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Abstract: Matched-targeted and immune checkpoint therapies have improved survival in cancer
patients, but tumor heterogeneity contributes to drug resistance. Our study categorized gene
mutations from next generation sequencing (NGS) into three core processes. This annotation helps
decipher complex biologic interactions to guide therapy. We collected NGS data on 145 patients
who have failed standard therapy (2016 to 2018). One hundred and forty two patients had data
for tissue (Caris MI/X) and plasma cell-free circulating tumor DNA (Guardant360) platforms. The
mutated genes were categorized into cell fate (CF), cell survival (CS), and genome maintenance (GM).
Comparative analysis was performed for concordance and discordance, unclassified mutations, trends
in TP53 alterations, and PD-L1 expression. Two gene mutation maps were generated to compare each
NGS platform. Mutated genes predominantly matched to CS with concordance between Guardant360
(64.4%) and Caris (51.5%). TP53 alterations comprised a significant proportion of the mutation
pool in Caris and Guardant360, 14.7% and 13.1%, respectively. Twenty-six potentially actionable
gene alterations were detected from matching ctDNA to Caris unclassified alterations. The CS core
cellular process was the most prevalent in our study population. Clinical trials are warranted to
investigate biomarkers for the three core cellular processes in advanced cancer patients to define the
next best therapies.

Keywords: molecular targeted therapy; drug resistance; neoplasm; high-throughput nucleotide
sequencing; DNA mutational analysis; liquid biopsy

1. Introduction

Precision oncology strives to develop new targeted and immune therapies to improve overall
survival (OS) [1]. Molecular profile-based clinical trials, including IMPACT [2] and WINTHER [3], have
demonstrated a clear positive impact of matched-targeted therapies (MTT) against patient-specific
gene alterations over chemotherapy. Small molecule inhibitors in various stages of development are
designed to block key oncogenic signaling pathways. For example, BRAF and ALK inhibitors are
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examples that have demonstrated increased OS in melanoma and non-small cell lung cancer (NSCLC),
respectively [4,5].

Studies have shown that tumor molecular profiles are multilayered and interactive. TP53 mutations
remain a clinical challenge and are associated with poor outcomes across many cancer subtypes [6–8].
PD-L1 status correlates to poor prognoses and predictive of responding to anti-PD-1 agents [9,10].
Breast adenocarcinoma (BAC) treated with PARP inhibitors up-regulating PD-L1 expression highlights
the benefits of anti-PD-L1 therapy for this resistant state [11].

The development of MTTs that encompass complete molecular profiles is quintessential to
personalized cancer treatments [2,12]. A review grouped a dozen regulatory signaling pathways into
categories that reflect three fundamental cellular processes: cell fate (CF), cell survival (CS), and genome
maintenance (GM) [13]. By categorizing the molecular profile into CF, CS, and GM, we aimed to
integrate a comprehensive summary of driver and passenger mutations and display the corresponding
tumor heterogeneity. We hypothesize that categorizing the mutational profile of each individual tumor
to CF, CS, and GM will elucidate cellular processes (patterns) that provide a better understanding of
tumor evolution and the development of drug resistance. In addition, since TP53 is the most common
mutated gene in a myriad of cancer subtypes, TP53 is given special attention. Considering immune
suppression is a key factor in modulating the tumor microenvironment, PD-L1 expression is also
included in our analysis. By comparing next generation sequencing (NGS) platforms that assay tumor
tissue and plasma circulating tumor DNA (ctDNA), we explored concordance versus discordance to
discover tumor heterogeneity.

Patients’ genetic alterations are increasingly being revealed through a variety of NGS platforms.
Interpretation and clinical decision-making of the results can be challenging. To address these issues,
we present an integrated study of 145 patients enrolled in phase 1 clinical trials and are the first to
compare 25 different cancer subtypes with data from two NGS platforms and gene category annotation.

2. Results

2.1. Cell Survival (CS) Mutations Dominate Cell Fate (CF) and Genome Maintenance (GM) Mutations

NGS platforms detected a total of 173 mutated genes from 142 patients. These 173 mutated genes
categorized to 53.2% (n = 92) CS, 37.6% (n = 65) CF, and 9.2% (n = 16) GM (Figure 1). The same trend CS
> CF > GM followed at the platform level with CS 64.4% in Guardant360 and 51.5% in Caris (Table 1).
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Figure 1. Mutation map (A) showing frequency of gene mutations detected by Guardant360 across 
all and individual cancer subtypes and their associated categories of cell survival, cell fate, and 
genome maintenance. (B) Matched TP53 alterations detected by both Guardant360 and Caris in cancer 
subtypes. 

2.3. Trend in PD-L1 Status 

Twenty patients tested positive for PD-L1 by Caris immunohistochemical (IHC) staining (Figure 
2). Although head and neck squamous cell carcinoma (HNSCC) and pancreatic adenocarcinoma 
contain the largest number of positive IHC stains (5 and 4, respectively), HNSCC (55.5%), TCC (50%), 
GIST (50%), and NET (50%) represent the greatest proportion of positive PD-L1 stains per cancer 
subtype. Pancreatic adenocarcinoma (15.4%) and CRC (3.4%) entailed the least positive PD-L1 stains 
per cancer subtypes. 

Figure 2. Mutation map showing frequency of gene mutations detected by Caris linked to cancer 
subtypes and the categories of cell survival, cell fate, and genome maintenance. PD-L1 positive tissue-
based IHC found in cancer subtype groups are marked (*) and the number is equivalent to patients. 

Figure 1. Mutation map (A) showing frequency of gene mutations detected by Guardant360 across all
and individual cancer subtypes and their associated categories of cell survival, cell fate, and genome
maintenance. (B) Matched TP53 alterations detected by both Guardant360 and Caris in cancer subtypes.
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Table 1. Cancer subtypes and sample size that are stratified in cell fate (CF), cell survival (CS),
and genome maintenance (GM) by both next generation sequencing platforms, Caris and Guardant360.
Raw values represent quantities of gene mutations per category. Values in parentheses represent gene
percentages within the sample group. This table shows major trends that drive tumorigenesis with
overall trends at the bottom as the total. Gene designations of CF, CS, and GM also displayed for
reference. See appendix for abbreviations.

Cancer Subtype Q G-CF (%) G-CS (%) G-GM (%) C-CF (%) C-CS (%) C-GM (%)

Adenoid cystic carcinoma 1 0 (0) 2 (100) 0 (0) 0 (0) 0 (0) 0 (0)

Breast adenocarcinoma 10 10 (15.4) 41 (63.1) 14 (21.5) 6 (12.8) 25 (53.2) 16 (34.0)

Carcinoma of unknown
primary 2 1 (33.3) 1 (33.3) 1 (33.3) 1 (100) 0 (0) 0 (0)

Cholangiocarcinoma 3 3 (18.8) 9 (56.3) 4 (25.0) 2 (28.6) 4 (57.1) 1 (14.3)

Colorectal carcinoma 29 74 (25.1) 178 (60.3) 43 (14.6) 48 (33.3) 60 (41.7) 36 (25.0)

Cutaneous squamous cell
carcinoma 2 3 (18.8) 11 (68.8) 2 (12.5) 4 (36.4) 6 (54.5) 1 (9.1)

Endometrial carcinoma 2 2 (33.3) 4 (66.7) 0 (0) 0 (0) 0 (0) 0 (0)

Esophageal adenocarcinoma 5 5 (14.3) 23 (65.7) 7 (20.0) 2 (12.5) 10 (62.5) 4 (25.0)

Esophageal squamous cell
carcinoma 1 0 (0) 2 (33.3) 4 (66.7) 0 (0) 0 (0) 0 (0)

Gastric adenocarcinoma 3 1 (5.9) 13 (76.5) 3 (17.6) 0 (0) 6 (54.5) 5 (45.5)

Gastrointestinal stromal
tumor 2 0 (0) 6 (100) 0 (0) 1 (25.0) 3 (75.0) 0 (0)

Glioblastoma multiforme 1 1 (50) 1 (50) 0 (0) 0 (0) 1 (100) 0 (0)

Head and neck squamous
cell carcinoma 9 15 (20.3) 48 (64.9) 11 (14.9) 11 (25.6) 22 (51.2) 10 (23.3)

Hepatocellular carcinoma 1 2 (18.2) 5 (45.5) 4 (36.4) 1 (14.3) 4 (57.1) 2 (28.6)

Melanoma 9 10 (16.9) 43 (72.9) 6 (10.2) 6 (25.0) 13 (54.2) 5 (20.8)

Merkel cell carcinoma 1 0 (0) 3 (60.0) 2 (40.0) 0 (0) 0 (0) 0 (0)

Neuroendocrine tumor 2 0 (0) 14 (53.8) 12 (46.2) 1 (50.0) 0 (0) 1 (50.0)

Non-small cell lung cancer 3 2 (9.1) 16 (72.7) 4 (18.2) 0 (0) 20 (83.3) 4 (16.7)

Ovarian carcinoma 6 4 (12.5) 17 (53.1) 11 (34.4) 2 (13.3) 9 (60.0) 4 (26.7)

Pancreatic adenocarcinoma 26 16 (15.0) 70 (65.4) 21 (19.6) 23 (21.5) 58 (54.2) 26 (24.3)

Prostate adenocarcinoma 11 30 (25.6) 68 (58.1) 19 (16.2) 7 (30.4) 8 (34.8) 8 (34.8)

Renal cell carcinoma 3 1 (7.7) 9 (69.2) 3 (23.1) 0 (0) 5 (50.0) 5 (50.0)

Sarcoma 7 4 (12.9) 21 (67.7) 6 (19.4) 0 (0) 3 (60.0) 2 (40.0)

Small cell lung carcinoma 2 1 (6.3) 9 (56.3) 6 (37.5) 0 (0) 4 (57.1) 3 (42.9)

Transitional cell carcinoma 4 2 (8.7) 13 (56.5) 8 (34.8) 2 (13.3) 9 (60.0) 4 (26.7)

TOTAL 145 187 (18.6) 627 (62.4) 191 (19.0) 117 (22.3) 270 (51.5) 137 (26.1)

GENE DESIGNATIONS Cell fate: APC, AR, ARID1A, ARID2, ASXL1, ATRX, AXIN1, BCOR, CDH1, CDK6, CDK8,
CREBBP, CTNNB1, DAXX, DDR2, DNMT1, DNMT3A, EP300, ESR1, EZH2, FAM123B (AMER1), FBXW7, FOXL2,
GATA1, GATA2, GATA3, GNAS, H3F3A, HH, HIST1H3B, HNF1A, IDH1, IDH2, KDM5C, KDM6A, KLF4, KMT2A,
KMT2C, KMT2D, MEN1, MITF, MLL3, NF2, NOTCH1, NOTCH2, PAX5, PBRM1, PHF6, PRDM1, PTCH1, RHOA,
RNF43, ROS1, RUNX1, SETBP1, SETD2, SF3B1, SMARCA4, SMARCB1, SMO, SPOP, SRSF2, TET2, U2AF1, WT1.
Cell survival: ABL1, AKT1, AKT2, ALK, ALK-EML4, BCL2, BMPR1A, BRAF, CARD11, CASP8, CBL, CCND1,
CCND2, CCND3, CCNE1, CDC73, CDK4, CDKN1B, CDKN2A, CDKN2B, CEBPA, CHEK2, CIC, CRKL, CRLF2,
CSF1R, CYLD, DICER1, EGFR, EP300, ERBB2, ERBB3, FGF10, FGF3, FGF4, FGFR1, FGFR2, FGFR3, FGFR3-TACC3,
FLT3, FUBP1, GNA11, GNAQ, GNAS, HRAS, JAK1, JAK2, JAK3, KIT, KRAS, MAP2K1, MAP2K2, MAP3K1, MAPK1,
MAPK3, MCL1, MDM2, MED12, MEK1, MET, MPL, MTOR, MYC, MYD88, NF1, NFE2L2, NPM1, NRAS, NTRK1,
NTRK3, PDGFRA, PIK3CA, PIK3R1, PPP2R1A, PTEN, PTPN11, RAF1, RB1, RET, RICTOR, SDHD, SMAD2, SMAD4,
SOCS1, STK11, TGFbR2, TNFAIP3, TP53, TRAF7, TSC1, TSHR, VHL. Genome maintenance: ATM, BAP1, BLM,
BRCA1, BRCA2, BRIP1, CDK12, CHEK2, MLH1, MSH2, MSH6, PALB2, STAG2, TERT, TP53, WRN.
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When analyzed at the cancer subtype level, 15 of 25 cancer subtypes exhibited a trend of CS >

GM > CF. Despite having fewer genes, GM contributed to more alterations than CF. Seven cancer
subtypes also followed a trend of CS dominance, but CF and GM swapped positions. Only esophageal
squamous cell carcinoma (ESCC) (n = 1) demonstrated a trend of GM dominance followed by CS
and CF. Aberrations from these trends are observed in carcinoma of unknown primary (CUP) and
neuroendocrine tumors (NET), which both represent limited patient sampling. Paired analysis using
Fisher’s exact tests for these three cellular processes from results combined from both platforms showed
no significant p-value indicating there is no association between these processes (Table S1A), and they
occur independent of each other. Testing individual platform results show association between the
occurrence of CS and CF (p = 0.008) on Caris platform and between CS and GM on both Caris
(p = 6.9 × 10−19) and Guardant360 (p = 0.01). There was no significant association found between CF
and GM on any platform. Patients were divided by their age (< 60-yr vs. > 60-yr) into two groups and
these three processes were tested for prevalence in either of the age group (Table S1B). No association
was found with age and occurrence of any of these three processes and no association was found with
TP53 mutations. We tested this on both individual platforms and combined platform results.

The trends demonstrated in the cancer subtypes generally agree between both platforms. In the
cases of cholangiocarcinoma and prostate adenocarcinoma, there is platform discrepancy between the
contributions of GM and CF. As described previously in the limited patient samples, platform trend
disagreement was observed most significantly in ESCC, CUPS, and NETs but a larger dataset is needed
for statistical confirmation.

2.2. TP53 is the Most Frequent Mutation

Guardant360 and Caris detected a total of 1005 and 524 specific alterations of all mutated genes,
respectively. Of these, TP53 comprised a significant proportion at 13.1% (n = 132) and 14.7% (n = 77),
respectively. Fifty-eight of these TP53 mutations matched at specific alteration level across the platform.
Matched TP53 alterations in colorectal cancer (CRC) dominated 29.3% (n = 17), followed by pancreatic
adenocarcinoma 17.2% (n = 10), and BAC 12.1% (n = 7). Platform-matched TP53 alterations appeared
substantially in CRC; there were four of R175H and R273C, three of R248Q and R282W, and two of
R196, R248W, and R273H alterations. The BAC also contained platform-matched TP53 alterations,
including two of E285K and G245S. TP53 has the highest frequency of the mutations. We tested for
two-way associations with the three cellular processes across both platforms for all patients (Table S1C).
Our results showed that the GM process has a significant association with TP53 mutational status in
patients (p = 2.2 × 10−16), however the CS and CF processes have no significant association with TP53
mutation status in patients. Patients divided into two groups by age (> 60-yr and < 60-yr) were tested
for association with TP53 mutation status (Table S1B) with no association found.

2.3. Trend in PD-L1 Status

Twenty patients tested positive for PD-L1 by Caris immunohistochemical (IHC) staining (Figure 2).
Although head and neck squamous cell carcinoma (HNSCC) and pancreatic adenocarcinoma contain
the largest number of positive IHC stains (5 and 4, respectively), HNSCC (55.5%), TCC (50%), GIST
(50%), and NET (50%) represent the greatest proportion of positive PD-L1 stains per cancer subtype.
Pancreatic adenocarcinoma (15.4%) and CRC (3.4%) entailed the least positive PD-L1 stains per
cancer subtypes.

2.4. Marked Discordance Across the Platforms

Overall, the data show significant discordance in gene mutations across the platforms (Figure 3).
At the individual patient level, the mean discordance per patient was 5.3 (range: 0–39). No discordance
was detected in six patients. The mean concordance was 1.54 per patient (range: 0–9).
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Figure 2. Mutation map showing frequency of gene mutations detected by Caris linked to cancer
subtypes and the categories of cell survival, cell fate, and genome maintenance. PD-L1 positive
tissue-based IHC found in cancer subtype groups are marked (*) and the number is equivalent
to patients.
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At the pooled genes level, 223 genes were concordant and 760 genes were discordant. TP53 
represented the highest frequency of concordant gene 29.1% (n = 65) followed by APC 13.5% (n = 30), 
KRAS 10.3% (n = 23), and PIK3CA 4.5% (n = 10). Interestingly, discordance followed a similar trend 
with TP53 10.3% (n = 78), EGFR 5.8% (n = 44), KRAS 5.0% (n = 38), and PIK3CA 4.3% (n = 33).  

Figure 3. Concordance (blue) and discordance (gray) between gene mutations detected by tissue-based
DNA (Caris) and plasma cell-free DNA (Guardant360) next generation sequencing. (A) Quantity
of gene mutations stack-plotted per de-identified patient number. Discordance shows intra-patient
genetic heterogeneity. (B) Quantity of gene alterations stack-plotted per mutated genes demonstrates
driver and passenger gene mutations that contribute to intra-tumor heterogeneity. Gene mutations that
displayed zero concordance and one discordant gene mutation were removed for clarity, and include
ARID2, ATRX, DDR2, ERBB3, HNF1A, JAK2, MAP2K1, MLH1, and NTRK3.
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At the pooled genes level, 223 genes were concordant and 760 genes were discordant. TP53
represented the highest frequency of concordant gene 29.1% (n = 65) followed by APC 13.5% (n = 30),
KRAS 10.3% (n = 23), and PIK3CA 4.5% (n = 10). Interestingly, discordance followed a similar trend
with TP53 10.3% (n = 78), EGFR 5.8% (n = 44), KRAS 5.0% (n = 38), and PIK3CA 4.3% (n = 33).

Discordant genes were stratified into the three core cellular processes resulting in CS (61%), CF
(20%), and GM (19%). This trend was roughly comparable to the stratified mutations of the overall
cancer subtypes.

2.5. Identification of Potentially Actionable Mutations

The Caris-MI/X NGS platform analyzes tumor-only exon mutations in oncogenes and tumor
suppressors. In contrast, the Gaurdant360 NGS platform analyzes cfDNA in tumors versus normal
donor volunteer whole exome sequencing (WES) (ages: 20–40-yr), i.e., reference normal DNA. Plasma
cfDNA from patients with mutations can detect up to 0.1% mutant allele frequencies (MAFs) from a
background of cfDNA extracted from healthy donors and reported as acquired somatic mutations
by digital sequencing algorithms [14]. An actionable mutation is defined as a genetic aberration in
the DNA (e.g., activating mutation) when detected in a patient’s tumor, and would be expected or
predicted to affect a response to a targeted treatment available in basket or umbrella clinical trials,
FDA-approved treatments, or be available for off-label treatment [15]. Guardant360 detected genes
were found in 19 of 142 patients that matched an exact alteration in the Caris unclassified mutation
section (GaDCUS) (Table 2). We found one matching alteration in 16 patients and several in the
remaining three patients. GaDCUS appeared frequently in the CRC (21.1%). Also, four mutated
genes appeared across multiple patients. ARID1A appeared in the BAC, CRC, and NSCLC. CDKN2A
appeared in sarcoma and pancreatic adenocarcinoma groups. ALK appeared in CRC and HNSCC. NF1
appeared in CRC and pancreatic adenocarcinoma. For example, the ALK (F1408L, G1473E) are novel
mutations and whether they are sensitive to ALK tyrosine kinase inhibitors is not known but needs
further evaluation. Similarly, the AR (P135L, A810T) are also mutants needing further investigation
(Table 2).

Table 2. Nineteen patients with Guardant360 alterations detected in Caris unclassified section (GaDCUS)
and 26 discovered somatic alterations that are potentially treatable. Identified gene mutations show
the amino acid alteration in parentheses. Alterations are stratified into the three core cellular process
categories to seek trends. Parentheses within the stratified columns represent percentages. See appendix
for abbreviations.

PT Diagnosis GaDCUS CF (%) CS (%) GM (%)

5 Breast
adenocarcinoma HRAS (R41W) 0 (0) 1 (100) 0 (0)

9 Breast
adenocarcinoma

ARID1A
(L1841L) 1 (100) 0 (0) 0 (0)

23 Colorectal
carcinoma

ALK (F1480L),
FGFR3 (A734T),
RAF1 (V21M),
TERT (A670V)

0 (0) 3 (75) 1 (25)

26 Colorectal
carcinoma

ARID1A
(K1830T) 1 (100) 0 (0) 0 (0)

33 Colorectal
carcinoma NF1 (R2119T) 0 (0) 1 (100) 0 (0)

44 Colorectal
carcinoma GATA3 (V338I) 1 (100) 0 (0) 0 (0)

51 Esophageal
adenocarcinoma AR (P135L) 1 (100) 0 (0) 0 (0)
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Table 2. Cont.

PT Diagnosis GaDCUS CF (%) CS (%) GM (%)

56 Gastric
adenocarcinoma RAF1 (R59H) 0 (0) 1 (100) 0 (0)

68
Head and neck
squamous cell

carcinoma
ALK (G1473E) 0 (0) 1 (100) 0 (0)

71 Hepatocellular
carcinoma

GATA3
(A319E) 1 (100) 0 (0) 0 (0)

75 Melanoma AR (A810T) 1 (100) 0 (0) 0 (0)

79 Melanoma

NTRK1
(G595E),

NTRK1 (Q487),
ROS1 (G2031R)

1 (50) 1 (50) 0 (0)

84 Non-small cell
lung carcinoma RB1 (N690S) 0 (0) 1 (100) 0 (0)

86 Non-small cell
lung carcinoma

ARID1A
(L2239P),
ARID1A

(R2057W),
CCNE1 (A53P)

2 (66.7) 1 (33.3) 0 (0)

87 Ovarian
carcinoma ROS1 (P1941L) 1 (100) 0 (0) 0 (0)

100
Pancreatic

ductal
adenocarcinoma

NF1 (R1396H) 0 (0) 1 (100) 0 (0)

102
Pancreatic

ductal
adenocarcinoma

CDKN2A
(L64P) 0 (0) 1 (100) 0 (0)

127 Prostate
adenocarcinoma MYC (F22L) 0 (0) 1 (100) 0 (0)

136 Sarcoma CDKN2A
(A100P) 0 (0) 1 (100) 0 (0)

3. Discussion

Our study characterized passenger and driver mutations from NGS in tissue-based and plasma
ctDNA samples into the three core cellular processes of tumorigenesis [13]. A review of the literature
comparing advanced cancer patients’ molecular profiles concurrently for tissue based (Caris MI/X)
and plasma (Guardant360) by NGS with annotation to the three core cellular processes has not been
described before. We identified that CS genes dominated compared to GM and CF genes in our study
population. GM and CF genes were prevalent equally. Similar trends were maintained at each platform
level as well. Paired analysis using Fisher’s exact tests for the three cellular processes combined from
both platforms showed no significant P-value, indicating no association and that the processes were
independent of each other. Testing individual platforms showed association between CS and CF
(p = 0.008) on Caris and between CS and GM on both Caris (p = 6.9 × 10−19) and Guardant360 (p = 0.01).
Patients divided by age (<60-yr vs. >60-yr) showed no association with TP53 mutations or any of the
three cellular processes.

It can be surmised that tumor types with unfavorable growth conditions, such as hypoxia and
hypoglycemia, result in selective mutations of genes such as KRAS, BRAF, PIK3CA, and TP53 [15].
These altered pathways lend cancer cells survival advantages by employing strategies such as
angiogenesis and GLUT1 upregulation [15,16]. Further studies utilizing this conceptual framework
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through large-scale prospective studies in targeted and immune checkpoint therapy trials are required
to validate our analysis.

Patients with ESCC, NET, and CUP revealed mixed results that did not follow the predominant
trend. However, these groups had the least number of patients and yielded low statistical power.
A study that elucidated the genomic landscape of ESCC in 133 patients found the most frequent somatic
mutations included TP53 (93%), CCND1 (33%), CDKN2A (20%), NFE2L2 (10%), and RB1 (9%) [17].
These driver mutations of ESCC predominantly belong to the CS and less to the GM and CF processes,
which positively compares to our analysis. Innovative clinical trial designs that integrate molecular
profiles to the three core pathways to select appropriate MTTs [18] may help prevent or overcome drug
resistance. In addition, clinical decision-making about treatment selection would shift from single
gene mutations to more comprehensive molecular profile-based approaches. Assessing the three core
cellular processes may potentially renovate precision oncology and improve patient survival.

High frequencies of TP53 mutations play a transformative role in tumorigenesis across multiple
cancer subtypes [19–21]. Most patients had TP53 mutations with predominance within the CRC group
(29.3%). TP53 mutations consequently resulted in the highest rates of concordance and discordance
between the NGS platforms. Tumor responses to antiangiogenic drugs, such as bevacizumab, have
indicated a link to TP53 mutations as a biomarker [22]. Integrating data on specific TP53 alterations
with transcriptomics may help guide therapy in addition to a more comprehensive molecular profile.

PD-L1 expression adds another layer of complexity to NGS molecular profiling. Studies have
demonstrated aggressive cancer growth with defective anti-tumor immune responses and resistance by
immunoediting of PD-L1 [23,24]. Understanding a patient’s molecular profile, including copy number
amplifications (CNAs), may help predict drug resistance and consequently help tailor a regimen(s)
more efficacious and less toxic to normal tissue.

Comparison of alterations detected by tissue based (Caris) versus plasma ctDNA (Guardant360)
platforms exhibited marked discordance. Our study included mutations detected at low, intermediate,
and high frequencies. These results support other studies that show marked discordance between
platform comparisons and the inclusion of low alteration frequencies [25,26]. We included all frequency
ranges to form a complete genetic profile to demonstrate the degree of intra- and inter-patient tumor
heterogeneity. Since plasma ctDNA provides a snapshot or summary of all metastatic sites of cancer
within a patient, comparing the detected mutations of a focused tissue biopsy can miss other relevant
mutations. A study that conducted a saturation analysis of 21 tumor types concluded that genes with
low frequencies should be included in analyses to better comprehend the full implications of defective
signaling pathways [27]. Plasma ctDNA analyses have shown therapeutic benefits and can help
understand tumor evolution, including mechanisms of resistance such as acquired ESR1 mutations
that induce aromatase inhibitor resistance [28] in BAC and EGFR resistance to 1st and 2nd generation
EGFR tyrosine kinase inhibitors in NSCLC. This reinforces the practice of following multiple plasma
ctDNA samples throughout patient management, especially before progression [29] prior to imaging.

Although we chose the most recent tissue and plasma samples, following patient ctDNA samples
at multiple intervals may offer some advantages. For example, a retrospective study of nine metastatic
BAC patients demonstrated that more optimal therapies could have been chosen by following changes
in ctDNA [29]. A recent joint review by the American Society of Clinical Oncology (ASCO) and College
of American Pathologists (CAP) provided contrary evidence in the clinical utility of plasma ctDNA in
the early detection of cancer, monitoring treatment or post-treatment residual disease [30]. Several
factors influence ctDNA, which include low tumor burden, number of metastatic sites and timing of
sample collection during active treatment and/or surgical resection [31]. As supported by a study that
evaluated cancer driver genes, our study does not account for all tumor heterogeneity [32]. Guidelines
on specimen collection, especially with plasma ctDNA, must be developed to yield consistent results
among NGS platforms and to accurately characterize the genetic heterogeneity of cancer. Tissue-based
biopsies have shaped approaches to MTT with improved patient outcomes; including ctDNA will likely
confer the similar benefits in early phase clinical trials as demonstrated by the TARGET study [33,34].
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Our study revealed potentially actionable alterations. Cross-comparison of NGS in tissue and
ctDNA yielded 26 somatic mutations that previously were categorized as variants of unknown
significance (VUS). Caris compares a patient’s sample to a database of known driver mutations to
confirm pathogenic alterations [15]. Guardant360 captures the full spectrum of plasma cell-free
DNA (cfDNA) and genetically distinguishes tumor vs. normal DNA to infer clinically relevant
alterations [14]. Additionally, Caris assigns alterations that have an unknown growth advantage to the
“unclassified” section. Hence, alterations detected by Guardant360 in the Caris unclassified section
(GaDCUS) strongly suggest mutations that are somatic and potentially targetable. A study [35] that
identified putative germline mutations in ctDNA reported detection of APC, ATM, BRCA1/2, CDKN2A,
MLH1, NF1, RB1, RET, SMAD4, and TP53. We found these mutations in both our NGS platform
analyses except MLH1 in Guardant360. Our GaDCUS mutations matched CDKN2A, NF1, and RB1
as well, which help discern germline and somatic mutations. Our patients’ GaDCUS mutations fell
into the CS and CF categories approximately equally. We detected one GaDCUS mutation, TERT
(A670V) in a CRC patient (#23), that resides in the GM category. Since TERT plays a major role in
tumor cell immortality through telomere lengthening, this GaDCUS mutation may have revealed
a potential driver that contributed to the pathogenesis of this CRC case [36]. A study of various
tumor types identified over 50 gene candidates that mapped to interactive pathways of known major
cancer driver genes [37]. By performing NGS on platforms that differ in methodology, we can identify
clinically relevant alterations. Studies have utilized software tools such as CHASM and ANNOVAR to
statistically determine the significance of driver and passenger gene mutations [38]. When mutations
are discovered, these databases can compute more comprehensive analyses of cancer genomes and
heterogeneity [39]. Additionally, more complex stratifications can be applied to determine the primary
drivers of a patient’s tumor growth and guide selection of targeted and immune checkpoint therapies.

Limitations

Comparing NGS data of tumor biopsy (Caris) to plasma ctDNA (Guardant360) render both a
comparative limitation and an illustration of the heterogeneity that exists in advanced cancer patients.
This heterogeneity contributes to the significant discordance observed in our analysis. However,
it demonstrates the variability of actionable mutations at tumor sites and unpredictable responses
to MTT. Our study analyzed a snapshot of time as opposed to following the mutational evolution
with time. Following plasma ctDNA samples in real time will help anticipate tumor evolution and
provide an opportunity to switch therapy prior to imaging. Tissue-based samples entail greater costs
and toxicity of procedure for the patient. Cancer subtype-specific characteristics, such as treatment
history, were not accounted for in our diverse study population. Further delineation of the annotated
trends should include these measures especially for the potential design of clinical trials.

4. Materials and Methods

4.1. Patient Selection, NGS Platforms, and Sample Acquisition

Patients with advanced solid tumors who failed standard therapy seen in the Early Phase
Therapeutics Program clinic were evaluated for tumor tissue and plasma ctDNA by NGS between
March 2016 and November 2018. All patients analyzed were Institutional Review Board (IRB) exempt
with protocol title “Analysis of Molecular Profiles of Patients with Advanced Cancer” (IRB number:
1804508570), allowing data collection from Caris life sciences and Guardant Health NGS platforms.
There were 142 patients paired who had both platform reports. The three patients with Caris reports
indicating “tissue with insufficient quantity” were excluded from comparative analysis. Data from
platform reports were maintained in a secure network and in secure files. Data from Caris were
collected into columns that corresponded to gene alterations of all frequencies, genes with unclassified
mutations, specific TP53 alterations, and PD-L1 status. PD-L1 positivity was defined as intensity ≥2+

and ≥5% of immunohistochemically stained cells. Similarly, detected alterations from Guardant360
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were collected excluding alterations that were no longer detectable (compared to prior patient plasma
samples). A representative sample of patients was highlighted, including all cancer types, proportions,
and mutated genes (Table 3).

Table 3. Representative data sample of 43 (of 145) patients with accompanying patient numbers and
ages. This table displays patients proportional to cancers of both common and rare subtypes. Genetic
mutations detected via plasma cfDNA and tissue-based DNA NGS are displayed. Dashes indicate
an absence of mutations detected. Time difference indicates gap between sample collections of both
platforms in months (DPT). See appendix for abbreviations.

PT Diagnosis Age GDM CDM DPT

1 Adenoid cystic
carcinoma 87 EGFR, PIK3CA - 3

3 Breast adenocarcinoma 36 EGFR, PTEN, TP53 EGFR, PTEN,
TP53 11

4 Breast adenocarcinoma 51
PTEN, FGFR2, FGFR1,
KRAS, PIK3CA, TP53,

BRCA2

BRCA2, CDK8,
PTEN, TP53 1

11 Breast adenocarcinoma 71 ARID1A, GNAS, TP53
ATM, BAP1,

BRCA2,
NOTCH1, TP53

1

12 Carcinoma of unknown
primary 27 IDH2, TP53 IDH2 1

15 Cholangiocarcinoma 83 ATM, BRAF, SMAD4,
TP53 SMAD4, TP53 8

17 Colorectal carcinoma 31 APC (x2), TP53, ARID1A APC (x2), TP53 3

21 Colorectal carcinoma 76 NF1, ROS1, STK11 APC, KIT,
KRAS, TP53 1

22 Colorectal carcinoma 58 APC, KRAS, TP53 - 0

35 Colorectal carcinoma 63 APC (x2), AR, EGFR,
FGFR1, KRAS, PIK3CA

APC, ATM,
KRAS, PIK3CA 13

42 Colorectal carcinoma 56 APC, KRAS, MET, MYC,
RAF1, TP53 APC, TP53 0

46 Cutaneous squamous
cell carcinoma 72 CCND1, EGFR, FGFR2,

KRAS, PIK3CA

BRIP1, KRAS,
NOTCH1,

PIK3CA; FGF3,
FGF4, FGFR2,

NOTCH1

2

48 Endometrial carcinoma 71 PIK3CA - 57

54 Esophageal
adenocarcinoma 66 KIT, TP53 AKT2, KIT,

CDK6, TP53 38

57 Gastric Adenocarcinoma 52 CCNE1 (x2), RAF1
ATM, BRCA2,

Her2/Neu
(ERBB2), TP53

5

60 Gastrointestinal stromal
tumor 70 KIT KIT 0

61 Glioblastoma 63 CDKN2B, NOTCH1 EGFR 9

63 Head and neck
squamous cell carcinoma 63 TP53 KMT2D 25

69 Head and neck
squamous cell carcinoma 63 CCND1, CDH1, MET,

PDGFRA, PIK3CA, TP53

CCND1, FGF3,
FGF4, KMT2C

(x2), TP53
5

71 Hepatocellular
carcinoma 63

ALK, AR, BRCA1,
GATA3, KIT, PIK3CA,

PTEN, TERT (x2), TP53

ARID2, FGF10,
TP53, BRCA2,

MCL1, RICTOR
3
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Table 3. Cont.

PT Diagnosis Age GDM CDM DPT

72 Melanoma 36
BRAF (x2), EGFR, MET
(x2), NF1, NRAS, PTEN,

TERT (x2)

BRAF, MET,
NF1, PTEN 2

78 Melanoma 68 GNA11, MYC, NOTCH1 BAP1, GNA11 6

80 Melanoma 70 ARID1A, NRAS NRAS, SF3B1 4

81 Merkel cell carcinoma 80 PTEN, TP53 (x2) - 0

82 Neuroendocrine tumor 68 MET, PTPN11 BRCA2 50

84 Non-small cell lung
carcinoma 71

CCNE1, CDKN2A,
EGFR, FGFR1, NF1,
PIK3CA, RB1, TP53

EGFR, PIK3R1,
TP53 1

88 Ovarian carcinoma 57 BRCA1, TP53 TP53 0

90 Ovarian carcinoma 77
CCNE1, EGFR,

NOTCH1, PIK3CA,
PTEN

PTEN, TP53 1

93 Pancreatic ductal
adenocarcinoma 53 KRAS, NF1, TP53 CDKN2A,

KRAS 8

94 Pancreatic ductal
adenocarcinoma 72 CTNNB1, KRAS, TP53 KRAS, TP53 11

95 Pancreatic ductal
adenocarcinoma 61 ARID1A, CDKN2A,

KRAS, TP53
KRAS, RNF43,

TP53 9

110 Pancreatic ductal
adenocarcinoma 67 CDK6, FBXW7, KRAS AMER1, KRAS,

PALB2, SMAD4 1

116 Pancreatic ductal
adenocarcinoma 55 CDKN2A, KRAS, TP53

CDKN1B,
CDKN2A,

KRAS, TP53
4

122 Prostate adenocarcinoma 51
AR, BRAF, CDK6,

FGFR1, MET, RAF1,
TP53

TP53 17

126 Prostate adenocarcinoma 56 TP53 - 1

129 Prostate adenocarcinoma 67
AR, BRAF, BRCA2,
CDK6, MET, MYC,

PDGFRA, ROS1, TP53
TP53 0

131 Renal cell carcinoma 52 BRCA2 (x2), CCND2,
TERT, VHL BRCA2, VHL 0

133 Sarcoma 38 - MET 7

137 Sarcoma 20 MTOR, TP53 TP53 6

139 Sarcoma 41 TP53 WRN 0

141 Small cell lung
carcinoma (SCLC) 60 BRCA1, HRAS, RB1,

TP53 (x2)
BRCA1, RB1,

TP53 2

143 Transitional cell
carcinoma 63 PIK3CA, TP53 MITF, PIK3CA 20

144 Transitional cell
carcinoma 83 FGFR1, TERT, TP53 TP53 2

4.2. Cell Fate, Cell Survival, and Genome Maintenance Category Determination

A recent comprehensive review provided categorization of 125 driver genes affected by subtle
mutations (Table S2, Cancer Genome Landscapes) [13]. We integrated this data to define which genes
stratify into CF, CS, and GM. Approximately 50 genes detected by Caris and Guardant360, which were
not included in this review, were additionally stratified based on descriptions by the National Institute
of Health (NIH) Genetics Home Reference database (https://ghr.nlm.nih.gov/). We formulated a guide
to designate genes to the appropriate category (bottom of Table 1). Of special note, we classified TP53 as
encompassing CS and GM; EP300 and GNAS were each classified in both CS and CF. We also compared

https://ghr.nlm.nih.gov/
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the gene category scheme (Table S2 of Cancer Genome Landscapes) to our predictions based on the
NIH database. Key attributes of CF included cellular determination; that of CS included promotion of
angiogenesis, glucose uptake, and cellular proliferation; and that of GM included DNA repair and
stability. Patients’ genes were stratified into these three categories where the value represents the
attributable quantity of alterations.

4.3. Statistical Analysis

Fisher’s exact test was used for comparison of covariate cohorts to analyze associations and
independence. All statistical analyses were done in R. The Fisher.test function in the R stats package
was used to assess significance (p values). Correction for multiple testing (Q value) was performed
using the Benjamini–Hochberg method for the results that had a significant p-value.

4.4. Mutation Maps Generation

Mutations in de-identified patients across different cancer subtypes and TP53 alterations detected
by both platforms were plotted using Oncoprint.

4.5. Concordance–Discordance Analysis

Only the genes that were shared by both platforms (n = 66) were included in the
concordance–discordance analysis. Concordance was defined as number of genes that were found
to be altered in both platforms. Genes that were found mutated exclusively in Caris or Guardant360
determined discordance. We performed this analysis within each subject and across platforms from
the pooled genes of 142 patients.

5. Conclusions

Our comparative analyses of tissue and ctDNA by NGS demonstrated trends in driver and
passenger mutations, concordant and discordant genes, and GaDCUS. CS dominated in tumor
pathobiology. The utility of treating patients based on the three core cellular processes (CS, GM, and CF)
is imperative and requires further evaluation prospectively in clinical trials. In the future, genetic
aberration-based cancer genome annotations must extend beyond NGS to proteomic networks [40–42].
A comprehensive molecular profile can serve as a guide for the optimal use of off-label drugs, design
of relevant clinical trials, and can further the understanding of tumor heterogeneity and evolution to
collectively improve patient survival [43]. Preempting tumor evolution via drug-resistance is a major
challenge that needs further investigation. Planned serial biopsies of tissue and ctDNA at progression
are mandatory in choosing the next best therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/701/s1,
Table S1A: Two-way association analysis of each pair of cellular processes in individual platforms and combined
platform results, Table S1B: The three cellular processes and TP53 mutation status for patient groups >60-yr
and <60-yr in individual platforms and combined platform results, Table S1C: The three core cellular processes
and their association with TP53 mutational status in all the patients, Table S2: Driver genes affected by subtle
mutations (Cancer Genome Landscapes).
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Abbreviations for Tables and Figures

ACC adenoid cystic carcinoma
BAC Breast adenocarcinoma
C-CF Caris-cell fate
C-CS Caris-cell survival
C-GM Caris-genome maintenance
CAC cholangiocarcinoma
CDM Caris detected mutations
CF cell fate
CRC colorectal carcinoma
CS cell survival
CSCC cutaneous squamous cell carcinoma
CUP carcinoma of unknown primary
DPT difference between platform sample collection times (in months)
EA esophageal adenocarcinoma
EC endometrial carcinoma
ES esophageal squamous cell carcinoma
G-CF Guardant360-cell fate
G-CS Guardant360-cell survival
G-GM Guardant360-genome maintenance
GaDCUS Guardant360 alterations detected in Caris unclassified section
GBM glioblastoma multiforme
GDM Guardant360 detected mutations
GIST gastrointestinal stromal tumor
GM genome maintenance
HCC hepatocellular carcinoma
HNSCC head and neck squamous cell carcinoma
MCC merkel cell carcinoma
NET neuroendocrine tumor
NGS next generation sequencing
NSCLC non-small cell lung cancer
PA pancreatic adenocarcinoma
PT patient study number
RCC renal cell carcinoma
SCLC small cell lung cancer
TCC transitional cell carcinoma
Q quantity of patients per cancer subtype
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