

Increased Expression of Micro–RNA–23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia

Increased Expression of Micro-RNA-23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia

Stefan Hatzl¹, Bianca Perfler¹, Sonja Wurm¹, Barbara Uhl¹, Franz Quehenberger², Susanne Ebner³, Jakob Troppmair³, Andreas Reinisch¹, Albert Wölfler¹, Heinz Sill¹ and Armin Zebisch^{1,4,*}

- ¹ Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; stefan.hatzl@medunigraz.at (S.H.); bianca.perfler@medunigraz.at (B.P.); wurm.sonja1@gmail.com (S.W.); barbara.uhl@medunigraz.at (B.U.); a.reinisch@medunigraz.at (A.R.);albert.woelfler@medunigraz.at (A.W.); heinz.sill@medunigraz.at (H.S.)
- ² Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; franz.quehenberger@medunigraz.at
- ³ Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck , Austria; susanne.ebner@i-med.ac.at (S.E.); jakob.troppmair@i-med.ac.at (J.T.)
- ⁴ Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- * Correspondence: armin.zebisch@medunigraz.at; Tel.: +43-316-385-80259; Fax: +43-316-385-14087 Received: 28 January 2020; Accepted: 18 February 2020; Published: date

Figure S1. Sensitivity to daunorubicin after miR–23a modulation in AML cell lines. MTT cytotoxicity assays in U937 and THP–1 AML cells after incubation with daunorubicin. miR–23a denotes transduction with a miR–23a overexpression construct, CTRL denotes transduction with an empty control vector.

Figure S2. Expression of miR–23a does not correlate with *NPM1* and/or *FLT3* mutation status in AML. Box plots showing the correlation between miR–23a and the mutation status of *NPM1* and *FLT3,* respectively. miR–23a expression values are displayed as log–transformed miRNA–sequencing results. Data were downloaded from the TCGA AML cohort (n = 146) [1]. *NPM1* mutations were reported in 46/146 (32)% of all samples, *FLT3* in 41/146 (28%) of all cases.

Figure S3. Increased expression of miR–23a correlates with decreased expression of TOP2B in AML. Scatter plots showing the correlation between miR–23a and *TOP2B* (A), *ABCA1* (B), as well as *MEF2C* mRNA (C). Expression values are displayed as RNA Sequencing V2 RSEM expression values for mRNAs (depicted at the *y*–axes), and as miRNA–sequencing expression values for miR–23a (depicted at the *x*–axes). Data were downloaded from the TCGA AML cohort (n = 173) [1].

Figure S4. Uncropped Western Blots.

Table S1. Patient characteristics of the 24 paired AML specimens obtained at diagnosis and primary chemorefractory/relapsed disease. Pat., patient–number; WBC, white blood cells; f, female; m, male; G/L, giga per liter; LDH, lactate dehydrogenase; U/L, units per liter; ELN, European Leukemia Net risk stratification; FAB, French–American.British classification; HD, high–dose; AraC, cytarabine; HSCT, hematopoietic stem cell transplantation.

Pat.	Age	Gender	WBC (G/L)	Marrow Blasts (%)	LDH (U/L)	Karyotype	ELN	FAB	Therapy
AML 1	59	f	110	95	910	45,XX,t(2;3)(p23;q26),-7	adverse	M4	"7+3" + HD–AraC
AML 2	58	f	143	95	301	46,XX	favorable	M1	"7+3" + HD–AraC
AML 3	47	f	44.95	90	379	46,XX	favorable	M5	"7+3" + HD–AraC
AML 4	38	f	2.379	80	443	46,XX	intermediate	M2	"7+3" + HD–AraC
AML 5	38	f	186.12	95	2002	46,XX	intermediate	M4	"7+3" + HD-AraC+HSCT
AML 6	44	m	6.34	40	2101	46,XY	intermediate	M5	"7+3" + HD–AraC+HSCT
AML 7	21	m	0.78	50	5774	46,XY,t(6;11)(q27;q23)	intermediate	M5	"7+3" + HD–AraC+HSCT
AML 8	49	f	107	90	559	47,XX	intermediate	M0	"7+3"
AML 9	48	m	178	100	886	46,XY	intermediate	M2	"7+3" + HD–AraC
AML 10	54	m	49.24	80	1650	44~45,XY,-5,-7,-10,+2mar	adverse	M2	"7+3"
AML 11	54	m	24.78	70	313	46,XY	intermediate	M2	"7+3" + HD–AraC+HSCT
AML 12	49	m	2.01	80	203	46,XY	adverse	M1	"7+3"
AML 13	41	f	91	90	813	46,XX	favorable	M4	"7+3"
AML 14	65	f	40.73	90	393	46.XX	favorable	M4	"7+3" + HD–AraC
AML 15	68	m	30.85	95	786	45~47,XY,der(7)t(7;11)(p1 3;q13)del(7)(q31)	adverse	M0	"7+3" + HD–AraC
AML 16	58	f	60.53	95	622	49,XX,+6,+8,+22	adverse	M4	"7+3" + HD–AraC
AML 17	52	m	6,1	80	360	46.XY	intermediate	M4	"7+3" + HD–AraC+HSCT
AML 18	44	m	36.97	95	2041	46~48,XY,+8,ins(10;11)(p1 2;q23),+19	adverse	M0	"7+3" + HD-AraC
AML 19	55	f	234	95	883	46,XX	intermediate	M4	"7+3" + HD–AraC
AML 20	59	m	10.85	90	419	46~50,XY,+8, t(10;11)+13,+14,+19	adverse	M5	"7+3" + HD–AraC+HSCT
AML 21	46	f	64.87	95	498	46,XX	intermediate	M4	"7+3" + HD–AraC+HSCT
AML 22	66	f	3.85	90	288	46,XX	favorable	M1	"7+3" + HD–AraC
AML 23	67	m	12	85	213	46,XX, del(16)	favorable	M1	"7+3" + HD–AraC
AML 24	34	f	5.87	80	209	46,XX	intermediate	M2	"7+3" + HD–AraC+HSCT

Table S2. Patient characteristics of the 146 AML patients analyzed via the TCGA [1]. Patients were categorized according to their miR–23a expression as outlined in the main manuscript. Note that the exact time–point of allo–SCT was not available, therefore respective censoring in survival analyses was not possible. Details of risk stratification are outlined in the original TCGA publication [1]. WBC, white blood cells; BM, bone marrow; PB, peripheral blood; SCT, stem cell transplantation; CR, complete remission.

Variable	<i>n</i> (% miss.)	Overall (<i>n</i> = 146)	miR–23a high (n = 112)	miR-23a low (n = 34)	p-value*
Demographic variables					
Age (years)	146 (0%)	51 (18-81)	51 (18-81)	51 (21-77)	0.989
Gender (female)	146 (0%)	67 (45%)	51 (45%)	16 (47%)	0.876
Leukemia characteristics					
WBC (per µL)	146 (0%)	37.8 (0.1–298.4)	47.2 (4.0–298.4)	4.8 (0.1-27.1)	0.001
BM–Blast count (%)	146 (0%)	72 (30–100)	72 (30–100)	72 (37–95)	0.972
PB–Blast count (%)	145 (0.6%)	42 (0–98)	43 (0–98)	40 (0-90)	0.427
Risk stratification					
Molecular Risk (points)	145 (0.6%)	2 (1–3)	2 (1-3)	2 (1-3)	0.402
Cytogenetic Risk (points)	144 (1.2%)	2 (1–3)	2 (1-3)	2 (1-3)	0.273
Transplant characteristics					
Allogenic SCT (%)	146 (0%)	70 (48%)	54 (48%)	16 (47%)	0.392
Allogenic SCT in 1st CR (%)	146 (0%)	47 (32%)	39 (35%)	8 (27%)	0.217

Table 3. TOP50 hits of the in–silico screening for potential miR–23a target genes by employing the miR–walk 2.0 algorithm ([2]; http://zmf.umm.uni–heidelberg.de/apps/zmf/mirwalk2/). The column "Prediction" demonstrates the results of the seven target prediction tools included in this algorithm (miRWalk; Microt4, http://diana.imis.athena–innovation.gr/DianaTools; miRanda, http://microrna.org/; miRMap, https://mirmap.ezlab.org/; miRNAMap, http://mirnamap.mbc.nctu.edu.tw/; RNAhybrid, https://bio.tools/rnahybrid; Targetscan, http://www.targetscan.org/vert_72/. 7/7 indicates that a specific gene has been identified as a potential miR–23a target in all seven target prediction machines. The column "PMID" presents the results of a PubMed–based literature search. The respective gene was entered along with "AML" or "Acute myeloid leukemia", and "therapeutic resistance" or "chemoresistance". Matches are displayed with the respective PubMed ID and highlighted in red, no match is indicated as x.

Gene	Prediction	PMID	Gene	Prediction	PMID	Gene	Prediction	PMID
CCDC6	7/7	х	WNK3	7/7	х	DICER1	7/7	х
TENM1	7/7	х	PTCH1	7/7	х	FNTA	7/7	х
METAP1	7/7	х	VGLL2	7/7	х	SUCO	7/7	х
CAPN6	7/7	х	TERF2	7/7	х	LDHB	7/7	х
TENM4	7/7	х	DNAJC6	7/7	х	SLC39A10	7/7	х
FOXA1	7/7	х	SEC24A	7/7	х	NAP1L1	7/7	x
MSL2	7/7	х	ESYT1	7/7	х	KLHL15	7/7	x
MRC1	7/7	х	DLX1	7/7	х	RXRG	7/7	x
RBM25	7/7	х	BBS9	7/7	х	LIN9	7/7	x
PPP1CB	7/7	х	ITGB8	7/7	х	KDM6A	7/7	x
RNF38	7/7	х	MYNN	7/7	х	LRPPRC	7/7	x
TADA2A	7/7	х	MYH2	7/7	х	UHRF1BP1L	7/7	x
CUL3	7/7	х	VCPIP1	7/7	х	CACNB2	7/7	x
SEC23A	7/7	х	RAD23B	7/7	х	SMPX	7/7	x
NEDD4L	7/7	х	CNOT6L	7/7	х	GALNT1	7/7	x
RUNX2	7/7	х	KLF10	7/7	х	BRWD1	7/7	x
FOXP1	7/7	х	ABI1	7/7	х	MCM6	7/7	x
HOXC11	7/7	х	ZHX1	7/7	Х	NLGN4X	7/7	x
LGR4	7/7	х	ABCA1	7/7	26463638	NTS	7/7	x
MYH1	7/7	х	MED13L	7/7	х	ZIC4	7/7	x
RBM26	7/7	х	EGR2	7/7	х	SLC20A1	7/7	х
PPP6C	7/7	х	HOOK2	7/7	х	SPOPL	7/7	х
RDH10	7/7	х	IPO5	7/7	х	VSNL1	7/7	х
TCF20	7/7	х	MYO5C	7/7	х	ZMYM2	7/7	х
SLC4A4	7/7	х	MYH4	7/7	х	GPR64	7/7	х
CELF2	7/7	х	NAA15	7/7	х	POGZ	7/7	х
WDR7	7/7	х	RPS6KA3	7/7	х	CALCR	7/7	х
CLK3	7/7	х	MAGI3	7/7	х	ZNF521	7/7	х
ARFIP1	7/7	х	TOP2B	7/7	22627319	GAP43	7/7	х
HOXD10	7/7	х	COL4A3BP	7/7	х	RC3H2	7/7	х
AMBRA1	7/7	х	ZBTB1	7/7	х	MEF2C	7/7	29431698
MYH2	7/7	х	ADH5	7/7	х	ARRDC3	7/7	х
SPTBN1	7/7	х	TTC7B	7/7	х	POU4F2	7/7	х

Table S4. Gene signatures of miR–23a and *TOP2B* in comparison to the previously published LSC and OXPHOS signatures [3,4]. No overlaps exist between these signatures. miR–23a and *TOP2B* signatures have been established as described in the main manuscript.

miR–23a DOWN	miR–23a UP	<i>TOP2B</i> Interact	LSC	OXPHOS DOWN	OXPHOS UP
BBS9	CD34	CBX8	NPAL2	C9orf153	ANGPT2
C7ORF61	COL4A3BP	CTCF	TRAF3IP2	CGRPR	ARHGEF12
CHD6	EGR2	DDX18	PPP1R10	CD200	BCL6
DHRS13	GMFG	DDX31	NF1	CMKLR1	BIRC3
DNAJC6	IL6R	HDGF	FLJ13197	CPA6	<i>C3</i>
FAM102A	KRT80	HMGA1	ABCG1	CYP51A1	CA1
FGFR1	LUZP1	LRIF1	CLN5	DCSTAMP	CCL23
GPRIN2	MEAK7	MORC2	LRRC8B	DHCR24	CDK15
HSD11B1L	MEF2C	NIPBL	FRMD4B	DPP10	CHRNA6

Cancers 2020, 12

KDF1	PPP1CB	PDS5A	ZFP30	ERMN	CLC
IDHR	SEC23A	PDS5R	C17orf86	FYS	CSF1
LDIID LIPT1	SNY21	PHF2	C160rf5	E15 FAM160A1	CSE2RB
	SIVAZI	DAD21		FAM100A1	CYCL 10
MAGIZ	SPOPL	KAD21	TGIF2	FAM4/E	CACLIO
METAP1	L	RRP15	RABGAP1	FLJ45983	CXCL11
MSL2	VCPIP1	SDAD1	PPIG	GALNT12	DDX60L
MYH1		SMC1A	GPR56	GUCY1A3	EFHC2
NAA16		SRBD1	EIF2S3	IGJ	ENPP3
NAP1L1		STAG1	NAB1	IGLL3P	ENTPD1
PEBP1		STAG2	LRRC61	IL2RA	EPSTI1
PHKG1		TOP1	ATP1B1	IL3RA	EPX
PI16		TOP2A	ZNE500	INSIG1	FAM198B
PLIN4		YY1	CSDE1	KCNA7	FCGR1A
PRRT1		ZNF362	C^2CD^2	KCNK17	FCGR1R
PTCH1		ZNF451	PAOR6	KIAA0125	FNRP11
RRM25		ZNF512	FAM119R	KRT5	GATM
SERHI 2		2111 512	ΔRPP_{10}	I FPRFI 1	GMPR
TENMA			SETDR1	ΜΑΡΙΑ	GPR85
TOD2R			ZETESO	MID126	
			DEDMS	MMD2	
UDASIIJA VIII I				MV05C	
VILL ZMVM2			SLC9A/	MIUJU MZD1	ПDC UEDC5
ZNE921			AKLS	MLDI DLA2C10	HERCS
ZINFOJI			ZIVF 304	PLAZGIU	ПСГ
			LUC55288 9	PRDM7	HNRPLL
			VGLL4	PTPN20A	HPGDS
			UBR5	RAB20	IFI44L
			PTCD2	S100A3	IL1RL1
			CRKRS	SCARNA9	IL6ST
			IQGAP2	SLA2	ITGB3
			PLCH1	SLC6A5	JMY
			ARFGEF1	SNORA65	KEL
			MAP3K7	SNORD116–26	LTBP1
			PNPLA4	SNORD60	MED12L
				SPNS3	MIR222
				STARD4	MNDA
				STARD6	NPL
				STAT4	P2RY13
				TTC39A	PARM1
				XKR3	PPRP
				ZMAT4	PRG2
				ZNF283	RHAG
				ZNF737	SERPINB10
					SERPINB2
					SESN3
					SLC10A5
					SLC1A3
					SLC22A15
					SLC27A6
					SLC04C1
					SLEV401 SLEN5
					SNORA 36A
					STRSIAG
					TC2N
					Ι LL Ι ΤΙ D Λ
					ILN4 TNECE10
					ΙΙΝΓΟΓΙΟ ΤΝΠΖ
					VINN2
					ZFP36LI

Table S5. Univariate Cox regression analysis for EFS and OS for the miR–23a and *TOP2B* gene signatures. The influence on prognosis was calculated as previously described [3,4]. In more detail, z–scores were downloaded from the TCGA [1] for all genes of each signature. Then, the sum of all z–scores was calculated for each patient and subsequently used as value for calculation of prognosis. Note that even the statistical significance of miR–23a DOWN could not be validated in a multivariate cox proportional hazards model after adjusting for at least one of the univariable established predictors of survival (WBC, age, cytogenetic risk and molecular risk). EFS, event–free survival; OS, overall survival; CI, confidence interval; WBC, white blood cell count.

Parameter	Variable	Hazard ratio	95% CI	<i>p</i> -value
	miR–23a DOWN	1.21	1.005-1.410	0.003
OS	miR–23a UP	1.00	0.99-1.010	0.097
	TOP2B Interact	0.98	0.910-1.021	0.420
	miR–23a DOWN	1.15	1.051-1.243	0.005
EFS	miR–23a UP	1.02	0.985-1.045	0.500
	TOP2B Interact	0.92	0.850-1.021	0.569

Table 6. Primer sequences and/or ordering information used for qPCR analyses.

Gene	forward	reverse		
TOP2B	AGCCATTGACGCAGTTCATGT	CCTGGCACAAAGGTAACCTCC		
B2M	CGCTCCGAGATGCATGTG	TTGGCTGGCAGTCCTTTAGG		
GUSB	CCTGAAGGTGGCTGTGAAGATG	GCTCCCAGAAGGTTGACGATG		
SNORD44	Qiagen, Cat#	MS00007518		
RNU6	Qiagen, Cat# MS00003740			
miR–23a	Qiagen, Cat#	MS00031633		

Reference

- 1. Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. *N. Engl. J. Med.* **2013**, *368*, 2059–2074, doi:10.1056/NEJMoa1301689.
- Dweep H and Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. *Nat Methods* 2015, 12, 697.
- Eppert. K.; Takenaka, K.; Lechman, E.R.; Waldron, L.; Nilsson, B.; van Galen, P.; Metzeler, K.H.; Poeppl, A.; Ling, V.; Beyene, J.; et al. Stem cell gene expression programs influence clinical outcome in human leukemia. *Nat. Med.* 2011, *17*, 1086
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse. M.; et al. Chemotherapy–resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. *Cancer Discov.* 2017, 7, 716.