoforms, tissue-specific circRNA

expression profiles, and circRNA-miRNA-gene regulatory networks

[123]

CircRNADb http://reprod.njmu.edu.cn/circrnadb Providing genomic information, exon splicing, genome sequences, internal
ribosome entry sites (IRES), open reading frames (ORF) and references [124]

TSCD http://gb.whu.edu.cn/TSCD Comprehensive characterisation of tissue-specific circular RNAs in the human
and mouse genomes (including 26 different tissues) [125]

CirclncRNAnet http://app.cgu.edu.tw/circlnc/
An integrated web-based resource for mapping functional networks of long or

circular forms of noncoding RNAs [126]

CircFunBase http://bis.zju.edu.cn/CircFunBase/
A database for functional circular RNAs (experimentally validated and

computationally predicted functions and circRNA-miRNA
interaction networks)

[117]

http://www.circbase.org/
http://www.picb.ac.cn/rnomics/circpedia
http://gb.whu.edu.cn/CircView/
http://www.circbank.cn/
https://www.rna-seqblog.com/deepbase-v2-0-identification-expression-evolution-and-function-of-small-rnas-lncrnas-and-circular-rnas-from-deep-sequencing-data/
https://www.rna-seqblog.com/deepbase-v2-0-identification-expression-evolution-and-function-of-small-rnas-lncrnas-and-circular-rnas-from-deep-sequencing-data/
https://www.rna-seqblog.com/deepbase-v2-0-identification-expression-evolution-and-function-of-small-rnas-lncrnas-and-circular-rnas-from-deep-sequencing-data/
https://www.rna-seqblog.com/deepbase-v2-0-identification-expression-evolution-and-function-of-small-rnas-lncrnas-and-circular-rnas-from-deep-sequencing-data/
https://omictools.com/circinteractome-tool
http://circnet.mbc.nctu.edu.tw/
http://reprod.njmu.edu.cn/circrnadb
http://gb.whu.edu.cn/TSCD
http://app.cgu.edu.tw/circlnc/
http://bis.zju.edu.cn/CircFunBase/
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Table 6. Cont.

Name Website Description References

CircRNA databases related to human diseases

CSCD http://gb.whu.edu.cn/CSCD Comprehensive cancer-specific circRNA database [118]

Circ2Traits http://gyanxet-beta.com/circdb/
Comprehensive knowledgebase of potential associations of circular RNAs with
human diseases (including circRNAs with disease-miRNA and SNPs-circRNA

loci)
[119]

ExoRBase http://www.exoRBase.org Database of circRNA, lncRNA and mRNA in human blood exosomes [104]

CircRNA disease http://cgga.org.cn:9091/circRNADisease/
A manually curated database of experimentally supported circRNA-disease

associations (48 kinds of disease) [120]

CircR2Disease http://bioinfo.snnu.edu.cn/CircR2Disease/
A manually curated database for experimentally supported circular RNAs
associated with various diseases (725 cases between 661 circRNAs and 100

human diseases)
[121]

SomamiR 2.0 http://compbio.uthsc.edu/SomamiR A database of cancer somatic mutations altering microRNA-ceRNA interactions
(miRNA-circRNA) [105]

http://gb.whu.edu.cn/CSCD
http://gyanxet-beta.com/circdb/
http://www.exoRBase.org
http://cgga.org.cn:9091/circRNADisease/
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://compbio.uthsc.edu/SomamiR
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8. Techniques and Methods of CircRNA Study in Digestive System Cancers

8.1. Identification of CircRNAs

Several techniques have been used to detect circRNAs in digestive system cancers from primary
tumours and control tissues or cells [49,60], including microarray analysis [49] and high-throughput
RNA sequencing [60]. Microarray analysis is suitable for screening known human circRNAs.
High-throughput RNA sequencing is suitable for identifying new circRNAs and splice sites of
circRNAs with sufficient underlying sequencing depth. Total RNA was treated with RNase R to
degrade the linear RNA in library construction for screening circRNAs [43]. Then, circRNAs were
experimentally validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
with GAPDH as the reference gene [43]. Covalent loci of circRNA can be verified through Sanger
sequencing. Furthermore, bioinformatics analysis is an accurate and convenient approach that can
rapidly generate helpful information for further verification [127]. Thus, human disease-related
circRNA databases could help us to analyse nomenclature, expression patterns, and evolution and
predict the functions of human circRNAs.

8.2. Function and Mechanism of CircRNA

To provide the foundation for research on circRNA function, the subcellular location (nucleus
or cytoplasm) of circRNAs first need to be analysed based on efficient nuclear/cytoplasmic RNA
separation [44] and fluorescence in situ hybridisation (FISH) [48,52]. Then, gain-of-function (GOF) and
loss-of-function (LOF) are employed to study circRNA functions in digestive system cancer cell lines
and xenograft nude mouse models [46,67,72,75]. Human circRNA can be synthesised and cloned into
the overexpression vector pcDNA3.1 [45]. The circRNA-pcDNA3.1 overexpression vector can then be
transfected into digestive system cancer cell lines [40]. Next, those transfected cell lines are injected
into a xenograft nude mouse model to test the GOF of circRNAs in an animal model [46,67,68,72,73,75].
On the other hand, small interfering RNAs (siRNAs) have been designed for the junction of circRNAs
and transfected into digestive system cancer cell lines to examine the LOF of circRNAs [23]. Thus,
multiple pathological processes can be researched with the aid of GOF and LOF of circRNAs in digestive
system cancer, such as cell migration, proliferation, invasion, and anchorage-independent growth.

CircRNAs can act as a sponge binding to miRNA, thereby reducing the ability of miRNA to
target mRNAs. Multiple databases can be used to analyse circRNA-miRNA-mRNA networks, such as
circNet [123] and circFunBase [117] for known circRNAs and Targetscan [128] and RNAhybrid [129]
for new circRNAs. A dual-luciferase assay (psiCHECK-2 vector) has been used to validate the
relationship between circRNA and miRNA [42,51]. RNA immunoprecipitation (RIP) assays for AGO2
(argonaute 2) in digestive system cancer cell lines have been used to investigate the expression levels of
endogenous circRNAs and miRNAs pulled down from AGO2-expressing cells by qPCR analysis [41].
Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses
were performed to annotate genes targeted with the purpose of studying how circRNAs regulate
parental gene expression [130]. On the other hand, circRNAs can bind to proteins and sequester them
to particular subcellular locations [60,69]. Several techniques targeting this mechanism have been
developed. To date, RNA pull-down assays and RIPs have been utilised to detect circRNA-protein
interactions [131]. Following the discovery of new circRNA mechanisms, the development of new
technology will help us to employ the function and regulatory mechanisms of circRNAs.

9. Conclusions

CircRNAs are a type of endogenous RNA that are stable and resist RNA nuclease digestion.
CircRNAs have emerged as important regulators in multiple digestive system cancers. Dysregulated
circRNAs were found to act as oncogenes or tumour suppressors in digestive system cancers (Figure 3).
In the complex tumour microenvironment, overexpression of the downregulated circRNAs or depletion
of the upregulated circRNAs in patients are the main approaches for circRNA-based therapy. According
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to current research data, the regulatory mechanism of circRNAs in digestive system cancers is very
complex, and the underlying molecular mechanisms by which circRNAs cause and inhibit these
cancers remain largely ambiguous. CircRNA transcriptome databases of OSCC, ESCC, GC, CRC,
HCC, and PDAC have been reported and are convenient sources for selecting targets and biomarkers.
The dysregulated circRNAs between digestive system cancer and normal cells/tissues may participate
in regulating the inhibition and promotion of these digestive system cancers, suggesting that circRNAs
could serve as therapeutic targets and biomarkers for clinical diagnosis. However, the above
assumptions continue to present substantial difficulties and enormous challenges in clinical practice,
and more studies on the significance, efficiency, generality, security, and reliability of these approaches
are needed. Thus, we anticipate that this review will increase the comprehension of the principal
functions of many circRNAs and their multiple regulatory hubs in the progression of digestive
system cancers.
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