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Abstract: Because aberrant glycosylation is known to play a role in the progression of melanoma, we
hypothesize that genetic variants of glycosylation pathway genes are associated with the survival of
cutaneous melanoma (CM) patients. To test this hypothesis, we used a Cox proportional hazards
regression model in a single-locus analysis to evaluate associations between 34,096 genetic variants of
227 glycosylation pathway genes and CM disease-specific survival (CMSS) using genotyping data
from two previously published genome-wide association studies. The discovery dataset included
858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the
replication dataset included 409 CM patients with 48 deaths from Harvard University nurse/physician
cohorts. In the multivariable Cox regression analysis, we found that two novel single-nucleotide
polymorphisms (SNPs) (ALG6 rs10889417 G>A and GALNTL4 rs12270446 G>C) predicted CMSS,
with an adjusted hazards ratios of 0.60 (95% confidence interval = 0.44-0.83 and p = 0.002) and 0.66
(0.52-0.84 and 0.004), respectively. Subsequent expression quantitative trait loci (eQTL) analysis
revealed that ALG6 rs10889417 was associated with mRNA expression levels in the cultured skin
fibroblasts and whole blood cells and that GALNTL4 rs12270446 was associated with mRNA expression
levels in the skin tissues (all p < 0.05). Our findings suggest that, once validated by other large
patient cohorts, these two novel SNPs in the glycosylation pathway genes may be useful prognostic
biomarkers for CMSS, likely through modulating their gene expression.

Keywords: cutaneous melanoma; expression quantitative trait loci; glycosylation; single-nucleotide
polymorphism; survival analysis
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1. Introduction

Cutaneous melanoma (CM) is one of the most lethal malignancies of the skin [1]. It is estimated
that 96,480 new CM cases will be diagnosed in 2019 in the United States, accounting for about 5.5% of
all new cancer cases, and 7230 patients will die of the disease in 2019 [2]. Age, seX, distant metastasis,
ulceration, mitosis, and Breslow thickness are known to affect the prognosis of CM patients [3]. In
addition, genetic variants in some genes of critical biological pathways may also play an important
role in the prognosis [4].

Single-nucleotide polymorphisms (SNPs) are the common form of genetic variants that may affect
gene expression and functions, likely leading to the development and progression of CM [5]. However,
in genome-wide association studies (GWASs), few functional SNPs have been found to be associated
with the prognosis of CM patients [6,7]. This is because a hypothesis-free GWAS always focuses on the
most important SNP/genes with a strict p value after multiple tests correction for a large number of
SNPs in some nascence comparisons. In the post-GWAS era, one can use available genotyping data
from multiple previously published GWAS datasets in a hypothesis-driven approach to perform a
biological pathway gene-set analysis with a narrow focus on the SNPs for more relevant comparisons.
This approach gives investigators an improved statistical power to more likely identify novel functional
loci with minor but detectable effects; therefore, investigators are able to further examine the functional
relevance of these loci to unravel potential mechanisms underlying the observed associations [8].

Glycosylation refers to the formation of glycoside bonds between carbohydrates and amino acid
residues in proteins catalyzed by glycosyltransferases, which eventually leads to changes in the protein
products in cells [9]. As a post-translational modification, glycosylation plays an important role in
the regulation of cellular protein functions during cell growth and differentiation, likely affecting the
progression of tumor cells [10]. Thus far, hundreds of glycosyl groups have been identified as capable
of binding to proteins or lipids and glycosylating to form glycoproteins, glycolipids, and glycans
outside the cell membrane [11].

Depending upon a particular glycan, glycosylation is divided into N-linked glycosylation, O-linked
glycosylation, C-mannosylation, glypiation, and phospho-glycosylation [12]. For example, the ALG6
alpha-1,3-glucosyltransferase (ALG6) gene, located on chromosome 1p31.3, encodes a protein that adds
the first glucose residue to a lipid-linked oligosaccharide precursor, which is essential for N-linked
glycosylation [13]. Another polypeptide N-acetylgalactosaminyltransferase 18 (GALNTL4) gene, also
known as GALNT1S8, is located on chromosome 11p15.4, encoding a protein catalyzing the initial
reaction in O-linked oligosaccharide biosynthesis [14]. In general, glycosylation of proteins can affect the
spatial structure and stability of peptide chains and participate in cell signal transduction, recognition
and adhesion, receptor activation, and other biological behaviors. Thus, aberrant glycosylation and
modification may affect the proliferation, apoptosis, invasion, metastasis, drug resistance, and immune
escape of tumor cells [15]. For example, using a systems biology approach to assess glycosylation in
matched samples of primary and metastatic melanoma, one study found an increased core fucosylation
that was mediated by fucosyltransferase 8 in metastatic melanoma [16]; another study determined
that fucosyltransferase 8 could facilitate invasion and tumor dissemination, in part due to a reduced
cleavage of the cell adhesion molecule L1 [17]; and others identified aberrant glycosylation and related
molecules as potential therapeutic targets in cancer treatment, because a disaccharide-based inhibitor
of glycosylation could attenuate metastatic melanoma cell dissemination [18].

Since glycosylation may play an important role in the progression and metastasis of melanoma,
we hypothesize that genetic variants of glycosylation pathway genes are associated with survival in
CM patients. Therefore, we tested this hypothesis by using genotyping data from publicly available
melanoma GWAS datasets.
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2. Results

2.1. Patient Features

The discovery dataset included 858 CM patients from The University of Texas MD Anderson
Cancer Center (MDACC), and the replication dataset included 409 CM patients from the Nurses’
Health Study (NHS) and Health Professionals Follow-up Study (HPFS); and the baseline characteristics
of these patients have been described elsewhere [19,20]. In the MDACC discovery dataset, CM patients
were between 17 and 94 years old at diagnosis (52.4 + 14.4 years old), with a median follow-up
time of 81.1 months. There were more males (496, 57.8%) than females (362, 42.2%) and many more
diagnosed with stages I/II (709, 82.6%) than with stages III/IV (only one stage IV case) (149, 17.4%).
In the NHS/HPFS replication dataset, patients” age ranged between 34 and 87 years at diagnosis
(61.1 + 10.8 years old), and 66.3% (271) were females. These patients experienced a comparatively
longer median follow-up time (179.0 months). The death rates, however, were similar between the
MDACC (95/858, 11.1%) and NHS/HPFS (48/409, 11.5%) datasets (Table S1). As none of the principal
components were significantly associated with CM survival, no noticeable population stratification in
either the MDACC or NHS/HPFS datasets was found; therefore, we did not adjust for these principal
components in either the discovery or replication analyses.

2.2. Associations between SNPs in the Glycosylation-Related Pathway Genes and CM Disease-Specific
Survival (CMSS)

Figure 1 shows the flowchart of the present study design. We first performed a single-locus
analysis for associations of 4,770 genotyped and 29,326 imputed SNPs in the 227 glycosylation pathway
genes with CMSS. We found that 1,564 SNPs were associated with CMSS (p < 0.05) in an additive
genetic model. After multiple test correction by Bayesian false discovery probability (BFDP) < 0.8,
1362 SNPs remained noteworthy; after subsequent replication in the NHS/HPFS dataset, 11 SNPs in
five genes remained significantly associated with CMSS. These 11 newly identified SNPs remained
statistically significant in the meta-analysis of the two datasets without obvious heterogeneity (Table 1).

227 genesinvolved in the glycosylation pathway
(REACTOME; GO; Deleted five genes in X chromosome and four pseudogenes)

The MDACC GWAS study: 858 patients;
w Individual call rate >95%; MAF =5%; HWE=10
Chromosome 1-22; Gene region + 2kb(hgl19)

34,096 SNPs (4,770 genot}‘ped and 29,326 in\puted SNPs)

GeneABEL(R):
l Cox proportional hazards regressionanalysis
(Cutaneousmelanoma-specific survival)

1,564 SNPsindividually significantly associated with CMSS (p<0.05) Additive genetic model
l Bavesianfalse-discovery probability (BFDP)
1,362 SNPsremained aftermultiple test correction(BFDP <0.8)
l Validationin the NHS/HPFS GWAS study:
409 patients

11 SNPs remained after validation with
p<0.05and BFDP<0.8

Stepwise multivariate Cox regression analysis;

* Functional prediction
2 independentSNPs in two genes
ALG6 and GALNTL4
) v
Combined analysis; SNP-Gene

Stratified analysis; and
Time-dependent AUC and ROC

Curve

Expressioncorrelation
analysis

Figure 1. A flow chart of the study design for the selected Single-nucleotide polymorphisms (SNPs) in
the glycosylation pathway-related genes.
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Table 1. Meta-analysis of 11 validated SNPs in the glycosylation pathway genes using two independently published melanoma genome-wide association study

(GWAS) datasets.
SNP Allele 1 Gene Discovery-MDACC (n = 858) Validation-NHS/HPFS (n = 409) Combined-Meta-Analysis (n = 1267)
EAF  HR (95% CI) p? BFDP  EAF  HR (95% CI) pd BFDP Py I2  HR(95% CI) pt
2.12 2.34 2.20
$ -5
1578409522 C>T B4GALT1 0.08 (1.32-3.42) 0.002 0.389 0.06 (1.27-4.29) 0.006 0616 0802 0 (1.51-3.20) 3.59 x 10
212 2.34 2.20
# -5
1516918998 T>C B4GALT1 0.08 (1.32-3.42) 0.002 0.389 0.06 (1.27-4.29) 0.006 0.616 0802 0 (1.51-3.20) 3.59 x 10
1.83 1.85 1.84
$ -4 -6
1513297246 G>A B4GALT1 0.16 (1.32-2.52) 246 x 10 0.07 0.16 (1.15-3.00) 0.012 0.555 0971 0 (1.05-2.40) 8.43 x 10
rs2183124 9 G>A B4GALT1 0.08 2.08 0.001 0.288 0.06 211 0.013 0.693 0.97 0 2.09 423 %1072
: (1.34-3.24) : ' . (1.17-3.79) . : : (1.47-2.98) :
rs10971414 3 C>T B4GALT1 0.08 2.08 0.001 0.288 0.06 2.07 0.016 0.725 0.99 0 2.08 5.14 x 107>
. (1.34-3.24) : : : (1.15-3.75) : : : (1.46-2.96) ‘
rs12270446 G>C GALNTL4 0.5 0.69 0.015 0.65 0.48 0.61 0.02 0716 0637 0 066 0.004
: (0.52-0.93) . . : (0.40-0.93) : : | (0.52-0.84) .
1.39 1.54 1.44
#
rs7128890 A>G GALNTL4  0.39 (1.03-1.87) 0.033 0.756 0.41 (1.04-2.28) 0.031 0758 0.684 0 (1.14-1.83) 0.003
rs10889417 # G>A ALG6 0.21 0.64 0.023 0.719 0.21 0-52 0.032 0791 0566 0 0-60 0.002
’ (0.43-0.94) ’ ’ ’ (0.29-0.95) ’ ’ ’ (0.44-0.83) ’
1.45 1.82 1.71
$
15672748 A>G GALNT10  0.19 (1.04-2.03) 0.03 0.756 0.19 (1.17-2.85) 0.008 0.597  0.604 0 (1.17-2.51) 0.006
rs12628567 ¥ C>T LARGE 0.12 1.50 0.042 0.794 0.12 183 0.026 0.758  0.556 0 161 0.003
: (1.02-2.22) . : : (1.07-3.12) : : : (1.17-2.20) :
rs7287710 # T>C LARGE 0.12 1.50 0.042 0.794 0.13 180 0.031 0.774 0.59 0 160 0.001
: (1.02-2.22) . : : (1.05-3.07) : : : (1.17-2.19) .

1 Reference allele/effect allele; 2 Adjusted for age, sex, Breslow thickness, distant/regional metastasis, ulceration, and mitotic rate in the additive model; 3 Adjusted for age and sex in the

additive model;  Meta-analysis in the fixed-effect model; ® Imputed SNP; # Genotyped SNP.
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2.3. Independent SNPs to be Associated with CMSS

We included the 11 significant SNPs, together with other covariates, in a stepwise multivariable
Cox regression analysis for the MDACC dataset. = We found that five SNPs (rs10889417,
rs672748, rs13297246, rs12270446 and rs7287710) in five genes (ALG6; GALNTI0 polypeptide
N-acetylgalactosaminyltransferase 10; B4GALT1 beta-1,4-galactosyltransferase 1, GALNTL4; and
LARGE LARGE xylosyl- and glucuronyltransferase 1) remained significantly associated with CMSS
(p < 0.05). Then, we expanded the model by further including 40 previously reported significant
survival-associated SNPs from the MDACC GWAS dataset; two of the newly identified SNPs
(ALG6 rs10889417 and GALNTL4 rs12270446) remained independent and significantly associated
with CMSS (Table 2). Specifically, we observed a significant protective effect of the ALG6 rs10889417 A
allele (Pieng = 0.023) and the GALNTL4 rs12270446 C allele (Pieng = 0.015) on CMSS. These effects were
also replicated in the NHS/HPEFS dataset (Pieng = 0.032 and 0.020, respectively) and in the combined
MDACC and NHS/HPFS datasets (Pyeng = 0.024 and 0.001, respectively) (Table 3). Kaplan—-Meier
survival curves were plotted to visually show the associations between CMSS and the genotypes of
ALG6 rs10889417 and GALNTL4 rs12270446, respectively (Figure 2 a—f). The results of all the selected
SNPs are also summarized in a Manhattan plot (Figure S1). Figure S2 provides the quantile-quantile
plot of all the SNPs we used. The regional association plot for each of the two independent and
statistically significant SNPs is shown in Figure S3. By using the versatile gene-based association
study (VEGAS) method, we performed the gene-based test and identified 7 of 221 genes as having an
empirical p value <0.05. Although no significant gene-based test statistic was found for ALG6 and
GALNTL4, the top SNPs in both of these two genes had a significant p value <0.05 (Table S2).

Table 2. Two independent SNPs in a stepwise multivariable Cox regression analysis with adjustment
for other covariates and previous published SNPs in The University of Texas MD Anderson Cancer

Center (MDACC) dataset.
Parameter Category ! Frequency HR (95% CI)? p? HR (95% CI) 3 e

Age <50/>50 371/487 1.02(1.01-1.04)  0.011 1.05(1.02-1.07)  <0.0001
Sex Female/Male  362/496 130 (0.81-2.10) 0275 1.24 (0.74-2.09) 0.415
Regional/distant No/Yes 709/149 375 (243-5.77)  <0.0001 1222 (6.70-22.29)  <0.0001
metastasis

Eielil)ow thickness <1/>1 347/511 116 (110-1.22)  <0.0001 126 (1.17-1.36)  <0.0001
Ulceration No/Yes 681/155 312 (2.00-4.88)  <0.0001  4.93(2.84-854)  <0.0001
Mitotic rate (mm?) <1/>1 275/583 2.83(1.34-596)  0.006 2.18 (0.94-5.08) 0.07
éﬁG: rs10889417 GG/GA/AA  531/293/34  0.62(0.42-0.92)  0.016 0.48 (0.29-0.78) 0.003
GALNTL4

270046 GoC GG/GC/CC  220/418/220  0.61 (0.45-0.82)  0.001 0.61 (0.43-0.88) 0.007

1 The “category/” was used as the reference. ? Stepwise multivariable Cox analysis included age, sex, regional/distant
metastasis, Breslow thickness, ulceration, mitotic rate and SNPs; 3 The 40 published SNPs were adjusted for
post-stepwise analysis. The 40 SNPs were reported in previous publications (PMID: 25953768, 25628125, 25243787,
26575331, 30734280, 30596980, 29313974, 29088810, 28796414, 28542949, 28499756, 27914105 and 27578485).
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Table 3. Associations between two independent SNPs in the glycosylation-related genes and CMSS of patients in the MDACC dataset, the NHS/HPFS dataset, and the
MDACC and NHS/HPFS combined dataset.

MDACC (n = 858) NHS/HPES (n = 409) MDACC + NHS/HPEFS (n = 1,267)
Genotype Frequency Multivariable Analysis Frequency Multivariable Analysis 2 Frequency Multivariable Analysis 3
All Death (%) HR (95%CI) r All Death (%) HR (95%CI) 4 All Death (%) HR (95%CI) r

ALG6 rs10889417 G > A

GG 531 65 (12.2) 1.00 259 37 (14.3) 1.00 790 102 (12.9) 1.00

GA 293 27(92)  0.64(040-1.02) 0059 128 10(78)  052(0.26-1.05)  0.068 21 37(88)  0.68(047-1.00)  0.047

AA 34 3(88)  042(0.13-134)  0.142 2 1(46)  028(0.042.02) 0206 56 4(71)  051(0.19-140)  0.192

Trend test 0.023 0.032 0.024
GA+AA 327 30(9.2) 0.60 (0.38-0.94) 0.027 150 11 (7.3) 0.48 (0.25-0.95) 0.034 477 41 (8.6) 0.66 (0.46-0.95) 0.026
GALNTL4 rs12270446 G > C

GG 220 34 (15.5) 1.00 111 18 (16.2) 1.00 331 52 (15.7) 1.00

GC 418 43 (10.3) 0.66 (0.42-1.05) 0.079 207 25 (12.1) 0.73 (0.40-1.34) 0.304 625 68 (10.9) 0.68 (0.48-0.98) 0.038

cC 220 18(82)  0.49 (0.27-0.89) 0.02 91 5(5)  032(0.12-086)  0.023 311 23(74)  046(0.28-0.75) 0002

Trend test 0.015 0.02 0.001

GC+CC 638 61 (9.6) 0/60 (0.39-0.93) 0.021 298 30 (10.1) 0.60 (0.33-1.07) 0.085 936 91 (9.7) 0.61 (0.43-0.86) 0.004
Number of protective genotypes *

0 131 21 (16.0) 1.00 69 13 (18.8) 1.00 200 34 (17.0) 1.00

1 489 57(117) 059 (0.36-0.99)  0.046 232 29(125)  0.62(0.32-1.19) 0.15 721 86(11.9)  0.68 (046-1.01) 0058

2 238 17 (7.14) 0.32 (0.16-0.63) 0.001 108 6(5.6) 0.26 (0.10-0.70) 0.007 346 23 (6.65) 0.38 (0.22-0.65) 0.0003

Trend 0.001 0.005 0.0003
test

12 727 74 (10.2) 1.00 340 35 (10.3) 1.00 1067 109 (10.22) 1.00

0 131 21(160) 198 (1.21-326)  0.007 69 13(188) 199 (1.05377)  0.034 200 34(170) 172(117-252)  0.006

1 Age, sex, Breslow thickness, distant/regional metastasis, ulceration, and mitotic rate were adjusted in the MDACC dataset; 2 Age and sex were adjusted in the NHS/HPFS dataset; 3 Age
and sex were adjusted in the combined MDACC and NHS/HPFS dataset; 4 Protective genotypes include ALG6 rs10889417 GA+AA and GALNTL4 rs12270446 GC+CC.
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Figure 2. Association of two independent SNPs in glycosylation-related pathway genes with CMSS
and their genotypes. Assuming the dominant model was used in the (a) MDACC, (b) NHS/HPFS, and
(c) MDACC and NHS/HPFS combined dataset, the Kaplan-Meier survival curve of CMSS with ALG6
rs10889417 stratification. Assuming the dominant model was used in (d) MDACC, (e) NHS/HPFS,
and (f) the MDACC and NHS/HPFS combined dataset, the Kaplan—-Meier survival curve of CMSS
with GALNTL4 rs12270446 stratification. The combined risk genotypes on CMSS (Kaplan-Meier
survival curves): the dichotomized 0 NPG (Number of Protective Genotype) group and 1-2 NPG
group in (g) MDACC, (h) NHS/HPFS, and (i) the MDACC and NHS/HPFS combined dataset. (j) The
correlation between ALG6 1rs10889417 genotypes with its mRNA expression levels in both cultured
skin fibroblasts and whole blood cells from the GTEx (Genotype-Tissue Expression) database. (k) The
correlations of GALNTL4 rs12270446 genotypes with its mRNA expression levels in skin tissues from
the GTEx database.
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2.4. Survival of CM Patients with Combined Protective Genotypes

To substantiate the associations between the genotypes of the two independent SNPs and CMSS,
we combined the protective genotypes of ALG6 rs10889417 GA+AA and GALNTL4 rs12270446 GC+CC
into one variable. Patients were divided into three groups according to the number of protective
genotypes (NPGs), and the trend test for a dose-response effect of NPG was statistically significant.
Specifically, after adjustment for covariates, wherever appropriate, the effect on CMSS was statistical
associated with an increased NPG in the MDACC dataset (Pireng = 0.001), the NHS/HPFS dataset
(Pyrend = 0.005), and the MDACC and NHS/HPFS combined dataset (Pieng = 0.0003) (Table 3).

Patients were also dichotomized into 0 and 1-2 NPG groups. As illustrated in Table 3, we found
that the 1-2 NPG group had a greater protective effect on CM death in the MDACC dataset than the
0 NPG group. Conversely, patients who did not have these protective genotypes had a much worse
survival in the MDACC dataset (hazards ratio (HR),qj = 1.98; 95% confidence interval (CI) = 1.21-3.26,
p = 0.007), the NHS/HPFS dataset (HRadj =1.99; 95% CI = 1.05-3.77, p = 0.034), and the combined
datasets (HR,qj = 1.72; 95% CI = 1.17-2.52, p = 0.006). We also used Kaplan-Meier survival curves to
visually show the associations between the NPG and CMSS (Figure 2g—i).

2.5. Stratified Analysis for Combined Protective Genotypes” Effect on CMSS

Next, the stratified analysis was performed to test whether the combined effect of the protective
genotypes on CMSS was modified by clinicopathological covariables, including age, sex, Breslow
thickness, tumor stage, mitotic rate, and ulceration in the MDACC dataset, but only age and sex in the
NHS/HPFS dataset. Compared with those with 0 NPG, patients with 1-2 NPG had a significantly better
survival, particularly evident in the subgroups aged >60 years, female, regional/distant metastasis,
Breslow thickness >1 mm, no ulceration, and mitotic rate >1 in the MDACC dataset and the subgroup
aged >60 years in the NHS/HPFS dataset. However, there were no significant interactions between
these strata (p > 0.05 for all strata, Table S3).

2.6. Receiver Operating Characteristic (ROC) Curve and Internal Replication

To further evaluate predictive effects of the two independent SNPs, the time-dependent area was
generated using the area under receiver curve (AUC) function of the ROC curve for CM patients in the
MDACC and NHS/HPFS datasets in the presence of other covariables. In the MDACC dataset, the
predictive performance of 5-year CMSS ROC was modified by the risk genotypes that were added
to the model, with the AUC increasing from 65.88% to 72.01% with other covariables (age and sex)
as classifiers; however, the change was not statistically significant (p = 0.821) (Figure S4b). In the
NHS/HPFES dataset, the predictive performance of 5-year CMSS ROC was modified by protective
genotypes added to the model, with the AUC increasing from 54.05% to 67.26%, with other covariates
(age and sex) as classifiers, and the change was statistically significant (p = 0.031) (Figure S4c,d).

2.7. In Silico Functional Validation

With the online tools for predicting putative functions of genetic variants, we found that the
rs10889417 A allele was significantly associated with increased expression levels of ALG6 mRNA in
cultured skin fibroblasts (p = 0.015, Figure 2j) and whole blood cells (p = 0.001, Figure 2j). Besides, the
GALNTL4 rs12270446 C allele was correlated with lower mRNA expression levels in normal tissue
samples from 517 donors’ suprapubic skin and 605 donors” sun-exposed lower leg skin from the
genotype-tissue expression (GTEXx) project (all p < 0.05, Figure 2k). Additionally, we also performed
expression quantitative trait loci (eQTL) for the correlations between corresponding mRNA expression
levels and genotypes of SNPs of the same gene in 373 normal lymphoblastoid cell lines from the
1000 Genomes Project database; however, we did not find any evidence for such a correlation (Figure S5).

The functional prediction was then performed for the two independent SNPs by the online
bioinformatics tools SNPinfo [21], RegulomeDB [22], and Haploreg [23] in order to predict their
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functions, the results of which are summarized in Table S4. Based on experimental data from the
ENCODE project available for the 227 glycosylation pathway genes (Table S5), the rs10889417 is located
on the Pitx2 motif (Figure S6). By using the PROMO online program, we also found that ALG6 was a
potential target gene of the transcription factor Pitx2 (Table S6). To clarify the effect of gene expression
on the survival of cancer patients, we used an online tool based on the TCGA dataset to compare
the survival of patients by the cuff-values at the 30th upper percentile and 30th lower percentile of
the corresponding gene. We found that the expression levels of ALG6 seemed not to be substantially
associated with melanoma survival (p = 0.671) (Figure S7a). On the other hand, the higher expression
levels of GALNTL4 seemed to be associated with a poorer melanoma survival, but the correlation was
also not statistically significant (p = 0.084) (Figure S7b). However, the higher expression levels of ALG6
were associated with a better survival in colon adenocarcinoma (p = 0.028) and lung squamous cell
carcinoma patients (p = 0.038), respectively (Figure S7c,e). Meanwhile, the higher expression levels of
GALNTL4 seem to be associated with a poor survival probability in colon adenocarcinoma (p = 0.385)
and stomach adenocarcinoma patients (p = 0.088), respectively; however, the correlation was also not
statistically significant (Figure S7d.,f).

2.8. Mutation Analyses

The mutation status of ALG6 and GALNTL4 in CM tissues was assessed using the cBioPortal
database for Cancer Genomics. As shown in Figure S8, ALG6 had a relatively low somatic mutation
rate in CM (2.56%, 1/39; 1.28%, 1/78; 0.68, 1/147 and 0.63%, 1/479) in the SKCM UCLA [24], Broad
2014 [25], Yale [26], and TCGA studies [27], respectively. In contrast, GALNTL4 had a relatively higher
somatic mutation rate in CM (3.85%, 1/26; 2.72%, 4/147; 1.65, 2/121, 1.88%, 9/479 and 1.28%, 1/78) in the
Broad DFI [28], Yale [26], Broad 2012 [29] TCGA, and Broad 2014 studies [25], respectively. Considering
that there are few mutations in these two genes, our results indicated that the functional SNPs in ALG6
may play relatively important roles in the dysregulated mRINA expression in tumor tissues, and the
mutation may also play a role in the functional change and expression of GALNTL4 in addition to the
causal SNPs.

3. Discussion

In the present study, we investigated the associations between 34,096 genetic variants of
227 glycosylation pathway genes and CMSS by using a two-phase analysis of genotyping data from two
previously published GWAS datasets: A hospital case-control dataset for the discovery and a cohort
follow-up dataset for the replication. We found that two SNPs (i.e., ALG6 rs10889417G>A and GALNTL4
rs12270446G>C) were independently associated with the survival of CM patients. In subsequent
genotype-mRNA expression correlation analysis, we found that the low death-risk-associated
rs10889417 A allele was associated with increase in ALG6 mRNA expression levels in cultured
skin fibroblasts and whole blood cells and that the rs12270446 G allele was associated with decrease in
GALNTL4 mRNA expression levels in skin tissues.

Since about half of human proteins are glycoproteins, and glycosylation is one of the most
important post-transcriptional modifications, it is undeniable that glycosylation of different proteins
plays a key role in multiple cellular activities, including tumor proliferation, invasion, metastasis,
tumor-induced immune regulation, and drug resistance [10]. For example, the biological function of
integrin is related to the adhesion of the extracellular matrix, and integrin is also found to be one of the
abundant proteins in metastatic melanoma cells [30]. One study has identified that integrin-reduced
cell adhesion is the result of modification of N-acetylglucosaminyltransferase III, which is involved in
the N-glycosylation process [31].

Although the present study suggested that the expression of ALG6 seemed not to have a significant
effect on CM survival, a high ALG6 expression was associated with a better overall survival (OS)
in colon adenocarcinoma and lung squamous cell carcinoma patients. In a previous animal study,
however, we noted that knockdown of the mouse Alg6 gene increased melanoma lung metastasis
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without affecting primary tumor growth, which may lead to a shorter survival [32]. However, the
gene expression profiles in tumor tissues are more likely affected by mutations in the driver genes
commonly seen in tumor tissues. Therefore, further epidemiological investigation and tissue-based
functional experiments are needed to clarify these discrepancies in the future.

Mutations in ALG6 may lead to congenital disorders of glycosylation (CDG), called ALG6-CDG,
of which missense mutations P. A333V and P. 1299Del are the most common mutations [33]. Some
patients with CDG have severe immune deficiencies, likely leading to tumorigenesis [34]. For example,
in acquired immunodeficiency patients with CM, such as those with human immunodeficiency virus
infection, tumors may have explosive progress [35] while in the melanoma immune response, the
inflammation and tumor immune response have shown significant abnormalities, leading to the
progress of the disease [36,37]. These suggest that a possible effective treatment for CM may be
immunotherapy, which has recently become important in improving the prognosis of melanoma
patients [38]. Although the ALG6 gene malfunction may play a role in the poor prognosis of melanoma,
we also showed that the mutation rate of ALG6 in melanoma tissues was less than 2.56%, and thus the
overall expression levels of ALG6 in melanoma tissues are more likely to be affected by SNPs. Further
supporting evidence is that ALG6 rs10889417 is located on the Pitx2 motif, indicating its potential
regulatory roles in ALG6 mRNA expression. Because of the close relationship established between
ALG6 and N-linked glycosylation and melanoma cell activity [39], genetic variation in ALG6 is likely to
play a role in CM progression and prognosis.

No published study has investigated the role of GALNTL4 in CM tumor progression and survival.
However, previous GWAS studies have shown an association between genetic variants of GALNTL4
and protective effects against differentiated thyroid cancer [40], and GALNTL4 SNPs are reportedly
associated with the cisplatin sensitivity of urothelial cancer [41] and the efficacy of gemcitabine
combined with platinum in the chemo treatment of bladder urothelial carcinoma [42]. In the present
study, we showed that the rs12270446 G>A located in the intron of GALNTL4 was associated with
CMSS. Given the fact that the mutation rate of GALNTL4 in melanoma tumors is low, it is likely that
genetic variant-associated GALNTL4 gene expression may be the mechanism underlying the observed
association, which deserves further investigation.

The present study is subject to several limitations. First, the two GWAS datasets we employed
were both from Caucasian populations, which may not be generalizable to the general population.
Second, all the participants in the two GWAS studies may have been treated with distinctive therapies
that were not made available for our analysis. However, we believe these therapy regimens, if
any, might not have been selective to the genetic variation of the patients. Third, we obtained the
glycosylation-related genes from the GSEA/MSigDB website, a major publicly recognized dataset, but
we might have missed some other unknown and important genes involved in this metabolic pathway.
Fourth, the literature has well documented that the prognosis of stage III/IV melanoma is significantly
different. Unfortunately, we had only one case of stage IV CM cases in the MDACC dataset. This
made it impossible for us to perform stratified analysis by stages III and IV separately. Lastly, we
were not able to investigate the biological mechanisms to understand how ALG6 rs10889417 G>A and
GALNTL4 112270446 G>C influence CMSS, which should be further investigated in the future.

4. Materials and Methods

4.1. Study Populations

The discovery analysis used genotyping data from the MDACC melanoma GWAS study, and
the replication analysis used genotyping data of the GWAS dataset from NHS/HPFS. In the MDACC
study, all patients from a hospital-based case-control CM study were recruited among non-Hispanic
white patients. In the NHS/HPFS study, patients were those who developed CM during the course of
follow-up. Detailed descriptions of the subject selection and data collection for these two GWASs have
been published elsewhere [19,20]. According to the protocol approved by the Institutional Review
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Boards of the MDACC, Brigham and Women’s Hospital, and Harvard T.H. Chan School of Public
Health, all subjects provided a written informed consent and the registration form for participation
as required.

4.2. Gene Selection and SNP Genotyping

We selected 227 glycosylation pathway genes located on the autosomes by inquiring the
Molecular Signatures Database of the GSEA website [43,44] (Table S5). Genomic DNA was extracted
from whole blood cells in the MDACC GWAS dataset and used for genotyping by the Illumina
HumanOmni-Quad_v1_0_B array. The National Center for Biotechnology Information Database of
Genotypes and Phenotypes (dbGaP Study Accession: phs000187.v1.pl) provided the genotyping data.
Based on the 1000 Genomes Project, phase I v2 CEU (March 2010 release), utilizing the MACH software,
we performed the genome-wide imputation. We included both typed (having a genotyping success
rate of 95% with a Hardy-Weinberg equilibrium p value of 10) and imputed (> > 0.8) common SNPs
(a minor allele frequency of 0.05) within +2 kilobase flanking regions of these glycosylation pathway
genes. In the NHS/HPFS GWAS dataset, whole blood DNA samples were used for genotyping with
the HumanHap610 array, Affymetrix 6.0 array, and Illumina HumanHap550 array, and imputation
was based on the haplotype information and genotyped SNPs from phase II HapMap CEU data
(March 2012 release), applying the program (MACH March 2012 release) using a similar quality control
to that for the MDACC GWAS dataset. For each glycosylation-related SNP, quantile-quantile and
Manhattan plots were generated to summarize the genome-wide meta-analysis.

4.3. Statistical Methods

In the MDACC discovery analysis using a multivariable Cox proportional hazards regression
model, we first assessed in a single-locus analysis the associations between selected SNPs in
227 glycosylation pathway genes and CMSS by calculating HR and its 95% CI using R software
(GenABEL package) [45]. After being adjusted for other covariaales, including age, sex, Breslow
thickness, ulceration, tumor stage, and mitotic rate, the multivariable analysis was performed. In the
NHS/HPES replication analysis, however, the only covariaales available for adjustments were age and
sex. Survival time was defined as the time between the dates of diagnosis of CM to the date of death.
Patients known to be alive were censored at the time of the last contact.

Since most SNPs were estimated with a high level of linkage disequilibrium (LD), we utilized
BFDP with a threshold of 2 =0.8 for LD in multiple test corrections, as recommended [40], rather than
the false discovery rate. We also used a prior probability of 0.1 to detect an HR of 2.0, which was related
to the variant genotype or minor allele of SNP (p < 0.05). Next, in performing stepwise multivariable
Cox regression analysis with those validated SNPs for selecting independent tagging SNPs, we used
the MDACC dataset that had more detailed covariate information. We then conducted a meta-analysis
to combine the estimates from the MDACC dataset with those in the NHS/HPFS dataset using PLINK
1.90 with the Cochran’s Q statistics and I2. A fixed-effects model was used, because no significant
heterogeneity was found between the two datasets (Q test p > 0.1 and I < 25.0%). We also performed
gene-based tests by using the VEGAS approach that was integrated in the VEGAS2 program [46,47].
In brief, for a given gene with n low LD SNPs, the correlation p value was first transformed into a
Chi-squared statistic with one degree of freedom. Then, the gene-based test statistics were calculated
by adding all Chi-squared statistics within the gene. A large number of simulations were carried out
with multivariable normal distribution, and the proportion of simulated test statistics based on the
empirical p-value of gene is more than that of observed test statistics based on the gene. Kaplan-Meier
estimation of the survival functions and log-rank test was carried out, and the comprehensive effect of
the visual protective genotype was taken as a genetic score for predicting CMSS.

ROC curves were further constructed to illustrate the ability of the time-dependent AUC to predict
CMSS. The ROC plots were generated by using the R packages “survival” and “timeROC” [48]. For the
stratified analyses by subgroup, we calculated the inter-study heterogeneity and assessed the interaction
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between strata. For the significant and independent SNPs identified from the multivariable analysis,
functional prediction was performed by using bioinformatics online tools: RegulomeDB [22,49],
SNPinfo [21,50], and HaploReg [23,51]. The transcription factors in the promoter regions were
predicted with PROMO online tools [52].

By using R (version 3.5.0) software for linear regression analysis, the eQTL were further analyzed
to evaluate the correlation between SNPs and the mRNA expression levels of the genes. The mRNA
expression data of these genes were obtained from 373 lymphoblastic cell lines of European descent
included in the 1000 genome project [43] and GTEx project version 8 [44]. Next, we evaluated the
associations of mRNA expression with the OS of additional cancers through Kaplan-Meier analysis in
colon adenocarcinoma, lung squamous cell carcinoma, and stomach adenocarcinoma patients [53].
Unless otherwise specified, all statistical analyses were carried out using SAS software (version 9.4;
SAS Institute, Cary, NC).

5. Conclusions

Two independent SNPs (i.e., ALG6 rs10889417G>A and GALNTL4 rs12270446G>C) were found to
be significantly associated with CMSS in the MDACC discovery and NHS/HPFS replication datasets.
The combined analysis showed that these two SNPs were significantly associated with survival,
and patients’ better prognosis may be achieved through more protective genotypes influencing gene
expression. Our findings provide some new insights for further functional studies to identify potential
molecular mechanisms underlying the observed CM survival.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2072-6694/12/2/
288/s1, Table S1: Distributions of characteristics of CM patients in MDACC and NHS/HPFS; Table S2: Significant
results of glycosylation related genes in the gene-based test with the VEGAS method; Table S3: Stratified analysis
of protective genotypes of the identified SNPs in the MDACC and NHS/HPFS datasets; Table S4: Function
prediction of two independent SNPs in GALNTL4 and ALG6; Table S5: List of 227 selected glycosylation pathway
genes. Figure S1: Manhattan plots of associations between SNPs and CMSS in the MDACC dataset (a) and the
NHS/HPEFS dataset (b). Figure S2: Quantile-quantile plot of all SNPs in the MDACC GWAS dataset. Figure S3:
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