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Abstract: Background: The multikinase inhibitor regorafenib, approved as second-line treatment
for hepatocellular carcinoma (HCC) after sorafenib failure, may induce mitochondrial damage.
BH3-mimetics, inhibitors of specific BCL-2 proteins, are valuable drugs in cancer therapy to amplify
mitochondrial-dependent cell death. Methods: In in vitro and in vivo HCC models, we tested
regorafenib’s effect on the BCL-2 network and the efficacy of BH3-mimetics on HCC treatment.
Results: In hepatoma cell lines and Hep3B liver spheroids, regorafenib cytotoxicity was potentiated
by BCL-xL siRNA transfection or pharmacological inhibition (A-1331852), while BCL-2 antagonism
had no effect. Mitochondrial outer membrane permeabilization, cytochrome c release, and caspase-3
activation mediated A-1331852/regorafenib-induced cell death. In a patient-derived xenograft
(PDX) HCC model, BCL-xL inhibition stimulated regorafenib activity, drastically decreasing tumor
growth. Moreover, regorafenib-resistant HepG2 cells displayed increased BCL-xL and reduced MCL-1
expression, while A-1331852 reinstated regorafenib efficacy in vitro and in a xenograft mouse model.
Interestingly, BCL-xL levels, associated with poor prognosis in liver and colorectal cancer, and the
BCL-xL/MCL-1 ratio were detected as being increased in HCC patients. Conclusion: Regorafenib
primes tumor cells to BH3-mimetic-induced cell death, allowing BCL-xL inhibition with A-1331852
or other strategies based on BCL-xL degradation to enhance regorafenib efficacy, offering a novel
approach for HCC treatment, particularly for tumors with an elevated BCL-xL/MCL-1 ratio.
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1. Introduction

Hepatocellular carcinoma (HCC), the most frequent primary liver cancer, is the third leading cause
of cancer death and the main cause of death among patients with cirrhosis [1]. Often diagnosed at an
advanced stage with poor prognosis, its incidence is expected to rise in the future due to the growing
prevalence of non-alcoholic fatty liver disease associated with obesity and metabolic syndrome [2].
Despite recent advances in treatment, HCC prognosis continues to be dismal [3]. Most liver cancer
patients do not benefit from immunotherapy [4] and the efficacy of the multikinase inhibitors (MKIs)
sorafenib [5] and lenvatinib [6] in first-line treatment, and regorafenib [7] and cabozantinib [8] in
second line, needs to be improved. Since drug effectiveness is limited by primary and acquired
drug resistance [9], the identification of mechanisms enhanced by chemotherapy, particularly those
susceptible to being druggable, is required to overcome treatment failure. In HCC, with a complex
genetic background and without dependence on specific driver mutations for survival, vulnerabilities
created by MKI treatment could provide targets to improve life expectancy [10].

Cell death-related pathways involving mitochondria are gaining interest as an alternative approach
for cancer therapy [11], especially after or in combination with drug treatment that has altered
mitochondrial homeostasis [10]. The BCL-2 network controls apoptosis by regulating mitochondrial
outer membrane permeabilization (MOMP) via multidomain pro-apoptotic BAX and BAK [12].
MOMP triggers the release of pro-apoptotic mitochondrial intermembrane space proteins, such
as cytochrome c and smac/DIABLO, activating executioner caspases and rapid cell death. In the
BCL-2 system, equilibrium is established among pro-apoptotic members, such as BID, BIM, PUMA,
BAD, or NOXA, and pro-survival components, mainly BCL-2, BCL-xL, and MCL-1 [13]. Cancer
therapy has been described to alter the delicate balance established between activators and repressors
of BAX/BAK homo-oligomerization, favoring the MOMP and leading to cell death. Upon the
appearance of drug resistance, compensatory mechanisms may cause a novel BCL-2 status, which
could be profited by BH3-mimetics [14–16], selective BCL-2 family member inhibitors studied in
on-going clinical trials [17]. In particular, we and others have demonstrated sorafenib interaction with
mitochondria [18–21], indicating the BCL-2 system has an important role in its cytotoxicity, which could
be used to increase sorafenib efficacy [22,23]. Regorafenib shares a chemical structure and biological
targets with sorafenib [24,25] and BCL-2 seems to participate in death-signaling pathways induced
by both drugs [23]. Knowing the BCL-2 profile induced by a drug helps design a strategy based on
BH3-mimetics predicted to be successful for a specific cancer [26–28]. However, unlike sorafenib,
regorafenib’s effect on the BCL-2 network has not been sufficiently addressed, so we aimed to evaluate
this point and to test potential combination therapies in different models of liver cancer.

Our results indicate that MCL-1 reduction, as regorafenib does, allows BCL-xL antagonism to
effectively eliminate HCC cells. In fact, A-1331852, a BH3-mimetic with specific anti-BCL-xL-binding
capacity [29], is an effective agent to increase regorafenib efficacy and to overcome regorafenib resistance
as we will demonstrate in different in vitro and in vivo HCC models. Moreover, increased BCL-xL
and the BCL-xL/MCL-1 ratio are exhibited by patients with HCC, with predicted worse prognosis,
suggesting that A-1331852 could be an interesting drug to combine with regorafenib during therapy.

2. Results

2.1. Mitochondrial Differences in Sorafenib vs. Regorafenib Experimental Liver Cancer Treatment

Sorafenib and regorafenib share numerous signaling pathways in their biological action, although
some proteins are specifically targeted. Previous works have identified part of the cytotoxicity
associated with sorafenib as mitochondrial dependent, with sorafenib activity being potentiated by
mitochondrial-directed therapies. Differences in sorafenib- and regorafenib-induced pathways could
provide additional targets for combination therapy and identify a mechanism that leads liver cancer
cells to death.
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In a patient-derived xenograft mouse model, we evaluated the effect of sorafenib and regorafenib
in HCC using a microarray with a panel of cell death-related genes (Figure 1A). Although most
of the mRNAs detected were similarly affected by both MKIs, changes in individual genes were
detected. In particular, we observed that the alteration in BCL-2 family members was clearly different
in sorafenib- and regorafenib-treated tumors. Anti-apoptotic members, such as BMF or BFL1, were
mostly upregulated after both treatments. However, while the BCL-2 increase was mainly noticed after
sorafenib exposure, BCL-xL, augmented more significantly in regorafenib-treated tumors (Figure 1B).
Of note, the expression of pro-apoptotic members, such as BIM or BAX, was more pronounced after
regorafenib treatment. These results evidenced different alterations in BCL-2 proteins induced by both
MKIs, suggesting divergent mitochondrial effects and specific therapeutic opportunities for each.
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Figure 1. Sorafenib and regorafenib regulate the BCL-2 profile differently, sharing mitochondrial
dependence but a distinctive therapeutic approach. (A) Transcriptomic analysis of genes related with
liver cancer in BCLC9 tumors from nude mice treated for three weeks with vehicle (C1-3), sorafenib
(S1-3), or regorafenib (R1-3). (B) mRNA expression of different BCL-2 proteins from treated tumors
(C1-4, S1-4, and R1-4). Differences in the mRNA pattern are highlighted with yellow squares. (C) Cancer
therapy may increase anti-apoptotic BCL-2 proteins avoiding cell death but mito-priming the cells to
BH3-mimetics. Resistant hepatoma cells treated with compounds targeting BCL-2 proteins may release
BH3-only proteins to bind BAX/BAK and trigger apoptotic cell death.

Several chemotherapeutic agents disturb the mitochondrial BCL-2 network, increasing both
pro-apoptotic and pro-survival BCL-2 family members (Figure 1C). As a result, in surviving cancer
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cells, drug therapy generates an abnormal BCL-2 balance with high levels of opposite components
on each scale. This equilibrium is breakable by specific BH3-mimetics, which lead to cell death after
sequestering the anti-apoptotic BCL-2 members. Since regorafenib upregulates BCL-2 expression,
particularly pro-apoptotic genes, such as BIM and BAX, the priming of mitochondrial cell death should
be expected. Therefore, we decided to investigate if BCL-2 addiction is created by regorafenib exposure
and which proteins could be targeted to increase regorafenib efficacy.

2.2. BCL-xL Antagonism Is Effective to Potentiate Regorafenib Activity Against Liver Cancer Cells

We observed previously that BCL-2 and BCL-xL are the main anti-apoptotic BCL-2 proteins
involved in sorafenib resistance in hepatoma liver cancer cells [23]. Since the BH3-mimetics ABT-199 [30]
and A-1331852 [29] are highly effective to specifically reduce the intracellular availability of BCL-2
and BCL-xL, respectively, we tested if these compounds could modify regorafenib activity. A-1331852
greatly potentiated regorafenib toxicity in Hep3B and HepG2 cells as measured in MTT assays after
16 h (Figure 2A,B), while BCL-2 depletion with ABT-199 was not effective in increasing regorafenib
action in the same hepatoma cell lines (Figure 2C,D). Of note, addition of the anti-BCL-xL BH3-mimetic
A-1331852 significantly increased regorafenib-induced cell death, up to 5–6 fold (EC50: 15.1 ± 1.3 vs.
2.8 ± 0.3) in HepG2 cells and 8 to 10 times (30.7 ± 4.3 vs. 2.4 ± 0.2) in Hep3B cells.
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Figure 2. BCL-xL antagonism potentiates regorafenib activity on liver cancer cells. (A,B) Hep3B and
HepG2 cells were treated for 16 h with the BCL-xL inhibitor A-1331852 and regorafenib at different
concentrations, and cell viability was quantified by MTT. (C,D) Hep3B and HepG2 cells were treated for
16 h with the BCL-2 inhibitor ABT-199 and regorafenib at different concentrations, and cell viability was
quantified by MTT. (E) Hep3B cells were transfected with siRNA control or against BCL-xL and BCL-2
and after 48 h treated with regorafenib at different concentrations, and cell viability was quantified by
MTT. (F) RNA interference was confirmed and protein levels of BCL-xL, BCL-2, and β-actin are shown
in parallel panels. (n = 3) * p < 0.05 vs. control or siCTRL cells.
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To verify BCL-xL’s role in the cellular protection against regorafenib, we transfected siBCL-2
and siBCL-xL in Hep3B cells (Figure 2E). Cells transfected with siBCL-2 were not sensitized against
regorafenib while BCL-xL silencing potentiated cell death after 24 h of regorafenib exposure (EC50:
24.8 ± 3.5 vs. 13.6 ± 1.9). Of note, the A-1331852 efficacy of sensitizing tumor cells against regorafenib
was higher than siBCL-xL reduction, probably due to A-1331852’s powerful inhibition (Ki < 0.04 nM)
of BCL-xL compared with the reduction obtained, up to 80% (Figure 2F), with the two siBCL-xL tested.
However, in the absence of total knockdown of BCL-xL, we cannot completely discard the contribution
of some off-target effect on the increased regorafenib efficacy.

To validate the capacity of A-1331852 to potentiate regorafenib toxicity, we evaluated their
potential synergism in three different liver cancer cell lines, using the mathematic Highest Single Agent
(HSA) model [31] and presenting heat maps of the results (Figure 3A). Synergy between both agents,
regorafenib and A-1331852, was clearly observed in all three hepatoma cells, HepG2, Hep3B, and
PLC/PRF/5, for concentrations of BH3-mimetic in the nanomolar range (10–200 nM) at a regorafenib
concentration with therapeutic relevance in the low micromolar range (1–100 µM).
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Figure 3. A-1331852 synergistically increased regorafenib cytotoxicity against different hepatoma cell
lines. (A,B) MTT assays to test the A-1331852 and ABT-199 effect on regorafenib cytotoxicity in different
liver cell lines (HepG2, Hep3B, and PLC/PRF/5) were performed, synergy calculated using HSA analysis,
and results displayed with heat maps (blue synergy vs. red antagonism). (C,D), Crystal Violet staining
was performed after 3 days of treatment with vehicle (C), regorafenib (R), and/or A-1331852/ABT-199
(A) in HepG2, Hep3B, and PLC/PRF/5 cell cultures. (n = 3) * p < 0.05 vs. control.
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In contrast, no synergism was detected when BCL-2 was the protein targeted using ABT-199
co-administration with regorafenib in any cell line tested (Figure 3B).

In agreement with these results, the growth of HepG2, Hep3B, and PLC/PRF/5 cells was severely
decreased by the combination of A-1331852 and regorafenib after three days, as denoted by Crystal
Violet assays (Figure 3C). In contrast, ABT-199 was ineffective, potentiating regorafenib activity over
all three hepatoma cell lines (Figure 3D). This result suggests that BCL-xL antagonism, but not BCL-2,
could be an interesting mechanism to increase regorafenib efficacy in vivo.

2.3. A-1331852 Addition to Regorafenib-Treated Hepatoma Cells Triggers MMP Loss and
Mitochondrial-Mediated Caspase-Dependent Apoptotic Cell Death

To verify the mitochondrial alteration induced by A-1331852 in regorafenib-treated cells,
we analyzed possible changes in the mitochondrial membrane potential (MMP) by using the fluorescence
probe JC-1. As soon as three hours after the drugs’ co-administration, an evident decrease of the MMP
was observed, denoted by the color shift observed in the cells, increasing the green mitochondrial
pattern mainly in A-1331852/regorafenib-treated HepG2 and Hep3B cells (Figure 4A).

Since the decline of MMP could be associated to mitochondrial pore formation and consequent
release of mitochondrial pro-apoptotic intermembrane proteins, we measured the cytosolic levels
of cytochrome c at different times. As detected by Western blot, while regorafenib alone induced a
minimal amount of cytochrome c presence in the cytosol (CYT), A-1331852 co-administration greatly
favored its mitochondrial release (Figure 4B). In mitochondrial extracts (MITs), whereas cytochrome
c levels were significantly unchanged in the combination samples, BAX exhibited mitochondrial
accumulation after regorafenib treatment. Consistent with a mitochondrial-dependent apoptotic cell
death, a significant increase in the active caspase-3 form is clearly visible in regorafenib-treated cells
only if A-1331852 was co-administered (Figure 4B). This result was confirmed by quantification of the
caspase-3 activity in cell extracts (Figure S1). As a consequence of caspase-3 activation, a cleavage of
PARP-1 was detectable in A-1331852/regorafenib-treated HepG2 cells (Figure 4B).

To further analyze the early changes in BCL-2 proteins before caspase-3 triggering of cell death,
we evaluated their protein levels. Once again, MCL-1 was clearly decreased in regorafenib-treated
cells that was followed by BIM increases (Figure 4C). Other changes in BCL-2 proteins were not so
clear, particularly due to their alteration in the levels induced by the BH3-mimetic A-1331852. Of note,
while BAX mitochondrial accumulation was evident after regorafenib treatment, the BAX increase in
total cell extracts was barely noticeable, emphasizing the importance of their mitochondrial analysis.

Moreover, typical apoptotic features were observed in hepatoma cells, being easily detectable
by Hoechst 33258 nuclear staining after eight hours of A-1331852/regorafenib co-administration
(Figure 4D). Interestingly, as previously observed with caspase-3 activation, nuclear DNA condensation
was significant at time points where regorafenib alone was not inducing evident apoptotic effects,
supporting a quick and relevant role of BCL-xL to modulate regorafenib anti-tumoral activity.
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transcriptional modulation, MCL-1 expression is also tightly controlled by post-transcriptional 
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Figure 4. The regorafenib and A-1331852 combination induced apoptotic cell death via a mitochondrial
caspase-dependent mechanism. (A) Hep3B and HepG2 cells were exposed to regorafenib (R, 2.5 µM)
with or without A-1331852 (A, 0.1 µM) and MMP loss observed by fluorescence microscopy after 3 h
(scale bar, 100 µm). (B) Cytochrome c release, BAX and TOM20 mitochondrial levels, caspase-3, PARP-1,
and β-Actin were analyzed by Western blot in HepG2 cells. (C) BCL-2 proteins in cell extracts as above.
(D) Nuclear Hoechst 33258 staining was visualized in HepG2 cells treated with regorafenib and/or
A-1331852 (scale bar, 100 µm), and apoptotic cells counted (10 independent fields per condition, n = 3).
* p < 0.05 vs. control cells, # p < 0.05 vs. regorafenib-treated cells.

2.4. Regorafenib Reduction of MCL-1 Facilitates A-1331852 Induction of Cell Death in Liver Cancer Cells

To better identify the mitochondrial changes induced by regorafenib that allow BCL-xL antagonism
to synergistically induce cytotoxicity in hepatoma cells, we analyzed the protein levels of BCL-2 members
with recognized importance in cell survival. In Hep3B and HepG2 cells treated with regorafenib, an
early decrease in MCL-1 levels was consistently observed, accompanied by a progressive increase in
intracellular BIM levels (Figure 5A). Of note, this MCL-1 reduction was not caused by decreased mRNA
synthesis. After overnight treatment with concentrations up to 5 µM of regorafenib, no significant
decreases in MCL-1 mRNA were detected (Figure S2). Besides transcriptional modulation, MCL-1
expression is also tightly controlled by post-transcriptional modification [32,33], suggesting that
proteasomal degradation of MCL-1 could be taking place in regorafenib-treated hepatoma cells.
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Although other mitochondrial alterations were detected, such as an increase in BCL-xL, particularly
in regorafenib-treated HepG2 cells, MCL-1 reduction was presented by all cell lines tested after
regorafenib treatment.
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Figure 5. MCL-1 inhibition sensitizes hepatoma cells to the BCL-xL inhibitor A-1331852.
(A) Representative Western blot images of MCL-1, BCL-xL, BIM, BCL-2, BAX, BAK, and β-Actin
exhibited by Hep3B and HepG2 cells at different times (0–16 h) after regorafenib treatment (5 µM).
(B) Effect of the MCL-1 inhibitor A-1210477 on Hep3B cells and HepG2 cells treated with A-1331852 (A,
0.05, 0.1, or 0.2 µM) for 24 h. * p < 0.05 vs. control cells. (C) Hep3B spheroids were seeded and after 24
h of aggregation treated with vehicle, regorafenib (R, 2.5 µM), and/or A-1331852 (A, 0.1 or 0.2 µM) for
seven days. Spheroid growth was monitored daily (scale bar, 500 µm). (n = 3) * p < 0.05 vs. control
cells, # p < 0.05 vs. regorafenib-treated cells.

Since a novel BH3-mimetic, A-1210477 [34], highly specific for MCL-1 has been recently described,
we tested it, in order to deplete MCL-1 levels in hepatoma cells and combined with BCL-xL
reduction using A-1331852. Interestingly, MCL-1 sequestration by A-1210477 was sufficient to
induce BCL-xL-dependent cell death in liver cancer cell lines, such as HepG2 and Hep3B (Figure 5B).
Therefore, this result suggests that the quick MCL-1 protein decline induced by regorafenib may
be responsible for the BCL-xL addiction created in regorafenib-treated hepatoma cells, revealing a
vulnerability that allows A-1331852 to be an effective anti-tumoral agent.
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Before starting animal studies, we validated our results in liver spheroids, as a physiologically
relevant in vitro HCC model, which resembles human liver more closely than traditional monolayer
cultures. After aggregation, Hep3B spheroids were treated with regorafenib and/or A-1331852 and
grown for seven days (Figure 5C). As quantified, two days after treatment, the drug combination
was already effective in reducing spheroid growth while regorafenib activity was clearly minor and
anti-BCL-xL-treatment alone was not significantly different from vehicle-treated spheroids.

2.5. A-1331852 in Combination with Regorafenib Is Effective to Reduce Liver Cancer Progression in a PDX
Mouse Model

To test the in vivo efficacy of BCL-xL antagonism to potentiate regorafenib activity against liver
cancer, we administered regorafenib and A-1331852 to mice bearing BCLC9 tumors, generated after the
subcutaneous injection of this patient-derived HCC cell line. BCLC9 are anchor-free growing human
hepatocellular carcinoma cells, derived from a well-differentiated human HCC, that display a stem
cell phenotype and are highly effective tumor-initiating cells in nude mice. Regorafenib’s capacity to
decrease BCLC9 tumor growth was potentiated by A-1331852 co-administration (Figure 6A,B) while
A-1331852 alone did not influence cancer progression significantly. In agreement, the proliferative
capacity of the HCC cells was seriously compromised after regorafenib/A-1331852 co-administration
for four weeks, as denoted by PCNA staining of tumor biopsies (Figure 5C).
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Figure 6. BCL-xL inhibitor A-1331852 remarkably reduced tumor growth in regorafenib-treated PDXs.
(A,B), Subcutaneous growth quantification and images of BCLC9 tumors in mice treated with A-1331852
(25 mg/kg) and regorafenib (30 mg/kg) for 4 weeks (n = 4–6). * p < 0.05 vs. vehicle-treated mice.
(C) Representative images of PCNA expression in tumor samples from BCLC9 PDXs and quantification
(scale bar, 50 µm). (D) Transcriptomic analysis of cell death-related genes in BCLC9 tumors from nude
mice treated with vehicle, regorafenib, and/or A-1331852. (n = 2).
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Quantification of PCNA-positive cells by field exhibited a regorafenib reduction of tumor
proliferation (377 ± 140), compared to vehicle-treated animals (563 ± 62) that was potently increased
by A-1331852 co-administration (70 ± 73). In contrast, A-1331852 in monotherapy was not observed
to decrease tumor development (586 ± 141). Moreover, the presence of the tumor marker Ki-67 was
confirmed in the BCLC9 xenografts (Figure S3).

Of note, no changes in transaminase levels were induced by A-1331852, suggesting no
hepatocellular damage induction by the BH3-mimetic to non-tumorous tissue. No major toxicity of
A-1331852 was found in primary mouse hepatocytes (Figure S4) and in the human hepatic stellate cell
line LX2 (Figure S5) at working concentrations, with cytotoxicity concentrations 50% (CC50s) more
than 100-fold higher. Since regorafenib efficacy was clearly increased by BCL-xL inhibition in our PDX
model, we evaluated the changes in regorafenib signaling introduced upon the A-1331852 combination,
using a commercial microarray for cell death-related genes (Figure 6D). Interestingly, we found not
only changes in BCL-2 family members, such as BFL1, BCL-xL, or BAX, but also downregulation in
other genes. For instance, ATG12 and ATG3, which regulate mitochondrial homeostasis and autophagy
in cell death [35], or IGF1 and IGF1R, were increased in HCC and proposed as targets for therapy [36],
or the translation initiation factor EIF5B is modified by A-1331852 administration. These observations
suggest an A-1331852 mitochondrial effect but also in other pathways relevant in HCC treatment.

2.6. Regorafenib Resistant Cells Are Sensitive to A-1331852 Co-Administration in Vitro and In Vivo

To know the protective mechanisms induced by regorafenib in resistant HCC tumors, a HepG2
cell line with regorafenib resistance was generated after 12 months of culture with regorafenib in
the medium. An important MCL-1 reduction was accompanied by a significant BCL-xL increase in
HepG2-resistant cells (R) compared to sensitive HepG2 cells (S), grown in parallel (Figure 7A).

Interestingly, BCL-xL reduction partially abrogated regorafenib resistance (Figure 7B). For instance,
regorafenib cytotoxicity against HepG2 R cells (EC50: 14.2 ± 1.8 µM) was increased by A-1331852 at
nanomolar concentrations (EC50: 4.5 ± 0.4 µM, at 100 nM), even lower than the activity of regorafenib
alone in sensitive cells (HepG2 S EC50: 8.7 ± 1.2 µM).

To verify that A-1331852 was also effective in increasing regorafenib efficacy against
regorafenib-resistant liver cancer cells in vivo, HepG2 R cells were injected subcutaneously in nude
mice. As previously observed in the PDX BCLC9 model, regorafenib anti-tumoral activity was
potentiated by A-1331852 administration in the HepG2 R xenograft model (Figure 7C). Accordingly,
the quantification of PCNA-positive cells in the corresponding slides (Figure 7D) indicated that
tumor proliferation was strongly diminished by regorafenib/A-1331852 co-administration (100 ± 88),
compared to regorafenib- or vehicle-treated mice (869 ± 320 and 1573 ± 395, respectively). Moreover, to
visualize cell death in the liver tumor specimens, TUNEL staining was performed. While no significant
changes in TUNEL-positive cells were observed in A-1331852- and regorafenib-treated R HEPG2
tumors, mice receiving the combination treatment exhibited increased cell death (Figure S6).
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Figure 7. Regorafenib-resistant HepG2 cells, exhibiting mRNA changes in BCL-xL and MCL-1, are
re-sensitized to regorafenib by A-1331582. (A) Representative Western blot images of MCL-1, BCL-xL,
BCL-2, BIM, and β-Actin protein levels in S and R HepG2 cells. * p < 0.05 vs. sensitive cells. (B) Effect
of A-1331852 (A, 0.01 or 0.1 µM) on S and R HepG2 cells. * p < 0.05 vs. control cells. (C) Subcutaneous
growth of R HepG2 cells in mice treated orally with A-1331852 (25 mg/kg) and regorafenib (30 mg/kg)
for 2 weeks (n = 4). (D) Representative images of PCNA expression in tumors from HepG2 R CDXs
(scale bar, 100 µm). * p < 0.05 vs. vehicle-treated mice.

2.7. BCL-xL Upregulation and MCL-1 Reduction Are Present in HCC Tumor Tissue

Since our results indicate that BCL-xL reduction by A-1331852 potentiates regorafenib activity and
low MCL-1 levels expose A-1331852 anti-tumoral activity against HCC tumor cells, we focused our
attention on BCL-xL and MCL-1 alterations exhibited by human HCC tumors. As previously observed
in a set of human biopsies from control, HCC, and surrounding non-tumorous tissue [23], BCL-xL
mRNA expression was increased in some HCC samples (Figure 8A), while MCL-1 reduction was
general in all tumor tissues. As a consequence, the BCL-xL/MCL-1 ratio was significantly improved in
the HCC tumor group (Figure 8B).

To confirm these results, we used a commercial mRNA array with HCC tumors at different stages.
Since our previously analyzed tumors were mostly small tumors (≤5 mm) in stage I-II, we wanted to
compare this group with the one in stage III-IV. Once again, while BCL-xL upregulation was observed
in specific tumors in both tumor groups (Figure 8C), the BCL-xL/MCL-1 ratio was significantly
increased, both in stage I-II and in stage III-IV tumors (Figure 8D). These results suggest that BCL-xL
upregulation is presented in HCC tumors and is frequently associated with a parallel MCL-1 reduction,
a feature that could help A-1331852 anti-tumoral activity. Interestingly, no control sample exhibited
a BCL-xL/MCL-1 ratio higher than 2.5, neither in our cohort (0/10) or in the commercial array (0/8).
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In contrast, a BCL-xL/MCL-1 ratio over 2.5 was detected in numerous tumors in our cohort (10/19) and
the commercial array (18/26).
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Figure 8. Alterations in BCL-xL mRNA levels and BCL-xL/MCL-1 ratio in HCC patients. (A) BCL-xL
and (B) BCL-xL/MCL-1 mRNA levels were measured by qPCR in healthy liver (n = 10) and in cirrhotic
and tumoral tissue from HCC patients (n = 12) with Hepatitis C virus (HCV) and/or Ethanol (EtOH
etiology. * p < 0.05 vs. control. (C) BCL-xL and (D) BCL-xL/MCL-1 mRNA levels were measured by
qPCR in a commercial mRNA array with healthy liver (n = 8) and tumoral tissue from HCC patients in
different stages (I-II, n = 14; IIIA-IV, n = 12). (E,F) Representation of survival probability depending on
BCL-xL expression (blue, high; purple, low) in patients with liver and colorectal cancer, respectively.

Finally, since our results suggest that BCL-xL upregulation could be detrimental for HCC treatment
with regorafenib, but probably also for other treatments that generate mitochondrial sensitization,
such as sorafenib, we checked in the Human Protein ATLAS data [37] if BCL-xL expression could be
associated with a worse prognosis in liver cancer (Figure 8E). Interestingly, high BCL-xL mRNA levels
were exhibited by many tumors (n=282) and have a worst 5-year survival prognostic (45%) than low
BCL-xL levels (55%, n = 83, p = 0.05).
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Since regorafenib is also an FDA-approved drug for colorectal cancer treatment [38,39], and
according to our data another potential candidate for treatment based on BCL-xL antagonism, we also
analyzed BCL-xL levels in this tumor category (Figure 8F). The Atlas database analysis indicates that a
BCL-xL increase in colorectal cancer is probably negative for patients having a worse 5-year survival
prognosis (53%, n = 329) than low BCL-xL levels (71%, n = 268, p = 0.018).

Consequently, liver and colorectal patients with increased BCL-xL tumor levels seem be associated
with worse prognosis and may be candidates for a combination therapy with BCL-xL antagonists, such
as A-1331852.

3. Discussion

Immunotherapy is a very promising field, but its application to HCC patients seems to be an
option only for a low percentage of individuals [40]. Regorafenib, a multikinase inhibitor (MKI) with a
broader inhibitory profile and greater pharmacological activity than sorafenib, has been approved
as second-line therapy for advanced hepatocellular carcinoma (HCC) after sorafenib failure and
for advanced colorectal cancer (CRC) and gastrointestinal stromal tumors (GISTs) after standard
chemotherapy [38,39]. However, MKI therapy, despite being the best treatment for hepatocellular
carcinoma, is still not very effective. Further improvement of MKI activity is important to detect
among the intracellular mechanisms triggered by each drug those responsible for death induction.
These altered pathways may allow identification of druggable targets for combination therapy or
even for use as a single agent, if the drug is effective enough and markers for patient selection can
be associated. In particular, when the mitochondrial functionality is compromised, the drug creates
a tumor vulnerability that could be used to promote mitochondrial-dependent cell death [10–13].
Since mitochondria, through MOMP and the release of apoptogenic intermembrane proteins, can
amplify the damage leading to cell death, it is important to identify the drugs that cause mitochondrial
alteration and determine the molecular mechanism involved.

In particular, if the BCL-2 network is affected, an interesting possibility arises since specific
BH3-mimetics against BCL-2 proteins, such as BCL-2 (ABT-199), BCL-xL (A-1331852), or MCL-1
(A-1210477), have been designed and are tested in clinical trials. Therefore, chemotherapeutic agents
that promote changes in BCL-2 proteins, once these modifications are characterized, become a probable
target for combination therapy with BH3-mimetics. In fact, since the dependence on a BCL-2 protein is
frequently related to its specific level, tumors with an elevated content of a specific BCL-2 family member
can be treated in monotherapy with some BH3-mimetics, such as chronic and acute leukemia with
ABT-199. However, what we expect to be more common is that BH3-mimetics could be administered
in combination with standard chemotherapy, particularly in patients with high levels of the related
protein. Of note, although the mRNA increases observed in HCCs from our cohort of patients and from
the commercial array are significant, only specific individuals displayed very high levels of BCL-xL
and the BCL-xL/MCL-1 ratio. It is tempting to speculate that these patients could particularly benefit
from BCL-xL antagonism, mostly when, as observed in liver cancer and CRC patients, BCL-xL levels
are inversely related to expected survival. Incidentally, when we separated groups depending on
gender, females were much more sensitive to BCL-xL levels (p = 0.014, 5-year survival high 39% vs.
5-year survival low 61%). If this divergence is due to sex differences in the level of BCL-2 members,
other apoptosis-related proteins in the liver, or the consequence of HCCs from different etiologies
depending on each gender [41] should be further analyzed.

A-1331852 is an orally bioavailable potent and selective BCL-xL inhibitor with a Ki value in the
low nanomolar range, and affinity for other BCL-2 proteins, such as BCL-2 or MCL-1, of around 600 or
15,000 times less, respectively [29]. A-1331852 has been proposed as an agent in cancer therapy [42,43]
and, more recently, as a senolytic compound [44]. Interestingly, through a dual mechanism acting on
senescent cholangiocytes and activated fibroblasts, A-1331852 ameliorates liver fibrosis in mice [45].
Therefore, BCL-xL inhibition, besides a direct effect on HCC survival, may change the protumoral
microenvironment in which HCC develops by eliminating hepatic senescent cells and activated
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fibroblasts. In this sense, experiments using liver spheroids combining liver cancer cells and activated
hepatic stellate cells could be an interesting in vitro model to study this additional effect of BCL-xL
inhibition. In fact, our preliminary results indicate that A-1331852 efficiently reduces tumor growth
in HepG2/LX2 spheroids alone and particularly in combination with regorafenib, and in vivo mice
experiments are ongoing. Moreover, other effects of BCL-xL reduction should not be discarded, since
A-1331852 affects other genes important in HCC biology. The recent discovery of PUMA controlling
the metabolic switch in HCC via direct interaction with the mitochondrial pyruvate carrier suggests
that other actions of BCL-2 proteins could be expected [46].

Other BH3-mimetics, such as ABT-199 (venetoclax, BCL-2 inhibitor), FDA approved for chronic
and acute leukemia, or ABT-263 (navitoclax, BCL-2 and BCL-xL inhibitor), are in clinical trials despite
their associated hematological side effects. In particular, platelet survival is dependent on BCL-xL
expression, and thrombocytopenia could be presented after administration of BCL-xL inhibitors, as
observed in navitoclax studies. In addition, navitoclax-induced BCL-2 inhibition may also reduce the
neutrophil count, at least in combination with other therapies [29]. In this sense, BCL-xL-selective
inhibitors, such as A-1331852, will avoid dose-limiting neutropenia although its platelet effect may
complicate its use as a single agent, particularly in some cirrhotic patients with HCC. However,
as observed in combination with regorafenib, A-1331852 can be effective at very low concentrations,
most probably before thrombocytopenia became dose limiting. In agreement, navitoclax’s effect on
the platelet count can be attenuated by careful dosing, as observed in clinical trials in patients with
lymphoid malignancies [47].

Interestingly, a BCL-xL proteolysis-targeting chimera (PROTAC), which targets BCL-xL to the
Von Hippel-Lindau (VHL) E3 ligase for degradation, has recently been designed [48]. This selective
BCL-xL PROTAC degrader exhibits safe and potent antitumor activity but considerably less toxicity
to platelets than ABT-263, since VHL is poorly expressed in platelets. These novel data illustrate the
importance of BCL-xL in specific tumors and the possibility to circumvent the side effects related to
BCL-xL deficiency in particular cells.

In summary, our data support the concept that BH3-mimetics are remarkable compounds to
combine with cancer therapy when the BCL-2 network is altered. In this sense, regorafenib perturbation
of the BCL-2 family creates a mitochondrial vulnerability that A-1331852 can exploit. Through MOMP
and caspase activation, BCL-xL inhibition potentiates regorafenib action in in vitro and in vivo HCC
models. Therefore, A-1331852 or other strategies directed to eliminate BCL-xL, such as PROTACS,
should be contemplated as potential candidates for combination therapy with regorafenib in HCC
treatment and probably in other cancers that exhibit BCL-xL overexpression.

4. Materials and Methods

4.1. Reagents

Dulbecco’s modified eagle’s medium (DMEM), trypsin-EDTA, penicillin-streptomycin and
dimethyl sulfoxide (DMSO), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)
(M2128), Hoechst 33258 (B1155), Crystal Violet (C0755), and DCF (D6883) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All tissue culture-ware was from Nunc (Roskilde, Denmark).
Biotin Blocking System, peroxidase substrate (DAB), and peroxidase buffer were from DAKO (Glostrup,
Denmark). Proteinase inhibitors were from Roche (Madrid, Spain). ECL Western blotting substrate
was from Pierce (Thermo Fisher Scientific, Rockford, IL, USA). BCL-2 siRNA (h) (sc-29214), BCL-xL
siRNA (h) (sc-43630), and scrambled controls were purchased from Santa Cruz Biotechnology (Dallas,
TX, USA), while a second siRNA for BCL-2 (ID#s1915) and for BCL-xL (ID#s1920) were obtained
from Ambion Life technologies (Carlsbad, CA, USA). Lipofectamine2000 (11668-027), Novex Sharp
Pre-stained Protein Standard (LC5800), and JC-1 (T-3168) were from Invitrogen Life Technologies
(Carlsbad, CA, USA). Sorafenib (BAY 43-9006, Nexavar) and Regorafenib (BAY 73-4506, Stivarga)



Cancers 2020, 12, 332 15 of 21

are manufactured by Bayer. A-1331852 and ABT-199 (Venetoclax) were purchased from Selleckchem
(Houston, TX, USA).

4.2. Cell Culture and Biochemical Analysis

Human liver tumor cell lines Hep3B, PLC/PRF/5 and HepG2 (European Collection of Animal
Cell Cultures (ECACC)), and human hepatic stellate cell line LX2 [49] were grown in DMEM (10%
FBS) at 37 ◦C and 5% CO2. Regorafenib-resistant hepatoma cells were maintained at 2 µM and kept
without drug at least one week before experiments. Primary mouse hepatocytes were obtained after
collagenase digestion [50] and cultured on collagen-coated plates one day before analysis.

4.3. MTT Assay

Cell viability was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide) assay. In total, 1 × 104 cells/well were seeded in a 96-well plate and incubated at 37 ◦C and 5%
CO2. Cells were treated with regorafenib and A-1331852, ABT-199, and A-1210477 for 16–24 h before
10 µL of MTT reagent (5 mg/mL) addition and incubation for 2 h. Formazan crystals were dissolved
with 100 µL of 1-propanol. Absorbance was measured in a plate reader (Multiskan®Spectrum, Thermo
Fisher Scientific, Rockford, IL, USA) at 570 and 630 nm.

4.4. Crystal Violet Staining

First, 8 × 104 cells were seeded into 12-well plates and kept at 37 ◦C in 5% CO2. Cells were treated
and left for three days until they were fixed with 10% formalin for 5 min. Crystal violet was added for
30 min and after that they were washed twice with water. Plates were drained and photos were taken.

4.5. Caspase-3 Activity Assay

First, 3 × 104 cells were seeded in a 12-well plate. After treatments, cells were scrapped with
50 mM Hepes (pH 7.4), 5 mM CHAPS, and DTT 5mM. For Caspase-3 activity, 50 µg of protein extraction
were added in 200 uL of assay buffer containing 20 mM Hepes, 5% sucrose, 0.1% CHAPS, 2 mM
EDTA, and 5 mM DTT, pH 7.4, and 50 µM of the substrate Ac-DEVD-AFC (Santa Cruz Biotechnology).
Detection of AFC after substrate cleavage was recorded at time intervals of 15 min, at emission 505 nm,
and excitation at 400 nm. A unit of caspase-3 activity is the amount of active enzyme necessary to
produce an increase in 1 fluorescence unit in Spectramax Gemini XS fluorimeter. Results are usually
represented as an arbitrary unit/h/µg protein.

4.6. Hoechst Staining

Cells were seeded at 5 × 104 cells/well in 12-well plates, treated for 8 h. Hoechst 33258 was added
at 1/1000 and incubated for 30 min. After being washed, images were taken using Olympus IX-70
microscope with the CC-12 FW camera. Photos of 12 random fields were taken. Condensed nuclei
were counted with ImageJ software.

4.7. Mitochondrial Membrane Potential Assay

JC-1 is a fluorescent cationic dye (C5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-
carbocyanine iodide) used as an indicator of mitochondrial potential in cells. Mitochondrial
depolarization is assessed by a decrease in the red (J-aggregates)/green (J-monomers) fluorescence
intensity ratio. To determine the mitochondrial membrane potential, 1 × 104 cells/well were seeded
in 96-well plates and incubated at 37 ◦C and 5% CO2. Cells were treated, and after, JC-1 dye was
incubated for 15 min. DMSO (0.05%) was used as the control. Photos were taken with a Leica-CTR4000
microscope and LAS software.



Cancers 2020, 12, 332 16 of 21

4.8. 3D Tumor Liver Spheroids Generation

Cellular spheroids were generated and plated in 96-well plates with a bottom coat of agarose [51,52].
Tumor liver spheroids were kept at 37 ◦C and 5% CO2 for seven days and spheroid growth
monitored daily.

4.9. Immunoblot Analysis

Cell lysates were prepared in RIPA buffer plus proteinase inhibitors. Samples containing 10 to
30 µg were separated by 10%–15% SDS-PAGE. Proteins were transferred to nitrocellulose membranes,
blocked in 5% nonfat milk for 1 h at room temperature, and incubated overnight at 4 ◦C with the
primary antibodies: MCL-1 (S-19, sc-819) 1:250 rabbit; BCL-2 (C-2, sc-7382) 1:250 mouse; BCL-xL
(H-5, sc-8392) 1:250 mouse; PARP-1 (H-250, sc-7150) 1:250 rabbit; BIM (H-191, sc-11425) 1:250 rabbit;
BAX (N-20, sc-493) 1:1000 rabbit; TOM20 (sc-11415) 1:500 rabbit; BAK (AT38E2, sc-517390) 1:250
mouse; Cytochrome C (sc-1356) 1:250 mouse were from Santa Cruz Biotechnology; Cleaved Caspase-3
(D175, #9661S) 1:1000 rabbit from Cell Signaling, and β-Actin (A3854) 1:40,000 conjugated to HRP
from Sigma-Aldrich.

4.10. RNA Isolation and Real Time RT-PCR

Total RNA was isolated with TRIzol reagent. 1µg of RNA was reverse transcribed with AN
iScript™ cDNA Synthesis Kit (Biorad, Berkeley, CA, USA) and real-time PCR was performed with iTaq™
Universal SYBR® Green Supermix (Biorad) following the manufacturer’s instructions. The primers
sequences used were:

human BCL-2: Fw 5′-GGAGGATTGTGGCCTTCTTT-3′; Rv 5′-GCCGTACAGTTCCACAAAGG-3′

human BCL-xL: Fw 5′-GGATGGCCACTTACCTGA-3′; Rv 5′-CGGTTGAAGCGTTCCTG-3′

human MCL-1: Fw 5′-ATGCTTCGGAAACTGGACAT-3′; Rv 5′-TCCTGATGCCACCTTCTAGG-3′

human ′-Act: Fw 5′-AGAAAATCTGGCACCACACC-3′ Rv 5′-AGAGGCGTACAGGGATAGCA-3′

4.11. Immunohistochemical Staining

Livers were fixed and paraffin embedded. Sections were routinely stained with Hematoxylin&Eosin
(7-µm) or incubated with mAb anti-PCNA antibody (PC10) (1:200 dilution, sc-56, Santa Cruz
Biotechnology) as previously indicated [53]. The slices were examined with a Zeiss Axioplan microscope
equipped with a Nikon DXM1200F digital camera. The PCNA cell count was quantified in four
randomly selected fields from each animal and analyzed using ImageJ software. Ki-67 staining was
performed using a specific antibody (sc-23900, 1:200 mouse) from Santa Cruz Biotechnology.

4.12. Tumor Animal Models

All animal procedures were performed according to protocols approved by the Animal
Experimentation Ethics Committee from the University of Barcelona (ethic code: #9850). For the
subcutaneous tumor model, male Swiss nude mice, 5–6 weeks old, were kept under pathogen-free
conditions with free access to standard food and water. HepG2 sorafenib-resistant cells (5 × 106)
or BCLC9 cells (2.5 × 106) were injected subcutaneously into the flanks of mice in 100 µL DMEM
without FBS, as previously reported [19,23,53]. Treatments with A-1331852 (25 mg/Kg body weight),
regorafenib (30 mg/Kg), or vehicle (12.5% Cremophor, 12.5% ethanol, 75% sterile saline) were delivered
daily via oral gavage. Tumors were measured periodically with a Vernier caliper, and the volume was
calculated as length ×width2

× 0.5.

4.13. Gene Array

Predesigned 384-well human Liver cancer panel (SAB Target List, H384 Cat#10034526) and Cell
Death (SAB Target List, H384 Cat#10034460) for SYBR Green detection (Bio-rad) were used following
the manufacturer’s instructions, as previously reported [54].
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4.14. cDNA Array

TissueScan™ cDNA Array (Liver Cancer cDNA Array I, Origene) was used to quantify BCL-xL
and MCL-1 levels in tumor and normal tissues. Tissue cDNAs of each array are synthesized from
high quality total RNAs of pathologist verified tissues, normalized and validated with β-actin in two
sequential qPCR analyses, and provided with clinical information and QC data. Our array contained
cDNA from 48 samples covering 8-normal, 7-Stage I, 8-II, 8-IIIA, and 3-IV in identical plates (LVRT101).
BCL-xL and MCL-1 levels were calculated by qPCR as previously indicated.

4.15. HCC Patient Study and ATLAS Database Information

Tumor and cirrhotic tissue from 19 patients diagnosed with HCC and treated at the Clinic Hospital
in Barcelona, and 10 healthy liver samples from patients subjected to surgery due to colorectal cancer
without any diagnosed liver disease, were included [23]. Patient data is included in Supplementary
Table S1. Patients gave informed consent according to the principles embodied in the Declaration
of Helsinki.

Data showing survival probability depending on the level of expression of BCL-xL were
retrieved from: https://www.proteinatlas.org/ENSG00000171552-BCL2L1/pathology/liver+cancer for
liver cancer; https://www.proteinatlas.org/ENSG00000171552-BCL2L1/pathology/colorectal+cancer for
colorectal cancer.

4.16. Statistical Analyses

Results are expressed as mean ± standard deviation and n = 3, unless indicated. Statistical
comparisons were usually performed using unpaired 2-tailed Student’s t test, and 1-way ANOVA
followed by Newman–Keuls multiple comparison test (GraphPad Prism) was used for data
quantification from patients. A p value less than 0.05 was considered significant.

5. Conclusions

In HCC models, regorafenib induces changes in BCL-2 family proteins, priming mitochondrial
cell death induced by BH3-mimetics, and allowing the BCL-xL inhibitor A-1331852 to enhance
regorafenib efficacy.

BCL-xL increase, associated with a poor prognosis in liver and colorectal cancer, could be an
interesting molecular marker for regorafenib/A-1331852 combinatory treatment in HCC patients.
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