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Abstract: Background: miRNAs (microRNAs) play a key role in triple-negative breast cancer (TNBC)
progression, and its heterogeneity at the expression, pathological and clinical levels. Stratification
of breast cancer subtypes on the basis of genomics and transcriptomics profiling, along with the
known biomarkers’ receptor status, has revealed the existence of subgroups known to have diverse
clinical outcomes. Recently, several studies have analysed expression profiles of matched mRNA
and miRNA to investigate the underlying heterogeneity of TNBC and the potential role of miRNA
as a biomarker within cancers. However, the miRNA-mRNA regulatory network within TNBC
has yet to be understood. Results and Findings: We performed model-based integrated analysis
of miRNA and mRNA expression profiles on breast cancer, primarily focusing on triple-negative,
to identify subtype-specific signatures involved in oncogenic pathways and their potential role in
patient survival outcome. Using univariate and multivariate Cox analysis, we identified 25 unique
miRNAs associated with the prognosis of overall survival (OS) and distant metastases-free survival
(DMFS) with “risky” and “protective” outcomes. The association of these prognostic miRNAs with
subtype-specific mRNA genes was established to investigate their potential regulatory role in the
canonical pathways using anti-correlation analysis. The analysis showed that miRNAs contribute to
the positive regulation of known breast cancer driver genes as well as the activation of respective
oncogenic pathway during disease formation. Further analysis on the “risk associated” miRNAs
group revealed significant regulation of critical pathways such as cell growth, voltage-gated ion
channel function, ion transport and cell-to-cell signalling. Conclusion: The study findings provide
new insights into the potential role of miRNAs in TNBC disease progression through the activation
of key oncogenic pathways. The results showed previously unreported subtype-specific prognostic
miRNAs associated with clinical outcome that may be used for further clinical evaluation.

Keywords: genomics; epigenetics; microRNA; integrated analysis; triple negative breast cancer;
biomarkers and signalling pathway

1. Introduction

Triple-negative breast cancer (TNBC) is a heterogeneous group of cancers defined by lack of
expression of estrogen receptor (Er), progesterone receptor (Pr) and human epidermal growth factor
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receptor2 (Her2) [1,2]. The triple-negative subgroup accounts for 15% of all types of breast cancer,
representing an aggressive disease with limited treatment options and inadequate molecular prognostics
signatures. Recent advances in the Omics technologies (genomics, epigenomics and proteomics) have
improved our understanding of molecular complexities and identification of novel biomarkers for
TNBC [3]. However, despite unprecedented progress in technology and disease understanding, clinical
decisions are still based on the assessment of three receptors.

miRNAs (MicroRNAs) are a family of small (~19–25 nucleotides), noncoding RNAs that reduce
the abundance and translational efficacy of mRNAs during the transcription process [4,5]. Determining
the role of individual miRNAs is a major challenge due to the biology of miRNA, complexity of cancer
disease and unknown cellular regulatory functions. miRNAs are very well characterised into families
but only a few known miRNAs have been associated with functionally characterised tissue types [6].

Extensive investigation of mRNA expression profiles has been undertaken for the identification of
diagnostic markers for control and disease [7–10]. Similarly, in recent years multiple studies have been
conducted, exploiting the expression profiles of miRNA and mRNA for the discovery of new specific
miRNA signatures, and candidate transcription factors [11]. Studies discussing the characterisation
of miRNAs have confirmed the existence of complex networks targeting genes involved in critical
functional processes such as differentiation, cell cycle and apoptosis [12–14].

The number of miRNAs characterised and deposited to the miRBase database has seen an
exponential rise since the discovery of the first miRNA [4,15–18]. Therefore, the identification of
significant miRNAs and their target genes is of great importance for the understanding of complex
diseases such as TNBC. It has also been observed that comprehensive functional annotation miRNAs
and their targets still remain a major challenge despite the development of multiple high-throughput
methods [19]. Several computational algorithms and methods such as PITA [20], TargetScan [21] and
miRwalk [21] have been developed recently to address this problem [22], but sequence-similarity-based
gene targeting still remains the widely used method for the annotation of miRNAs.

In this study, we have performed a model-based integrated analysis using the expression profiles
of miRNAs and mRNA samples extracted from triple-negative breast cancers. The analysis has
showed that the triple-negative subtype can be distinguished from other subtypes of breast cancers
using miRNA expression profiling techniques. The study has also revealed that subtype-specific
miRNAs are potential biomarkers for DMFS and OS, and are strongly anti-correlated with known
cancer driver genes of oncogenic pathways. Our findings reflect the existence of heterogeneity among
triple-negatives and also provide evidence for miRNA influence on tumour transcriptional phenotypes
by targeting coding genes. Our results show that molecular studies based on miRNAs biomarkers can
help in early detection and novel therapeutic targets for triple-negatives.

2. Results

2.1. miRNAs Differentially Expressed among the Tumour Subtypes

The expression profiles of 142 breast tumour samples with known biomarker statuses of Er,
Pr and Her2 receptors were considered for the identification of differentially expressed miRNAs.
The subgroup comparison of 94 TNBC, 40 Non-TNBC, and eight normal showed the presence of
206 differential miRNAs. A total of 172 miRNAs were significantly dysregulated in triple-negative
versus non triple-negative comparison, mostly with known involvement in breast cancer [23,24].
miRNAs exhibiting p-value < 0.05 were considered statistically significant and processed for
downstream analysis.

Unsupervised hierarchical clustering analysis has separated 172 dysregulated miRNA genes into
three major clusters based on expression profiles and sample information from TNBC and non-TNBC
patients (Figure 1C).
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Figure 1. (A) Schematic workflow diagram of the integrative analysis of mRNA and miRNA expression profiles. (B) Venn diagram of number of differentially 
expressed miRNAs. Genes in overlapping sets shows differential expression in three comparisons of normal versus triple-negative breast cancer (TNBC), normal 
versus non-TNBC and TNBC and non-TNBC pairs. (C) Heat map of two-dimensional hierarchical clustering of 172 differentially expressed miRNAs among the 
TNBC versus non-TNBC comparisons. Three major clusters of miRNAs were found and labelled in different colours (See Figures S3–S5).

Figure 1. (A) Schematic workflow diagram of the integrative analysis of mRNA and miRNA expression profiles. (B) Venn diagram of number of differentially
expressed miRNAs. Genes in overlapping sets shows differential expression in three comparisons of normal versus triple-negative breast cancer (TNBC), normal
versus non-TNBC and TNBC and non-TNBC pairs. (C) Heat map of two-dimensional hierarchical clustering of 172 differentially expressed miRNAs among the TNBC
versus non-TNBC comparisons. Three major clusters of miRNAs were found and labelled in different colours (See Figures S3–S5).
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Cluster 1: This cluster comprises 53 significantly down-regulated miRNAs in TNBC tissues.
Those with a two-fold change are hsa-miR-92a (logFC −1.08); hsa-miR-19a (logFC −1.06); hsa-miR-17
(logFC −1.05); hsa-miR-135b (logFC −1.4); hsa-miR-20a (logFC −1.07); hsa-miR-20a* (logFC −1.07)
and hsa-miR-9* (logFC −1.08), and all are involved in important KEGG pathways such as pathways
in cancer, colorectal pathways, bladder cancer and TFG-beta signaling pathway by targeting genes
like NRAS, APC, RUNX1, BCL2, MAPK9, CCND1, SMAD4, HIF1A, MYC, CDKN1A, VEGFA, PTEN,
TGFBR2, and JAK1 (Tables S9 and S10).

Cluster 2: This cluster consists of 24 down-regulated and a subgroup of three up-regulated
miRNAs among the TNBC patients (hsa-miR-936, logFC 0.06; hsa-miR-622, logFC 0.11; hsa-miR-492,
0.05). We observed down-regulation of hsa-mir-574-5p (logFC −0.29) and hsa-mir-320c (logFC −0.36),
which targets RAB18 gene, a member of RAS oncogene family [25], ABHD13 [26], DKDG [27] and
FOX12 [28]. hsa-mir-320c also indirectly regulates TNBC by targeting known biomarker genes such as
MCL1 [29] and RAD51 [30]. Another established breast cancer prognostic miRNA, hsa-mir-1290, was
down-regulated (logFC −0.58) TNCB samples and target critical genes such as SGOL1, a member of
Shougoshin family member [31], FAM53C [32] and transcription factor II-I GTF21 [33].

Cluster 3: Most members of this clusters were strongly up-regulated, except a subgroup of
five miRNAs (hsa-miR-155, logFC −0.35; hsa-miR-146b-5p, logFC −0.30; hsa-miR-146a logFC −0.66;
hsa-miR-31*, logFC −0.48, hsa-miR-31 logFC −0.48) which were under-expressed and known to be
involved in oncogenic activities by positively regulating sodium–iodide symporter (NIS) expression. As
previously reported, up-regulated hsa-mir-127-3p in breast-cancer-negative tumours has been involved
in inhibiting growth, enhanced apoptosis and migration in breast cancer cells by targeting BCL-6
oncogene [34], whilst hsa-miR-654-3p (logFC 0.07) regulates proliferation, apoptosis, migration and
invasion in prostate cancer [35]. Two members of the mir-342 family were up-regulated, hsa-mir-342-3p
(logFC 1.10) and hsa-mir-342-5p (logFC 0.48), in profiles and are known to be involved in the regulation
of BRCA1 expression [36]. Other miRNAs with oncogenic activities from this cluster were significantly
up-regulated, such as hsa-miR-375 (logFC 1.58), and could potentially act as diagnostic/prognostic
biomarkers [37,38]. Similarly, two members of mir-92-c family mediate epithelial-to-mesenchymal
transition in human cancers by regulating β-catenin signalling [39]. Two over-expressed miRNAs
belong to the family of hsa-mir-193 (hsa-mir-193b*, logFC 0.70 and hsa-mir-193a-5p, logFC 0.36) and
two individual miRNAs, hsa-mir-665 (logFC 0.08) and hsa-miR-663b (logFC 0.04), were also increased
in TNBC compared to non-TNBC.

2.2. miRNAs Associated with Survival

Univariate cox regression on 172 differentially expressed miRNAs between triple negative versus
non-triple negative breast tumours confirmed a set of 28 miRNAs associated with clinical outcomes.
Three miRNAs (hsa-miR-342-3p/5p and hsa-miR-497) among the 28 miRNAs showed significant
association with both DMFS and OS outcome that may indicate their ability to classify the patient
with good and bad prognoses. A subset of 18 miRNAs were significantly associated with DMFS,
whereas another group of 10 miRNAs showed a strong association with overall survival outcome.
Of the former subset of miRNAs, nine were identified as up-regulated in the TNBC compared to
non-TNBC (Table 1) patients. Interestingly, most of the up-regulated miRNAs, such as hsa-miR-29c
(HR = 0.72, CI = 0.52–1), hsa-miR-342-3p (HR = 0.52, CI = 0.31–0.89), hsa-miR-342-5p (HR = 0.3, CI =

0.1–0.93), hsa-let-7c (HR = 0.63, CI = 0.41–0.98), hsa-let-7b (HR = 0.5, CI = 0.31–0.83), hsa-miR-369-5p
(HR = 0, CI = 0–0.42), hsa-miR-101 (HR = 0.58, CI = 0.33–1), hsa-miR-497 (HR = 0.51, CI = 0.29–0.9)
and hsa-miR-154 (HR = 0.05, CI = 0–0.58), were correlated with better prognosis. However, among
the down-regulated miRNAs, three out of nine, including hsa-miR-1290 (HR = 1.71, CI = 1.2–2.43),
hsa-miR-630 (HR = 1.64, CI = 1.17–2.3) and hsa-miR-1246 (HR = 1.53, CI = 1.12–2.09), were correlated
with worse prognosis (risk-associated), and the remaining six, comprising of hsa-miR-19b-1 * (HR =

0, CI = 0–0.69), hsa-miR-301b (HR = 5.31, CI = 1.13–24.96), hsa-miR-181d (HR = 0.31, CI = 0.1–0.95),
hsa-miR-181c * (HR = 0.1, CI = 0.01–0.76), hsa-miR-30e (HR = 0.49, CI = 0.25–0.98) and hsa-miR-130a
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(HR = 0.5, CI = 0.33–0.78), were linked with better prognosis, which indicates a dual role of gene
regulation and inhibition of these miRNAs and heterogeneity within this subtype.

Table 1. Table showing the results of cox regression model of the miRNAs significantly associated with
distance metastasis–free survival. The regulation column represents the trends of expression compare
to non-TNBC samples.

miRNAs HR Lower Higher p-Value TNBC vs Non-TNBC

Regulation p-Value Type

hsa-miR-29c 0.72 0.52 1 0.0469 Up 1.73E-16 Protective

hsa-miR-342-3p 0.52 0.31 0.89 0.0162 Up 2.99E-12 Protective

hsa-miR-342-5p 0.3 0.1 0.93 0.0356 Up 1.49E-09 Protective

hsa-let-7c 0.63 0.41 0.98 0.0411 Up 4.25E-06 Protective

hsa-miR-19b-1 * 0 0 0.69 0.0374 Down 9.29E-06 Protective

hsa-let-7b 0.5 0.31 0.83 0.0057 Up 9.60E-06 Protective

hsa-miR-1290 1.71 1.2 2.43 0.0022 Down 2.61E-04 Risky

hsa-miR-369-5p 0 0 0.42 0.0262 Up 5.27E-04 Protective

hsa-miR-301b 5.31 1.13 24.96 0.0324 Down 6.60E-04 Risky

hsa-miR-630 1.64 1.17 2.3 0.0029 Down 2.26E-03 Risky

hsa-miR-101 0.58 0.33 1 0.0486 Up 7.98E-03 Protective

hsa-miR-1246 1.53 1.12 2.09 0.0071 Down 1.03E-02 Risky

hsa-miR-181d 0.31 0.1 0.95 0.0382 Down 1.13E-02 Protective

hsa-miR-181c * 0.1 0.01 0.76 0.0244 Down 1.39E-02 Protective

hsa-miR-30e 0.49 0.25 0.98 0.0436 Down 1.63E-02 Protective

hsa-miR-497 0.51 0.29 0.9 0.0193 Up 2.30E-02 Protective

hsa-miR-154 0.05 0 0.58 0.0168 Up 3.28E-02 Protective

hsa-miR-130a 0.5 0.33 0.78 0.0017 Down 4.22E-02 Protective

* indicates miRNA originating from same hairpin structure (pri and pre-miRNA) of the main miRNA.

The 134 breast tumour samples were divided into three groups (low, intermediate and high) based
on their expression values (see material and methods for more detail) to investigate the robustness of
these miRNAs as signature for survival outcomes. The 18 miRNA DMFS signature analysis indicated
that tumours were strongly associated with intermediate risk (N = 44, HR = 1.24, CI = 1.04–1.47, p-value
= 0.031) and high risk (N = 46, HR = 1.02, CI = 0.86-1.22, p-value = 0.031) compared to low-expressing
tumours (Figure 2A, Table 1). Further investigation of the low risk samples suggested 40 non-TNBC
patients and a group of four TNBC samples with similar expression profiles to non-TNBC (Figure 1C).

Similarly, 10 miRNAs were identified as significantly associated with overall survival (Figure 2B,
Table 2). Three of these have also been observed to be strongly linked with good prognosis p-value
< 0.05. The results from differential expression showed the up-regulation of seven miRNAs and
down-regulation of three miRNAs within this group. Cox proportional hazard analysis of six
up-regulated miRNAs including hsa-miR-342-3p (HR = 0.68, CI = 0.5–0.92), hsa-miR-342-5p (HR =

0.39, CI = 0.2–0.75), hsa-miR-195 (HR = 0.76, CI = 0.59–0.98), hsa-miR-936 (HR = 5.79, CI = 1.04–32.08),
hsa-miR-338-3p (HR = 0.43, CI = 0.19–0.96), and hsa-miR-497 (HR = 0.64, CI = 0.44–0.94) were associated
with good prognosis. Two of the down-regulated miRNAs within this group, hsa-miR-155 (HR = 0.61,
CI = 0.41–0.91) and hsa-miR-146b-5p (HR = 0.65, CI = 0.45–0.94), were observed with low risk. The
two remaining down-regulated miRNAs, hsa-miR-193b (HR = 1.5, CI = 1–2.25) and hsa-miR-1208
(HR = 376.22, CI = 10.32–13709.16), were significantly correlated with worse overall survival. miRNA
hsa-miR-1208 was observed to be an outlier with an extreme increase in high hazard ratios and was
excluded from downstream analysis.
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Figure 2. Figure showing the results from log-rank test among the three groups of (low, intermediate
and high) expression samples. (A) Kaplan–Meier curves showing the difference in three groups with
disease metastatic-free survival (DMFS). (B) Kaplan–Meier curves showing the difference in three
groups with overall survival (OS).

Table 2. Table showing the results of cox regression model of miRNAs significantly associated
with overall survival. The regulation column represents how the trends of expression compare to
non-TNBC samples.

miRNA HR Lower Higher p-Value TNBC vs Non-TNBC

Regulation P-Value Type

hsa-miR-342-3p 0.68 0.5 0.92 0.0127 Up 2.99E-12 Protective

hsa-miR-342-5p 0.39 0.2 0.75 0.00415 Up 1.49E-09 Protective

hsa-miR-193b 1.5 1 2.25 0.0487 Up 3.23E-09 Risky

hsa-miR-195 0.76 0.59 0.98 0.0325 Up 1.56E-03 Protective

hsa-miR-155 0.61 0.41 0.91 0.0157 Down 7.44E-03 Protective

hsa-miR-936 5.79 1.04 32.08 0.0442 Up 1.17E-02 Protective

hsa-miR-338-3p 0.43 0.19 0.96 0.0377 Up 1.40E-02 Protective

hsa-miR-1208 376.22 10.32 13709.16 0.00111 Down 1.78E-02 Risky

hsa-miR-497 0.64 0.44 0.94 0.021 Up 2.30E-02 Protective

hsa-miR-146b-5p 0.65 0.45 0.94 0.0212 Down 2.39E-02 Protective

The 10-miRNA OS signature was further tested for its ability to distinguish the groups of (Low,
Intermediate and High) expressing samples. The OS signature also split the 134 breast tumours into
the three groups but with slightly less significance (N = 46, HR = 1.28, CI = 1.05–1.56, p-value = 0.04)
and intermediate significance (N = 44, HR = 1.11, CI = 0.91–1.36, p-value = 0.04). A similar pattern
of sample classification was observed as for the 18-miRNA DMFS signature. Surprisingly, a trend of
down-regulated miRNAs’ association with high-risk was observed in both signatures including the
outlier hsa-miR-1208 miRNA from the 10-miRNA OS signature. Similarly, the up-regulatory miRNAs
from both signatures exhibited a strong association with low-risk, except hsa-miR-193b of 10-miRNA
OS signature.

We further analysed prognostic factors by conducting univariate and multivariate analyses using
histopathological information on its own (without the miRNAs’ expression data). We observed node
positivity and tumour size histopathological factors were significantly associated with DMFS prognosis
(Table S2), whereas the percentage of tumour cell infiltration, node positivity and tumour size were
among the significantly correlated prognostic factors with OS (Table S3). We then assessed the quality
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of the fitted model using analysis of deviance likelihood for the selection of co-variates which could
impact on the association of prognostic factors with miRNA expression on the outcome prediction.
The results from deviance-score analysis suggested that the two-factors (node positivity and tumour
size) model was the best-suited model for DMFS prognosis, similar to clinical factors such as tumour
size and percentage of tumour cell infiltration model for overall survival. Almost all miRNAs retained
their prognostic ability when evaluated in multivariate models using information on node positivity,
tumour size and tumour cell infiltration for DMFS and OS (Tables S4–S7).

2.3. In silico Validation

In silico analysis showed that the proposed miRNA signature with 68% overlapping miRNAs
with the Buffa et al. dataset shows significant association (HR = 1, CI = 1.00–1.00, p-value = 2.6E-05)
with distant relapse-free survival (DRFS), whereas the miRNA signature showed a broad lack of
reproducibility (p-value = 0.13) with over 80% overlap with the Bockhorn dataset when assessed for
overall survival (Figures S7 and S8). This might be due to the sample scarcity and difference in the
platforms or methods used during the samples collection. The heterogeneity within TNBC could also
have played an important role in the performance of miRNAs in their prognostic ability.

2.4. mRNA Differentially Expressed among the Tumour Subtype Classes

The profiles of 18 triple-negative tumour samples and 131 non-TNBCs were used for differential
expression analysis. The results showed that 386 genes were significantly expressed in TNBC tumours.
Unsupervised hierarchical clustering separates 386 mRNAs into two large clusters with unique gene
subsets (Figure S2).

Cluster 1: This was a large cluster characterised by 180 down-regulated mRNAs. Of these, 19
mRNAs were among known biomarkers observed in previous studies linked to receptor-negative
breast tumours. Validated biomarker genes included CDKN2A (logFC −2.44), involved in the G1/S
checkpoint of the mitotic cell cycle and Ras protein signal transduction [40,41], EGFR (logFC −2.86) in
the Fc-epsilon receptor signaling pathway, the activation of phospholipase C activity, the epidermal
growth factor receptor signaling and cell proliferation [42,43], and IGF2BP3 (logFC −2.46) in mRNA
transport and the regulation of the cytokines and biosynthesis process [44]. The canonical pathways
observed for this cluster were cyclins and cell cycle regulation, cell cycle G1/S checkpoint, glioma,
p53 signaling pathway, melanoma and Wnt signaling pathway enriched with EGFR, CCNE1, FZD9,
CDKN2A, SFRP1, CDK6, SERPINB5, FGF9, MMP7, CALML5, TCF7L1, SHC4, and PRKX genes.

Cluster 2 included 206 mRNA genes significantly over-expressed in triple-negatives. The genes
representative of this cluster were XBP1 (logFC 2.30) [45], SCGB2A2 (logFC 2.80) [46] and TFF3 (logFC
6.33), which have been previously associated with triple-negative tumours [47]. Other genes, such as
ESR1 (logFC 6.02) [48]; GATA3 (logFC 3.88) [49]; ERBB4 (logFC 3.0) [50]; AR (logFC 2.94) [51]; CCDC170
(logFC 2.79) [52]; MAPT (logFC 2.45) [53]; PGR (logFC 2.91) [54]; PIP (logFC 5.42) in immunoglobulin
G-binding protein [55] from this cluster were closely associated with breast cancer progression. The
enrichment analysis for this cluster has identified the top perturbed biological processes, including
response to estrogen stimulus involving genes BMP4, GSTM3, GATA3, ESR1, TFF1, NPY1R, and
IGFBP2; cell differentiation (BMP4, AGTR1, METRN, IL6ST, MAPT, FOXA1, KITLG, and IL20); positive
regulation of signal transduction (BMP4, HPX, IL6ST, ESR1, GJA1, F7, ECM1, IRS1, and IL20). In
addition, other biological processes that were significantly affected include the extracellular matrix,
voltage-gated channel activity, regulation of growth, regulation of cell motion and anti-apoptosis, cell
adhesion, and cytokine binding. The top regulated pathways for this cluster were also linked with the
downregulation of MTA-3, ERBB2 signal transduction and other oncogenic pathways.
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2.5. Prognostic miRNAs and Their Association with Predicted Targets and Enriched Functions

Target prediction analysis on differentially expression genes from the mRNA expression profiles
identifies 35 mRNA genes with known involvement in various cancers. Of 28 miRNAs, 16 from both
signatures are displayed in Figure 3 (Table S8).
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Figure 3. miRNA–mRNA interaction network showing the inverse correlative impact of miRNA to
their respective targeting genes from the mRNA expression dataset. The inner track is 16 miRNAs and
the outer track is a consensus gene sets of 27 mRNA genes between differentially expressed mRNA
and predicted/validated targets from five databases. The miRNAs/genes in green show significant
downregulation and red represent the upregulation of targeting genes.

2.6. 18.-miRNAs Signature

We further assessed the relationship of predicted miRNAs with each gene cluster of mRNA data
set. Three low-risk miRNAs with significant low expression including hsa-miR-301b, hsa-miR-130a,
hsa-miR-181d and one high-risk hsa-miR-1290 miRNA belong to the 18-miRNA DMFS prognostic
signature targets cluster, two genes of the mRNA dataset involving REEP1 (logFC 2.16), CNTNAP2
(logFC 2.03), BMP4 (logFC 2.66), FOXA1 (4.33) and CLEC3A (logFC 3.61). These genes were functionally
involved in processes such as neuron differentiation and the positive regulation of signal transduction.
In general, all of the low-risk miRNA target genes were involved in important regulatory pathways of
TNBC disease. hsa-miR-181d targets CACNA2D2 (logFC 2.34) gene, involved in important functions
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such as voltage-gated ion channel and ion transport. Other miRNAs such as hsa-miR-301b have
shown anti-correlation with MUM1L1 (logFC 2.18) and NBEA (logFC 2.25), a regulator of plasma
membrane. Highly up-regulated genes such as AFF3 (logFC 4.33) and GJA1 (2.02), targeted by another
low-risk miRNA, hsa-miR-30e, are involved in KEGG pathways of arrhythmogenic right ventricular
cardiomyopathy (ARVC) and other cellular processes like cell–cell signaling, endoplasmic reticulum
and plasma membrane.

Low-risk hsa-miR-29c miRNA targeted three downregulated mRNA genes, BCL11A (logFC
−3.26), COL22A1 (logFC −3.56), involved in the regulation of important processes such as structural
molecular activity and extracellular region; CDK6 (logFC −2.09), involved in multiple pathways of
cancer, p53 signaling pathway, cell cycle regulation, and the positive and negative regulation of cell
proliferation. Another low-risk hsa-miR-497 miRNA showed a strong anti-correlation with OTX1
(logFC −2.54), SH2D2A (logFC −2.04) and TRIM2 (logFC −2.24), all of which have demonstrated
involvement in key cell functions (Tables S9 and S10). hsa-miR-101 was also a low-risk marker, targeting
SOX11 (logFC −2.63) gene, a regulator of cell proliferation and glial cell differentiation and GABBR2
(logFC −2.63), involved in cell junction and cell projection molecular processes. hsa-miR-342-3p
was negatively correlated with downregulated gene targets such as ZNF462 and NCOA7, and
hsa-let-7b/c were anti-correlated with predicted targets KRT5 and GABBR2, with known activities in
the cancer pathways.

2.7. 10.-miRNAs Signature

Low-risk hsa-miR-155 miRNA targets genes like NOVA1 (logFC 2.14) and DACH1 (logFC 4.0),
which have been observed to be involved in cell-to-cell signalling processes. Another low-risk miRNA
hsa-miR-936 from this signature targets down-regulatory genes of mRNA cluster 2 such as IGF2BP2
(logFC −2.06) PTX3 (logFC −2.0) POU4F1 (logFC −2.83) that were functionally involved in alternative
splicing, DNA-binding, mRNA transportation and signalling.

3. Discussion

Triple-negative disease is still characterised by the absence of three known receptor genes, Er, Pr,
and Her2, because of underlying heterogeneity and aggressive disease behaviours. These two persistent
challenges have slowed the progress of developing new targeted therapies within the triple negative
subtype. Therefore, there is a need to identify novel biomarkers that can further stratify triple-negative
into simpler molecular subtypes and may help in developing new screening techniques, the early
detection of cancer, and better clinical outcome. The focus has recently been on elucidating novel
and important elements, factors and mechanisms controlling transcription regulation. Investigating
miRNAs involving and controlling transcriptional regulation may provide new understanding of
complex diseases such as TNBC. Therefore, this study integrates information from miRNA and mRNA
by developing independent models on genome-wide expression profiling and identifies important
regulatory pathways, targetable markers for chemotherapy and their involvement in predicting clinical
outcomes [5,56].

We investigated the role of miRNAs as a differentiating factor among the tumour subtypes based
on expression profiling. We observed 173 miRNAs that clearly separate the breast tumours from their
respective normal patients. Further analysis of the patients between triple negative and non-triple
negative shows the presence of 172 miRNAs, dysregulated and targeting well-known biomarker genes
within this subtype. These biomarker genes are involved in key pathways of signalling pathways
such as the p53 signaling pathway, Ras protein signalling and Wnt signalling pathway. Therefore, this
offers strong a indication that these miRNAs indirectly control critical pathways and consequently
impact the biology of TNBC microenvironments. Interestingly, the 77 common miRNAs between
the triple negative and non-triple negative cases have shown higher expression in triple negative
patients. The finding that miRNAs have higher expression in aggressive subtypes was previously
confirmed by an independent study of Blenkiron et al. [57]. De Rinaldis et al., in their study, also
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showed that higher expression levels can be traced back to changes in the DNA copy numbers of
these miRNAs [58]. Most of these highly expressed miRNAs originated from amplified regions of
chromosomal DNA in the tumours. Further investigation into tumour progression from normal to
tumour subtypes have indicated only three miRNAs (hsa-miR-154, hsa-miR-145, and hsa-miR-93) that
are differentially expressed across the tissues (Figure 1B). The Venn diagram intersection between the
three contrast tissue comparisons—normal versus non-TNBC, normal versus TNBC and TNBC versus
non-TNBC—shows that the highest expression changed with triple-negatives. miRNAs hsa-miR-154
and hsa-miR-145 exhibited over-expression in TNBC compared to non-TNBC, whereas hsa-miR-93 is
up-regulated when TNBC is compared with normal-like tissue.

A large number of miRNAs from cluster 3 (Figure 1C) have shown higher expression, except the
group of five miRNAs. miRNAs such as hsa-miR-342-3p, hsa-miR-195, hsa-miR-497, hsa-miR-29c,
hsa-let-7c, and hsa-miR-497 were observed with higher expression in triple negatives and most of
these were targeting genes from cluster 1 of mRNA expression data, which are highly down-regulated
in the triple-negative patients. Most of these targets were known cancer driver genes involved in
inhibiting tumour growth, speeding up the apoptosis, invasion and regulating migration in tumour
cells (Figure 3, Tables S9 and S10). These miRNAs provide evidence of their acting as tumour suppressor
in triple-negative and can be used as targets in tackling tumour progression and management; however,
further validation will be needed. Another characteristic of these miRNAs is the formation of clusters
in various cancers and their acting as modulators for important cell functions. It has been noted that
these clusters usually reside very near to the known cancerous sites or genomics hotspots and play a
very important role in carcinogenesis [59,60]. We identified two members of the miRNA let family
hsa-let-7c/b targeting KRT5 and GABBR2, involved in molecular functions such as G-protein-coupled
signaling, protein binding and structural activity. The manipulation of this cluster can be used for
experimental purposes and also for therapeutic intervention in triple-negative diseases.

Next, we investigated miRNAs’ role as potential biomarkers in receptor-negative breast tumours
and triple-negative disease. Using univariate Cox regression analysis, we identified 28 miRNAs
significantly associated with survival outcomes that were further validated by applying multivariate
analysis for their ability as independent markers. miRNA hsa-mir-1290 is down-regulated in
triple-negative patients and has shown a strong association with higher risk groups with the
triple-negatives. Previously, the over-expression of hsa-mir-1290 in the Her2-postive group has
been reported and linked with better overall survival, as well as serving as a marker for early detection
in triple-negatives [56,61]. Our results also showed strong evidence of hsa-mir-1290 as prognostic
marker in triple-negative and its targeting two highly over-expressed genes (BMP4, logFC 2.66; FOXA1,
logFC 4.33) in the mRNA dataset. BMP4 and FOXA1 have been reportedly involved in patients with
relapse-free survival (RFS) and disease-free survival (DFS) in breast cancer [62,63]. Functionally, FOXA1
is a member of the transcription family and a very well-characterised biomarker for triple-negatives
and other carcinomas [51]. During the Cox regression analysis, we observed that almost all of the
down-regulated miRNAs were associated with high-risk, and targeting up-regulatory genes in the
mRNA dataset involved in cellular processes such as proliferation, angiogenesis and apoptosis.

An emerging theme in the survival analysis was the association of up-regulated miRNAs with
low-risk in triple negatives. miRNAs such as hsa-miR-29c target important biomarker genes like
CDK6. This gene is involved in cell cycle checkpoints and regulation, the regulation of cell proliferation
and the p53 signalling pathway. A recent paper was also in agreement with our finding that the
down-regulation of hsa-miR-29c is linked to poor survival outcome in breast cancer patients [64].
Other predicted targets for hsa-miR-29c are BCL11A and COL22A1, involved in tumour formation,
regulator of structural molecular activity and extracellular region. The low-risk miRNAs from has-let-7
family (hsa-let-7c, hsa-let-7b) act as tumour suppressors through controlling cellular processes such
as cell projection, cell proliferation, and cell development, involving the genes KRT5 and GABBR2.
Over-expression of hsa-miR-342-3p was a prognostic marker for DMFS and OS, and consistent with a
better prognosis in our study. It has been reported that hsa-miR-342-3p regulates BRCA1 expression
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and MYC transcriptional activity by directly repressing E2F1 in human lung cancers [36,65]. Another
low-risk miRNA hsa-miR-497 predicting DMFS and OS regulates several important signalling pathways
related to VEGF, ErbB1 and stem cells pluripotency, involving gene targets SH2D2A, OTX1 and TRIM2.

We have compared our results with two independent datasets to investigate reproducibility. We
observed that only a small percentage of miRNAs overlapped with the independent datasets. The
independent validation results also lack consistency when DMFS and OS signatures were assessed
for predicting distant relapse-free survival (DRFS) and OS. Sample scarcity, a different analytical
platform and demographic changes may have accounted for inter-study differences. The heterogeneity
with in TNBC could have also played an important role in the performance of miRNAs in their
prognostic ability.

These findings suggested that the gene clusters identified during the mRNA profiling can be
influenced by the targeting of significant miRNAs. These findings also support anti-correlative
relationship of OS and DMFS prognostic miRNAs with oncogenesis/suppression of cancer-related
pathways in predicting prognosis. Some of the prognostic miRNAs observed in this study are somehow
linked to various cancers, but this is the first time that we have identified TNBC subtype-specific
miRNAs associated with OS and DMFS survival. MiRNAs such as hsa-miR-342-3p, hsa-miR-195,
hsa-miR-155, and hsa-miR-497 were associated with OS, whereas hsa-miR-29c, hsa-miR-342-3p,
hsa-let-7c, hsa-let-7b, and hsa-miR-497 were correlated with DMFS. We have also observed that
hsa-miR-630, hsa-miR-195, and hsa-miR-101 have contributed to drug resistance in breast cancers and
hsa-miR-497 in pancreatic cancer previously [66].

4. Material and Methods

4.1. Data and Pre-Processing

miRNA expression profiles detected by Agilent-021827 platform were obtained from GEO (Gene
Expression Omnibus) and deposited under the accession number GSE40267. The miRNA expression
data consist of 134 breast cancers and eight normal-like samples with extensive patient follow-up and
pathological information. Similarly, the mRNA expression profiles of 149 invasive breast cancers from
the 172 specimens detected by Illumina human Ref-8 platform were obtained from GEO deposited
under the series accession number GSE16987.

Samples were divided into breast tumour subgroups by carefully examining the receptor status
of three known biomarker genes Er, Pr, and Her2. Raw expression datasets were extracted using
Bioconductor R ‘GEOquery’ package [67] for both types of data. Quality reports were generated
using ‘preprocesscore’ package of Bioconductor R for potential outliers. Expression values were
quantile-normalised and log-transformed using default functions of ‘limma’ Bioconductor R package.
We performed lmFit() function in order to identify differentially expressed miRNAs among by selecting
the coefficients of normal versus TNBC, normal versus non-TNBC and TNBC versus non-TNBC groups
(Figure S6). miRNAs with p-value < 0.05 were considered for downstream analysis. P-values were
adjusted for multiple testing using the False Discovery Rate method. We used R base hclust function for
the calculation of two-dimensional average-linkage hierarchical clustering by building the Spearman
rank correlation matrix. Heat maps were draw using ‘gplots’ package of R Bioconductor for manual
visualisation. We applied ‘silhouette’ for selecting the optimal clusters for miRNA and mRNA datasets
(Table S1).

4.2. Collection of Predicted, Validated Targets and Calculation of Correlation Index

For our integrated analysis, we applied five widely used tools for target prediction analysis
in order to identify possible interactions between dysregulated miRNAs and mRNA: PITA catalog
version 2007 [20], microCosm (also known as miRBase Sequence database) [68] and TargetScan catalog
version 6.2 [21]. Similarly, we selected two databases for validated targets: TarBase version v.5c [69]
and miRecords version April 27, 2013 [70]. An in-house SQLite (http://CRAN.R-project.org/package=
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RSQLite) database was built to merge, store and process data of all five prediction tools. In the second
step, a fast querying searching was applied for the collection of miRNAs targets for downstream
analysis. To evaluate the relationship between miRNAs and gene targets we performed correlation
analysis using the expression values of each miRNA and their potential target genes. We particularly
focused on inversely expressed miRNA–mRNA pairs because of the mechanism of miRNA gene
regulation and degradation during the transcription process. Finally, top anti-correlated pairs were
selected and further investigated for their functional impact on the clusters of mRNA expression
profiles. An interacting network was build using Cytoscape [71] tool visualising the contradicting
effects of miRNAs (Figure 3).

4.3. Statistical Analysis

A two-step process was adopted for survival model. Firstly, univariate Cox-regression was
performed on the 172 differentially expressed miRNAs for their association with overall survival (OS)
and distant metastatic-free survival (DMFS) using ‘survival’ R base package. p-values were adjusted
for multiple-tests using the Benjamin–Hochberg method. miRNAs were ranked according to their
p-value, and those exhibiting p-value < 0.05 were considered for multivariate modelling, resulting in
an optimal set of miRNAs being derived for both outcome conditions. Censoring occurred at the date
of death from any cause (overall survival (OS)), and first evidence of metastases (distant metastatic-free
survival (DMFS)) or at the time of 10-year follow up, depending upon the first occurrence of any
of them. Different Cox-regression models were applied for the selection of pathological covariates.
Histopathological covariates were grouped as Tumour Grading (1 and 2 as low, 3 = high), Node
Positivity (positive or negative), Tumour size (continuous variable), % of Tumour Cell Infiltration (low
< 50% and high > 50%), Age Group (group A > 50 years, group B < 50 years). We further assessed the
quality of each fitted model using the analysis of deviance likelihood test for the selection of co-variate,
which could impact the association of prognostic factors with miRNA expression on the outcome
prediction (Tables S2–S5). Log-rank and Kaplan–Meier analyses were conducted among the three
groups (low, intermediate and high) expressing samples for the calculation difference and drawing of
the survival curves using ‘survcomp’ R package.

4.4. Gene Set Enrichment Analysis of Predicted Targets

We performed functional enrichment analysis for each cluster of the mRNA data in order to
identify the potential involvement of cellular processes, molecular functions and biological pathways.
Two different analysis were performed for gene ontology enrich terms and gene set enriched pathways
using ranked lists from publically available databases such as DAVID [72], KEGG [73], Reactome [74]
and CGAP [75] to translate the expression profiles of mRNA clusters Figure 1A (See Supplementary
Methods Figure S1 for detailed workflow).

4.5. Independent Cohorts for Validation for miRNA Prognostic Signature

We performed “in silico” validation of prognostic miRNAs using two independent datasets
published by Bockhorn et al., with 18 TNBC and 28 Non-TNBC [76], and Buffa et al., including 210
Non-TNBC [77] breast tumour samples. The ability of the model to predict outcome was assessed by
calculating the AUC of respective ROC curves for the period of 10 years. Higher AUC indicates better
performance of the model (AUC = 0.5).

5. Conclusions

In conclusion, we have identified subtype-specific signatures from integrated analyses of miRNAs
and mRNAs expression profiles. The results show that the identified miRNAs are prognostic markers
for OS and DMFS and directly control the important oncogenic processes and pathways through
modulating important cancer driver genes and pathways. The study findings suggested a lack of
consistency when DMFS and OS signatures were assessed for predicting the distant relapse-free
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survival (DRFS) and OS using data from two independent cohorts. Further investigation of tumour
progression from normal to tumour subtypes has shown only three miRNAs differentially expressed
across the tissues and triple-negatives acquired the highest expression change. The study provides
further insight to the complex heterogeneity in triple-negatives and also provides evidence for miRNA
as an influencing factor on tumour transcriptional phenotypes at the transcriptome level. The study
also shows that the model-based breakdown of system-genomics changes from the dysregulation of
epigenetic miRNAs to the transcriptomic pathways. Our results suggest that molecular studies based
on miRNAs’ biomarkers can help in the early detection of disease and can used as agents of therapeutic
interventions in triple-negatives.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/632/s1,
Figure S1. Workflow of the integrated analysis summarising steps pre and post processing, and functional analysis;
Figure S2. A heatmap representing two clusters of the mRNA expression data; Figure S3. Representation of
two dimensional hierarchical clustering heatmap of the miRNAs clusters 1; Figure S4. Representation of two
dimensional hierarchical clustering heatmap of the miRNAs clusters two; Figure S5. Representation of two
dimensional hierarchical clustering heatmap of the miRNAs clusters three; Figure S6. The figures shows PCA
plot of the top 10 differentially expressed miRNAs within normal, TNBC and non-TNBC patients; Figure S7.
Performance estimates of signatures of disease metastatic-free survival in the independent cohort validation;
Figure S8. Performance estimates of signatures of overall-survival in the independent cohort validation; Table
S1. Table include top dysregulatory miRNAs of the triple negative verus non-triple negative comparison. The
colouring order is according to the clusters shown in Figure 1C; Table S2. prognostic performance of histological
factors as covariates in univariate and multivariate analysis in association with DMFS; Table S3. prognostic
performance of histological factors as covariates in univariate and multivariate analysis in association with OS;
Table S4. assessed representation of the quality of fitted model using analysis of deviance for the selection of
co-variate for DMFS; Table S5. assessed representation of the quality of fitted model using analysis of deviance for
the selection of co-variate for OS. Table S6. Kaplan-Meier estimates of the patient into three groups for DMFS;
Table S7. Kaplan-Meier estimates representing difference in three groups for OS; Table S8. Table for anti-correlated
miRNAs and their potential target genes; Table S9. Table representing top gene ontology enrichment analysis of
cluster 1 of mRNA expression data; Table S10. Table representing top gene ontology enrichment analysis of cluster
2 of mRNA expression data.
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