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Abstract: Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence.
We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are
detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR
images from 30 patients, including the DTI and T1-weighted images at recurrence, at 2 months and
4 months before recurrence, and at 1 month after radiation therapy. The diffusion maps and T1 images
were deformably registered longitudinally. The recurrent tumor was manually segmented on the
T1-weighted image and then applied to the diffusion maps at each time point to collect mean FA,
diffusivities, and neurite density index (NDI) values, respectively. Group analysis of variance showed
significant changes in FA (p = 0.01) and NDI (p = 0.0015) over time. Pairwise t tests also revealed that
FA and NDI at 2 months before recurrence were 11.2% and 6.4% lower than those at 1 month after
radiation therapy (p < 0.05), respectively. Changes in FA and NDI were observed 2 months before
recurrence, suggesting that progressive microstructural changes and neurite density loss may be
detectable before tumor detection in anatomical MR images. FA and NDI may serve as non-contrast
MR-based biomarkers for detecting subclinical tumors.
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1. Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor among adults [1].
Despite treatment with surgical resection, radiation therapy (RT), chemotherapy, and temozolomide,
many patients experience intracranial tumor recurrence, and prognosis remains poor, with a median
survival time of only 12−15 months [2–4]. In current clinical practice, the onset of recurrence is
defined in terms of changes in traditional images, such as contrast-enhanced computed tomography
or structural T1-weighted post-contrast magnetic resonance imaging (T1 MRI), followed if possible
by histologic verification. However, given the high frequency of recurrence in GBM and the poor
survival rate thereafter, early detection of recurrence is key to facilitating timely medical treatment and
prolonging survival.

Glioma cells have been shown to migrate into healthy brain tissues along white matter (WM)
tracts [5,6]. The molecular mechanism underlying this phenomenon is complex and contains multiple
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steps, including tumor cell adhesion to components of the extracellular matrix and modification to
their compositions, migration by breaking adherence attachments to the matrix, and the degradation
of matrix proteins by secreting enzymes [7]. This suggests that examining the integrity of WM tracts
within the potential recurrent regions before visible, enhancing tumor recurrence may help further
elucidate the mechanism of recurrence.

Diffusion-weighted imaging is a noninvasive MRI technique in which measurements of water
diffusion in tissues [8] provide biological and clinically relevant information about the integrity of
WM that cannot be provided by other imaging modalities. Diffusion tensor imaging (DTI) applies
a mathematical elliptical model to represent the diffusion characteristics at each voxel [9]. A variety
of diffusion-derived feature maps, such as fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD), can be extracted from DTI images and have provided
complementary information about the integrity of WM in several neurologic diseases, such as multiple
sclerosis [10], Parkinson disease [11], and Alzheimer disease [12].

In brain tumors, DTI has previously been used to assess WM disruptions to identify tumor
grades [13,14], distinguish tumor tissue from peritumoral tissue [15], and study the patterns of shape
(isotropic versus anisotropic) in recurrence [16]. Reduced FA has been linked with decreased fiber
density index near tumors in patients with GBM [17]. However, details of how WM tracts are disrupted
during the clinical course of recurrence are yet to be elucidated. We hypothesized that tumor cells in
the recurrent regions cause microstructural disruptions in WM integrity and these disruptions can
be visualized by DTI before tumors can be detected on conventional anatomical MRI. To test this
hypothesis, we conducted a retrospective longitudinal study to evaluate whether changes in a series of
DTI feature maps precede the clinical onset of recurrence. We also used an advanced diffusion analysis
technique, neurite orientation dispersion and density imaging (NODDI) [18], to provide further details
on how microstructures in WM are affected at the microscale level.

2. Materials and Methods

2.1. Patients and Image Acquisition

Under an institutional review board-approved protocol (PA18-1113), we extracted MRI data
from 30 patients treated for GBM at the University of Texas MD Anderson Cancer Center who had
experienced recurrence after RT. All patients had anatomical T1 and DTI brain imaging at four time
points: at 1 month after RT (baseline), 4 months before recurrence, 2 months before recurrence, and
at recurrence. The average time between baseline and recurrence was 13 months with a standard
deviation of 12 months.

All scans were obtained according to a standard protocol developed for GBM follow-up at the
University of Texas MD Anderson Cancer Center and were acquired on 1.5 T/3T MRI scanners (GE
Medical Systems) with axial orientation. T1 images had a 256 × 256/512 × 512 in-plane acquisition
matrix and a voxel resolution of 0.86 × 0.86 × 6.5 mm3 (TR/TE = 550/8 ms)/0.43 × 0.43 × 5 mm3

(TR/TE = 967/12 ms). DTI images consisted of 28 volumes with a 256 × 256 in-plane acquisition
matrix and a voxel resolution of 0.86 × 0.86 × 6.5 mm3 (TR/TE = 1000/99 ms)/0.86 × 0.86 × 5 mm3

(TR/TE = 10,250/94 ms), including one non-diffusion sensitization volume, i.e., T2-weighted b0 volume,
and 27 diffusion-weighted volumes (b = 1200 s/mm2).

2.2. Image Preprocessing

T1 images were first skull-stripped with the open source skull stripping toolkit LABEL [19].
DTI images were also skull-stripped with Brain Extraction Tool in the Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) [20,21] and
then corrected for eddy current-induced distortions and subject movements using EDDY [22] in FSL.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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2.3. Microstructural Features with NODDI

We used NODDI, an advanced diffusion analysis technique, to provide additional details about
the microstructural features the images represent. Dendrites and axons, known as neural processes or
neurites, are the basic units for brain circuits. Using NODDI to investigate variations in branching
complexity (i.e., density and orientation) allowed us to characterize changes in microstructural integrity
in terms of recurrence. Specifically, NODDI provides three indices to describe such changes: neurite
density index (NDI), orientation dispersion index (ODI), and free water fraction (FWF) [23]. NDI and
ODI quantify the density and angular variation of neurites, and FWF describes the contamination of
tissues by free water at the microstructural level [23].

2.4. Longitudinal Image Processing Pipeline

Our longitudinal image processing pipeline consisted of the following six steps: Step 1. Diffusion
Feature Extraction: The following diffusion-derived feature maps were extracted from the DTI images
of each patient at each time point by using DTIFIT in FSL: fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), and radial diffusivity (RD). Next, we calculated the microstructural
indices (NDI, ODI, and FWF) at each voxel of the DTI images with the NODDI Matlab Toolbox
(http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab). Step 2. Longitudinal Image Alignment:
We applied advanced normalization tools (http://stnava.github.io/ANTs/) [24] to register each patient’s
T1 images at 1 month after RT, 4 months before recurrence, and 2 months before recurrence to the T1
image obtained at recurrence. Because these T1 images had been acquired at different times, a nonlinear
(warping) registration algorithm was used to ensure the best alignment effect. Step 3. Multi-Modality
Image Alignment: At each time point, each patient’s DTI images were co-registered using linear (rigid)
registration with the corresponding T1 images, as both images were acquired during the same imaging
session. Step 4. GTV Manual Segmentation: An experienced radiation oncologist manually segmented
the tumor recurrence volume on the T1 images at the time of recurrence. Step 5. GTV Transfer: For
each patient, the recurrent tumor volume was applied to the T1 images at the previous three time
points with the deformation fields generated by nonlinear registrations in step 2. The recurrent tumor
volume was then transferred to the corresponding DTI images with the affine matrix generated by
linear registrations in step 3. The quality of registration and GTV transfer at steps 2–5 was manually
inspected. Step 6. Mean Feature Calculation: The mean values of all diffusion features (FA, MD,
AD, and RD) and microstructural features (NDI, ODI, and FFW) within the transferred and original
recurrent GTV regions at the four time points were calculated.

2.5. Statistical Analysis

We compared all mean DTI features at the four time points using analysis of variance (ANOVA) to
examine potential changes between these time points. Findings are reported as F ratios, i.e., the ratio
of the between-group variance to the within-group variance. If any changes were detected, t tests were
applied to further investigate changes occurring at each pair of time points.

3. Results

3.1. Diffusion Feature Maps

Mean FA values inside the regions of recurrence over the four time points are shown in box plots
in Figure 1a. The ANOVA revealed statistically significant differences between time points (F = 3.4,
p = 0.01), with a downward trend over time. To further examine which groups were different from
one another, we used pairwise t tests to compare the four time points. After Bonferroni correction,
the mean FA value at recurrence was significantly lower than those at the three prior time points
(p < 0.05), with a decrease of 30.8% (95% confidence interval-CI: (18.2%, 43.0%)), 22.9% (95% CI: (11.0%,
38.9%)), and 19.2% (95% CI: (8.7%, 35.4%)) from the farthest to the nearest time point, respectively.
Moreover, the mean FA value at 2 months before recurrence was also 11.2% lower than that at 1 month

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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after RT, i.e., the baseline (p < 0.05). At the individual level, 14 and 18 out of 30 patients showed a
lower mean FA value at 4 months before recurrence and 2 months before recurrence, compared to
baseline, respectively.

Findings from the ANOVA of the mean values of the other feature maps (MD, AD, and RD) over
time are shown in Figure 1b–d. No statistically significant differences were detected in these feature
maps between time points: for MD, F = 1.38, p = 0.25; for AD, F = 0.99, p = 0.40; and for RD, F = 1.57,
p = 0.20. Although these values were not statistically different, they demonstrated a trend of increasing
values over time, as is evident in those figures. Further pairwise t tests showed that the mean values
of MD, AD, and RD at 2 months before recurrence were 9.5% (95% CI: (4.0%, 15.4%)), 7.8% (95% CI:
(2.5%, 13.0%)), and 10.9% (95% CI: (4.8%, 17.1%)) higher than those at baseline, respectively (p < 0.05
after Bonferroni correction). At the individual level, 18, 16, and 18 patients had a higher mean MD,
AD, and RD value at 2 months before recurrence, compared to baseline, respectively.

Changes in these features (FA, MD, AD, and RD) may indicate that WM degeneration occurred at
recurrent tumor regions before the tumor became visible on T1.

Figure 1. Box plots of the mean values of (a) fractional anisotropy (FA), (b) mean diffusivity (MD),
(c) axial diffusivity (AD), and (d) radial diffusivity (RD) within recurrent tumor regions over the four
time points. The five bars in the box plots indicate, from bottom to top, the minimum, first quartile,
median, third quartile, and the maximum. The red dots indicate outliers.

3.2. Microstructural Features

To investigate which WM microstructural components were affected by tumor recurrence, we used
the same statistical tests of the mean values of NDI, ODI, and FFW (obtained with the NODDI toolbox)
at the regions of recurrence over time. The NDI results were similar to those of the FA findings
(Figure 2a). ANOVA revealed differences among the four time points (F = 5.47, p = 0.0015), with
a downward trend over time. Pairwise t tests showed that the mean NDI value at recurrence was
significantly lower than baseline and 4 months before recurrence, a relative change of 11.9% (95% CI:
(4.3%, 19.5%)), and 7.2% (95% CI: (0.4%, 15.6%)), respectively (p < 0.05 after Bonferroni correction).
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Furthermore, compared to baseline, the mean NDI values at 4 months before recurrence were 4.2%
(95% CI: (1.5%, 6.9%)) lower and the mean NDI values at 2 months before recurrence were 6.4%
(95% CI: (3.4%, 9.5%)) lower (p < 0.05 after Bonferroni correction). At the individual level, 21 and
20 patients demonstrated a reduced mean NDI value at 4 months before recurrence and 2 months
before recurrence, compared to baseline, respectively.

The ANOVA showed no differences in ODI over time (F = 1.16, p = 0.33) (Figure 2b). Similarly,
FWF did not change over time according to the ANOVA (F = 0.93, p = 0.43) (Figure 2c).

The observation of a change in NDI but not in ODI before recurrence suggests that microstructural
changes in WM due to tumor recurrence may have resulted from a reduction in neurite density rather
than a disruption in orientation distribution.

Figure 2. Box plots of the mean values of (a) neurite density index (NDI), (b) orientation dispersion
index (ODI), and (c) free water fraction [FWF] within recurrent tumor regions over the four time points.
The five bars in the box plots indicate, from bottom to top, the minimum, first quartile, median, third
quartile, and the maximum. The red dots indicate outliers.

3.3. Qualitative Comparison

T1 MRI and FA images of a representative patient at each of the four time points are shown in
Figure 3. The recurrent tumor (circled in red) was not visible on the three conventional T1 images
before the evident time point of recurrence, but WM deterioration at the recurrent region was visibly
appreciable on the FA images at 4 months and 2 months before recurrence. Notably, this recurrence
appeared at the intersection of the internal capsule and geniculocalcarine tract (optic radiation), which
are major WM tracts in the brain. These images corroborate our hypothesis that tumor cells may cause
WM disruptions that may be evident on DTI images before the actual tumor is visible in T1 images.
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Figure 3. Serial T1 and fractional anisotropy (FA) images of a representative patient. Red outlines
indicate the location of the recurrent tumor.

3.4. Radiation Therapy versus Recurrence

It is known that RT would cause dose-dependent white matter damage around treatment
areas [25,26]. Therefore, the values of diffusion parameters such as FA would be affected after treatment.
In order to distinguish the longitudinal reduction of FA in the study was caused by recurrence or RT,
we selected 9 patients from our dataset whose recurrent intervals were longer than 12 months. And we
calculated the mean FA values of the recurrence regions at an additional time point—6 months after
RT. We performed pairwise t tests at between 6 months after RT and 1 month after RT, 4 months before
recurrence, 2 months before recurrence, and recurrence, respectively.

There was no statistically significant change in the mean FA values between 1 month after RT and
6 months after RT (p = 0.80, 95% CI: (−12.7%, 12.7%)). However, compared with those at 6 months after
RT, the mean FA values were significantly lower at 2 months before recurrence (p = 0.04, 95% CI: (0.8%,
28.3%)) and at recurrence (p = 0.008, 95% CI: (12.7%, 63.4%)). The mean FA values inside the regions
of recurrence over the five time points are shown in box plots in Figure 4. Qualitatively, we showed
the FA images at 1 month after RT, 6 months after RT, 2 months before recurrence, and recurrence
from two representative patients in Figure 5. The red contours outlined the recurrent tumor regions.
White matter inside the contours seemed to be intact at 1 month and 6 months after RT, whereas
degeneration could be observed at 2 months before recurrence and at recurrence. Both quantitative
and qualitative results indicate that the change in FA in our study may result from tumor recurrence
instead of radiation-induced damage.
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Figure 4. Box plots of the mean values of fractional anisotropy (FA) within recurrent tumor regions
over the five time points for selected 9 patients. The five bars in the box plots indicate, from bottom to
top, the minimum, first quartile, median, third quartile, and the maximum.

Figure 5. Serial fractional anisotropy (FA) images of two representative patients at four time points,
including 6 months after radiation therapy. Red outlines indicate the location of the recurrent tumor.

4. Discussion

Although T1 weighted post contrast MRI remains the gold standard for predicting GBM recurrence,
other imaging modalities such as positron emission tomography (PET) and perfusion MRI have been
utilized to assist and improve the diagnostic accuracy of tumor recurrence [27,28]. In particular,
DTI has the unique capability of displaying information on tissue cellularity, microstructures, and
microvasculature by means of noninvasive images [29–31] and thus is increasingly investigated for
cancer diagnosis [32] and the prediction of treatment response [33]. Numerous feature maps can be
generated from DTI to measure changes in different diffusion properties. For example, FA represents
the directionality or the degree of diffusion anisotropy, whereas MD reflects the overall diffusion
properties. AD describes the diffusion properties along a particular direction (the principal axis),
whereas RD accounts for the diffusion in the other two directions perpendicular to the principal
direction [12].
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Although DTI has been studied in several types of cancer [34], there are limited studies in
GBM. For example, Chang et al. [35] compared the MD values in post-surgical images with those of
post-recurrence images in tumor and surrounding tissues to predict tumor recurrence. The current study
is one of the first to investigate the utility of DTI for detecting possible changes in WM microstructure
before the appearance of a recurrent tumor on conventional MRI.

Our results support our hypothesis that the disruption of WM integrity near the site of recurrence
in patients with GBM can precede the appearance of an enhancing tumor on structural MRI. When WM
degenerates, the diffusion directionality decreases. When fiber tracts disassociate, water molecules
can move freely without obstruction in any direction, and diffusivity usually increases. In general,
FA and MD usually move in opposite directions. In our study, we expected that FA values would be
lower at recurrence than that at baseline, and that MD would increase as a result of WM degeneration
caused by underlying tumor growth. Our findings reflect these expectations, and we found similar
trends of increasing values for AD and RD over time. Chang et al. [35] found that MD values were
lower inside the tumor than in the surrounding peritumoral region, whereas we found that MD
values tended to increase within the tumor region from baseline to recurrence. The pattern of rising
MD values, as seen in our study, is consistent with findings in other neurologic diseases, such as
Alzheimer disease, where MD values increased in the regions of WM degeneration [12]. Other studies
of diffusion MRI brain tumors have speculated that MD is an important marker for tumor response
assessment as it is negatively associated with cell density or cellularity, which is a critical measure
for tumor progression [34,36,37]. However, our results suggest that the directionality feature (FA)
was more sensitive to changes in WM that predicted for GBM recurrence than the other diffusivity
features (MD, AD, and RD) suggesting that FA may also be a useful non-contrast imaging biomarker
of GBM recurrence.

To further explore changes at the microstructural level and possibly provide more insight into
tumor invasion along WM tracts, we used NODDI, a recently developed imaging technique that
provides information on specific voxel-wise microstructural substrates via three components, each
with values ranging from 0 to 1: NDI describes relative neurite density, ODI quantifies relative angular
or morphologic variations, and FWF defines the aggregated free water portion. In the current study,
NDI could distinguish recurrence at different stages of development, but the other two components
could not. Because changes in FA can result from a combination of NDI and ODI [16], we suspect
that the decrease in FA in our study may have been caused by a decrease in NDI rather than in
ODI. This in turn suggests that neurite loss (as opposed to neurite morphologic change) may be the
main pathologic process for tumor invasion in GBM recurrence, a finding that warrants histologic
confirmation in future studies. Not surprisingly, similar patterns of change have also been observed in
other neurodegenerative diseases, such as frontotemporal lobar degeneration and amyotrophic lateral
sclerosis [23].

In previous studies, diffusion parameters demonstrated significant changes from their baseline
values in the areas affected by RT at 6 months after RT [25,26]. In our study, the mean FA values of the
region of interest did not show obvious changes between 6 months after RT and baseline (i.e. 1 month
after RT) whereas they did show changes between 6 months after RT and 2 months before recurrence
in the region of tumor recurrence. Although the small sample size may limit the statistical power, it
does imply that the changes we observed from our dataset may be due to white matter deterioration
caused by early tumor recurrence rather than radiation.

Despite its promising findings, the current study had several limitations. Our sample size
was limited by the difficulty of retrospectively identifying patients treated with concurrent RT and
temozolomide with complete sets of serial imaging data at the proposed study time points. With
regards to the imaging consistency, the serial DTI images for patients included in this retrospective
review were acquired at varying magnet strengths, both 1.5T and 3T without any consistent pattern
over time. Although the pattern of image acquisition at varying magnet strengths was random, it may
have impacted our results. Additionally, although all the registration results were manually checked
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after the automated, deformable image registration algorithm, any residual errors in the registration of
the GTV to the diffusion images across all four time points have the potential to affect the quantitative
measures within these GTV regions before recurrence.

As this is a small retrospective study, the intent of the study was to investigate whether there were
suggestive findings that DTI changes may help detect earlier pathological changes prior to traditional
anatomical imaging in areas of GBM recurrence based on the hypothesis that an active tumor in a
region may lead to the disruption of white matter integrity. For the purpose of this early signal finding
study, group analysis enabled statistical analysis. At the individual patient level, we provide several
examples of patients with demonstrated changes in DTI at a time point sooner than the clinical onset
of recurrence. In our patient cohort, 18 patients of the 30 total group demonstrated changes in FA
2 months prior to confirmed tumor recurrence. Based on these findings, we conclude that DTI changes
are promising early biomarkers to help localize areas of GBM recurrence, but further larger prospective
studies would need to be done to validate our findings before any clinical implementation could
be considered.

5. Conclusions

The results from this retrospective longitudinal study suggest that the disruption of WM integrity
near the site of recurrence in patients with GBM can precede the appearance of enhancing tumor on
structural MRI. The FA values on images obtained before recurrence were different from those in the
baseline images, and the microstructural feature NDI decreased significantly between 2–4 months
before recurrence and baseline, suggesting that underlying progressive microstructural changes may
precede the appearance of enhancing tumor. We further found that FA was more sensitive than
other diffusion-derived features such as MD, AD, and RD for detecting subclinical tumor presence.
FA may therefore be useful as an imaging biomarker to predict GBM recurrence, and DTI can provide
important complementary information to conventional structural MRI to assist in the clinical diagnosis
of recurrence. Our results also suggest that the underlying mechanism for FA reduction may be neurite
loss rather than changes in neurite morphology. Future prospective studies of larger cohorts of patients
with GBM using a more uniform imaging protocol and more detailed analysis are planned to evaluate
the role of DTI in detecting subclinical GBM in a normal-appearing brain and, potentially, to refine the
definition of clinical target volume for RT planning and for predicting GBM recurrence.

Author Contributions: Conceived and planned the work, Y.J., J.W.R., H.E., and C.C.; collected the data and
performed the analysis, Y.J., J.W.R., and H.E.; took the lead in writing the manuscript, Y.J.; reviewed and edited
the manuscript, A.M.E, K.A.A.F., L.L., and C.C.; provided critical feedback during the entire process, A.M.E.,
B.M.A., B.L.T., A.S.M., K.K.B., C.D.F., and C.C. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was supported by the University of Texas MD Anderson Cancer Center Support Grant
P30CA01667 and by a ROSI grant from the Division of Radiation Oncology at the University of Texas MD Anderson
Cancer Center.

Conflicts of Interest: The authors have no conflicts of interest.

References

1. Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L.
Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomark. Prev. 2014, 23,
1985–1996. [CrossRef] [PubMed]

2. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.;
Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
N. Engl. J. Med. 2005, 352, 987–996. [CrossRef] [PubMed]

3. Ronning, P.A.; Helseth, E.; Meling, T.R.; Johannesen, T.B. A population-based study on the effect of
temozolomide in the treatment of glioblastoma multiforme. Neuro. Oncol. 2012, 14, 1178–1184. [CrossRef]
[PubMed]

http://dx.doi.org/10.1158/1055-9965.EPI-14-0275
http://www.ncbi.nlm.nih.gov/pubmed/25053711
http://dx.doi.org/10.1056/NEJMoa043330
http://www.ncbi.nlm.nih.gov/pubmed/15758009
http://dx.doi.org/10.1093/neuonc/nos153
http://www.ncbi.nlm.nih.gov/pubmed/22869622


Cancers 2020, 12, 568 10 of 11

4. Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.;
Silvani, A.; Fink, K.L.; et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs
Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA 2015, 314, 2535–2543. [CrossRef]
[PubMed]

5. Belien, A.T.; Paganetti, P.A.; Schwab, M.E. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables
invasive migration of glioma cells in central nervous system white matter. J. Cell Biol. 1999, 144, 373–384.
[CrossRef]

6. Pedersen, P.H.; Edvardsen, K.; Garcia-Cabrera, I.; Mahesparan, R.; Thorsen, J.; Mathisen, B.; Rosenblum, M.L.;
Bjerkvig, R. Migratory patterns of lac-z transfected human glioma cells in the rat brain. Int. J. Cancer 1995, 62,
767–771. [CrossRef]

7. Lefranc, F.; Brotchi, J.; Kiss, R. Possible future issues in the treatment of glioblastomas: Special emphasis
on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol. 2005, 23,
2411–2422. [CrossRef]

8. Basser, P.J.; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66,
259–267. [CrossRef]

9. Le Bihan, D.; Mangin, J.F.; Poupon, C.; Clark, C.A.; Pappata, S.; Molko, N.; Chabriat, H. Diffusion tensor
imaging: concepts and applications. J. Magn. Reson. Imaging. 2001, 13, 534–546. [CrossRef]

10. Werring, D.J.; Clark, C.A.; Barker, G.J.; Thompson, A.J.; Miller, D.H. Diffusion tensor imaging of lesions and
normal-appearing white matter in multiple sclerosis. Neurology 1999, 52, 1626–1632. [CrossRef]

11. Atkinson-Clement, C.; Pinto, S.; Eusebio, A.; Coulon, O. Diffusion tensor imaging in Parkinson’s disease:
Review and meta-analysis. Neuroimage Clin. 2017, 16, 98–110. [CrossRef] [PubMed]

12. Jin, Y.; Huang, C.; Daianu, M.; Zhan, L.; Dennis, E.L.; Reid, R.I.; Jack, C.R., Jr.; Zhu, H.; Thompson, P.M.;
Alzheimer’s Disease Neuroimaging, I. 3D tract-specific local and global analysis of white matter integrity in
Alzheimer’s disease. Hum. Brain Mapp. 2017, 38, 1191–1207. [CrossRef] [PubMed]

13. Svolos, P.; Kousi, E.; Kapsalaki, E.; Theodorou, K.; Fezoulidis, I.; Kappas, C.; Tsougos, I. The role of diffusion
and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future
perspectives. Cancer Imaging 2014, 14, 20. [CrossRef] [PubMed]

14. Darbar, A.; Waqas, M.; Enam, S.F.; Mahmood, S.D. Use of Preoperative Apparent Diffusion Coefficients to
Predict Brain Tumor Grade. Cureus 2018, 10. [CrossRef]

15. Pauleit, D.; Langen, K.J.; Floeth, F.; Hautzel, H.; Riemenschneider, M.J.; Reifenberger, G.; Shah, N.J.;
Muller, H.W. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor
tissue from peritumoral tissue in cerebral gliomas? J. Magn. Reson. Imaging 2004, 20, 758–764. [CrossRef]

16. Price, S.J.; Jena, R.; Burnet, N.G.; Carpenter, T.A.; Pickard, J.D.; Gillard, J.H. Predicting patterns of glioma
recurrence using diffusion tensor imaging. Eur. Radiol. 2007, 17, 1675–1684. [CrossRef]

17. Roberts, T.P.; Liu, F.; Kassner, A.; Mori, S.; Guha, A. Fiber density index correlates with reduced fractional
anisotropy in white matter of patients with glioblastoma. AJNR Am J. Neuroradiol. 2005, 26, 2183–2186.

18. Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: practical in vivo neurite
orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [CrossRef]

19. Shi, F.; Wang, L.; Dai, Y.; Gilmore, J.H.; Lin, W.; Shen, D. LABEL: pediatric brain extraction using learning-based
meta-algorithm. Neuroimage 2012, 62, 1975–1986. [CrossRef]

20. Jenkinson, M.; Pechaud, M.; Smith, S. BET2: MR-based estimation of brain, skull and scalp surfaces.
In Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto,
ON, Canada, 12–16 June 2005.

21. Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790.
[CrossRef]

22. Andersson, J.L.R.; Sotiropoulos, S.N. An integrated approach to correction for off-resonance effects and
subject movement in diffusion MR imaging. Neuroimage 2016, 125, 1063–1078. [CrossRef] [PubMed]

23. Wen, J.H.; Zhang, H.; Alexander, D.C.; Durrleman, S.; Routier, A.; Rinaldi, D.; Houot, M.; Couratier, P.;
Hannequin, D.; Pasquier, F.; et al. Neurite density is reduced in the presymptomatic phase of C9orf72 disease.
J. Neurol. Neurosurg. Psychiatry 2019, 90, 387–394. [CrossRef] [PubMed]

24. Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A reproducible evaluation of ANTs
similarity metric performance in brain image registration. Neuroimage 2011, 54, 2033–2044. [CrossRef]
[PubMed]

http://dx.doi.org/10.1001/jama.2015.16669
http://www.ncbi.nlm.nih.gov/pubmed/26670971
http://dx.doi.org/10.1083/jcb.144.2.373
http://dx.doi.org/10.1002/ijc.2910620620
http://dx.doi.org/10.1200/JCO.2005.03.089
http://dx.doi.org/10.1016/S0006-3495(94)80775-1
http://dx.doi.org/10.1002/jmri.1076
http://dx.doi.org/10.1212/WNL.52.8.1626
http://dx.doi.org/10.1016/j.nicl.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/28765809
http://dx.doi.org/10.1002/hbm.23448
http://www.ncbi.nlm.nih.gov/pubmed/27883250
http://dx.doi.org/10.1186/1470-7330-14-20
http://www.ncbi.nlm.nih.gov/pubmed/25609475
http://dx.doi.org/10.7759/cureus.2284
http://dx.doi.org/10.1002/jmri.20177
http://dx.doi.org/10.1007/s00330-006-0561-2
http://dx.doi.org/10.1016/j.neuroimage.2012.03.072
http://dx.doi.org/10.1016/j.neuroimage.2012.05.042
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26481672
http://dx.doi.org/10.1136/jnnp-2018-318994
http://www.ncbi.nlm.nih.gov/pubmed/30355607
http://dx.doi.org/10.1016/j.neuroimage.2010.09.025
http://www.ncbi.nlm.nih.gov/pubmed/20851191


Cancers 2020, 12, 568 11 of 11

25. Connor, M.; Karunamuni, R.; McDonald, C.; White, N.; Pettersson, N.; Moiseenko, V.; Seibert, T.; Marshall, D.;
Cervino, L.; Bartsch, H.; et al. Dose-dependent white matter damage after brain radiotherapy. Radiother.
Oncol. 2016, 121, 209–216. [CrossRef] [PubMed]

26. Kassubek, R.; Gorges, M.; Westhoff, M.A.; Ludolph, A.C.; Kassubek, J.; Muller, H.P. Cerebral Microstructural
Alterations after Radiation Therapy in High-Grade Glioma: A Diffusion Tensor Imaging-Based Study. Front.
Neurol. 2017, 8. [CrossRef]

27. Lundemann, M.; af Rosenschold, P.M.; Muhic, A.; Larsen, V.A.; Poulsen, H.S.; Engelholm, S.A.; Andersen, F.L.;
Kjaer, A.; Larsson, H.B.W.; Law, I.; et al. Feasibility of multi-parametric PET and MRI for prediction of tumour
recurrence in patients with glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 603–613. [CrossRef]

28. Zhang, J.F.; Liu, H.; Tong, H.P.; Wang, S.M.; Yang, Y.Z.; Liu, G.; Zhang, W.G. Clinical Applications of
Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges.
Contrast Media Mol. Imaging 2017. [CrossRef]

29. Chen, L.H.; Liu, M.; Bao, J.; Xia, Y.B.; Zhang, J.Q.; Zhang, L.; Huang, X.Q.; Wang, J. The Correlation between
Apparent Diffusion Coefficient and Tumor Cellularity in Patients: A Meta-Analysis. PLOS ONE 2013, 8.
[CrossRef]

30. Jiang, R.S.; Ma, Z.J.; Dong, H.X.; Sun, S.H.; Zeng, X.M.; Li, X. Diffusion tensor imaging of breast lesions:
evaluation of apparent diffusion coefficient and fractional anisotropy and tissue cellularity. Brit. J. Radiol.
2016, 89. [CrossRef]

31. Koh, D.M.; Collins, D.J.; Orton, M.R. Intravoxel incoherent motion in body diffusion-weighted MRI: Reality
and challenges. AJR Am. J. Roentgenol. 2011, 196, 1351–1361. [CrossRef]

32. Park, M.J.; Kim, Y.K.; Choi, S.Y.; Rhim, H.; Lee, W.J.; Choi, D. Preoperative detection of small pancreatic
carcinoma: value of adding diffusion-weighted imaging to conventional MR imaging for improving
confidence level. Radiology 2014, 273, 433–443. [CrossRef] [PubMed]

33. Tang, L.; Zhang, X.P.; Sun, Y.S.; Shen, L.; Li, J.; Qi, L.P.; Cui, Y. Gastrointestinal stromal tumors treated with
imatinib mesylate: apparent diffusion coefficient in the evaluation of therapy response in patients. Radiology
2011, 258, 729–738. [CrossRef] [PubMed]

34. Tang, L.; Zhou, X.J. Diffusion MRI of cancer: From low to high b-values. J. Magn. Reson. Imaging 2019, 49,
23–40. [CrossRef] [PubMed]

35. Chang, P.D.; Chow, D.S.; Yang, P.H.; Filippi, C.G.; Lignelli, A. Predicting Glioblastoma Recurrence by Early
Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. AJR Am. J.
Roentgenol. 2017, 208, 57–65. [CrossRef] [PubMed]

36. Colman, H.; Berkey, B.A.; Maor, M.H.; Groves, M.D.; Schultz, C.J.; Vermeulen, S.; Nelson, D.F.; Mehta, M.P.;
Yung, W.K.; Radiation Therapy Oncology, G. Phase II Radiation Therapy Oncology Group trial of conventional
radiation therapy followed by treatment with recombinant interferon-beta for supratentorial glioblastoma:
results of RTOG 9710. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 818–824. [CrossRef] [PubMed]

37. Pilatus, U.; Shim, H.; Artemov, D.; Davis, D.; van Zijl, P.C.M.; Glickson, J.D. Intracellular volume and
apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn. Reson. Med. 1997,
37, 825–832. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.radonc.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27776747
http://dx.doi.org/10.3389/fneur.2017.00286
http://dx.doi.org/10.1007/s00259-018-4180-3
http://dx.doi.org/10.1155/2017/7064120
http://dx.doi.org/10.1371/journal.pone.0079008
http://dx.doi.org/10.1259/bjr.20160076
http://dx.doi.org/10.2214/AJR.10.5515
http://dx.doi.org/10.1148/radiol.14132563
http://www.ncbi.nlm.nih.gov/pubmed/24991989
http://dx.doi.org/10.1148/radiol.10100402
http://www.ncbi.nlm.nih.gov/pubmed/21193597
http://dx.doi.org/10.1002/jmri.26293
http://www.ncbi.nlm.nih.gov/pubmed/30311988
http://dx.doi.org/10.2214/AJR.16.16234
http://www.ncbi.nlm.nih.gov/pubmed/27726412
http://dx.doi.org/10.1016/j.ijrobp.2006.05.021
http://www.ncbi.nlm.nih.gov/pubmed/16887285
http://dx.doi.org/10.1002/mrm.1910370605
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Patients and Image Acquisition 
	Image Preprocessing 
	Microstructural Features with NODDI 
	Longitudinal Image Processing Pipeline 
	Statistical Analysis 

	Results 
	Diffusion Feature Maps 
	Microstructural Features 
	Qualitative Comparison 
	Radiation Therapy versus Recurrence 

	Discussion 
	Conclusions 
	References

