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Abstract: Carcinogenesis is linked with massive changes in regulation of gene networks. We used 
high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 
metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 
4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing 
profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene 
expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first 
time, we calculated mutation enrichment values and activation levels for these pathways. We found 
that pathway activation profiles were largely congruent among the different cancer types. However, 
we observed no correlation between mutation enrichment and expression changes both at the gene 
and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in 
the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA 
repair pathways also demonstrated the highest values of mutation enrichment. However, the 
signaling and cytoskeleton pathways had the biggest proportions of representatives among the 
outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and 
the auxiliary/supporting roles for the other groups of molecular pathways. 

Keywords: cancer; DNA mutation; intracellular molecular pathways; carcinogenesis; 
transcriptome; molecular pathway activation 

 

1. Introduction 

Cancer has complex pathogenesis [1] and molecular mechanisms underlying its development 
and progression still remain underexplored [2]. According to the somatic mutation theory, the key 
point in cancer transformation is DNA damage, e.g., due to aberrantly regulated or nonfunctional 
DNA repair pathways [3]. Cancer cells accumulate mutations several times faster than the normal 
cells [4]. It contributes to deregulation of molecular pathways including those responsible for 
apoptosis, cell growth, metabolism, motility and immunosuppression [5,6]. In turn, this leads to 
epigenetic changes that promote further malignization, e.g., through the repression of tumor 
suppressor genes [7]. 
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However, the analysis of individual genes per se is not enough for understanding mechanisms 
of carcinogenesis because each gene product only serves as a component of complex biological 
processes determining cell fate. One of the key systemic genetic approaches in cancer is data analysis 
at the level of molecular pathways [8–11]. It was found previously that changes at the molecular 
pathway levels characterize cancers better than individual gene mutations and expression levels due 
to greater stability and reliability of the additive biomarkers [12–14]. 

Several databases of molecular pathways were published, frequently specifically devoted to the 
pathways with specific functions, such as MetaCyc and SynSysNet [15,16]. On the other hand, a more 
universal database like Kyoto Encyclopedia of Genes and Genomes (KEGG) classifies the pathways 
by relation to “metabolism, processing of genetic information, processing of environmental 
information, cellular processes, organizational systems, diseases and drug development” [17]. Many 
attempts to investigate cancer interactomes on the basis of molecular pathways have been made, 
showing mosaic picture of tumor-associated lesions [18–22]. In this study, we aimed to perform the 
most comprehensive analysis of the molecular pathway’s mutation and activation features in cancer. 
To this end, we used new instruments to algorithmically assess pathway activation levels [23] and 
pathway mutation instability rates [24] by analyzing high throughput gene expression and whole 
exome sequencing data. To our knowledge, these metrics were never systemically investigated before 
for simultaneous large-scale characterization of molecular pathways in cancer. Using descriptions 
provided by the pathway database administrators and available literature, we classified 419 available 
molecular pathways into four functional groups of signaling, metabolic, cytoskeleton and DNA repair 
processes (including 278, 72, 47 and 48 pathways, respectively). 

The signaling pathways transmit different types of signals into the cell, e.g., signals from external 
cell surface receptors. They control all major biological processes in the cell such as proliferation, cell 
growth, migration, differentiation and death. Impaired molecular signaling can lead to acquisition of 
cancer phenotype by the cell and further disease progression [25–28]. 

Metabolic pathways are responsible for the whole repertoire of biochemical reactions in organism. 
In the living cell they are dynamically controlled by the external signals, concentrations of 
biomolecules and differentiation programs [29]. In cancer, the regulation of metabolism is strongly 
biased due to increased consumption of energy required for forced proliferation [30,31]. For example, 
Warburg effect of replacing oxidative phosphorylation as the major provider of ATP by glycolysis in 
cancer cells is well known since 1920s [32]. On the other hand, cancer cells frequently de-differentiate 
and abrogate their specialized molecular functions, thus losing complexity of metabolic patterns [33]. 

In turn, the cytoskeleton and DNA repair pathways may be considered as the specific sort of 
signaling pathways because many of them if not all are directly controlled by external or internal 
stimuli [34,35]. Imbalanced cytoskeleton pathways can lead to defects in mitosis and cellular 
morphogenesis, altered intercellular contacts and cell motility. This can promote cancer progression, 
invasion and metastasis [36].  

Finally, mutations in DNA repair pathways are most likely the key mechanisms in the emergence 
and development of malignant tumors. Mutations in genes responsible for genome integrity 
frequently point on individuals with a predisposition to cancer, but also may serve as biomarkers of 
response on specific anticancer therapies [37]. These mutations also induce multiplicative 
tumorigenic effects because they initiate accelerated molecular evolution of cancer cells, that can both 
repress tumor suppressor genes and upregulate oncogenes, while escaping restriction by the immune 
system [38,39]. Moreover, a link was shown between functional changes in DNA repair genes and 
switching of cancer cell metabolic programs [40,41]. 

In this study we for the first time scrutinized mutation frequencies and expression profiles of 
genes included in 419 molecular pathways belonging to the above four groups with different 
biological functions. Totally, we analyzed 4910 matched individual cancer gene expression and whole 
exome sequencing profiles collectively covering 1,252,669 mutations from the TCGA project database 
[42] in thirteen cancer types. We identified no correlation between mutation enrichment and 
expression changes both at the individual gene and molecular pathway levels. However, we found 
that pathway activation profiles were largely congruent among the different cancer types. Overall, 
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positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly 
negative values in the other types of pathways. The DNA repair pathways also demonstrated the 
highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the 
biggest proportions of representatives among the outstandingly frequently mutated genes thus 
suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other 
groups of molecular pathways.  

For all the biosamples, we present a database of mutation and expression data at the individual 
gene and at the molecular pathway levels. At the gene level, normalized mutation rate and case-to-
normal ratio data are given. Conversely, at the pathway level we present algorithmically calculated 
pathway mutation instability rates [24] and pathway activation levels [23], respectively. 

2. Results 

2.1. Cancer Mutation Frequencies of Molecular Pathway Genes 

We extracted molecular pathway gene contents and architecture from the publicly available 
databases [17,43–47] and refined by expert manual curation. Were classified the pathways extracted 
into four major functional groups: signaling (278 members), metabolic (72 members), and DNA repair 
(48 members), cytoskeleton pathways (47 members), listed in Supplementary Table S1. Twenty-six 
pathways were simultaneously classified as the signaling and DNA repair pathways, and our further 
analyses we used only the 419 non-overlapping molecular pathways.  

We then measured mutation rates of genes belonging to these functional groups of pathways 
(Supplementary Table S2). To this end, a complete list of non-synonymous somatic mutations 
mapped in 19,608 genes in 4910 tumor samples was built and processed according to the analytic 
pipeline outlined in Figure 1.  

 
Figure 1. Pipeline for bioinformatic analysis of gene mutation frequencies corresponding to functional 
groups of molecular pathways. 

The tumor samples analyzed represented thirteen tumor types and were originally profiled 
within the The Cancer Genome Atlas (TCGA) project [42] while the respective whole exome mutation 
profiles were taken from the Catalogue Of Somatic Mutations In Cancer (COSMIC) database [48]. 
Normalized mutation rates (nMR) of all genes investigated are listed in Supplementary Table S3.  

The nMR values were ranked in the descending order and then divided into 10 parts (deciles), 
each representing 10% of genes. In each decile, we measured proportions of genes belonging to the 
four functional groups of pathways under investigation (Figure 2). We observed a trend that the 
signaling and cytoskeleton pathways had highest representations in the first decile which was 
decreasing further to the minimal values in the last decile, thus evidencing high proportion of 
especially frequently mutated genes in these groups (Figure 2). In contrast, the metabolic and DNA 
repair pathways showed a different trend, where maximum representations were reached in the 
central deciles, with relatively modest representations in the first and in the last deciles (Figure 2). 

We then re-analyzed these representations and confirmed the above two trends separately for 
the thirteen cancer types (Figure 3; Supplementary Table S4). These trends were more pronounced 
for the cancer types represented by bigger number of samples, most probably, due to greater 
statistical power (Figure 3)  

To characterize in brief gene compositions of the molecular pathways, we intersected them for 
the different groups of pathways (Figure 4). Jaccard (JC) and Szymkiewicz-Simpson (SS) [49] 
similarity coefficients between the pathway groups are shown on Table 1.  
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Figure 2. Decile analysis of cancer-associated mutations (deciles ordered from high gene mutation 
rate on the left to low on the right). (A) Percentage shares of genes belonging to signaling, metabolic, 
cytoskeleton, DNA repair pathway functional groups. (B) Percentage shares of pathway group-
specific, non-overlapping genes. (C) Percentage shares of genes present in two or more functional 
groups of molecular pathways (termed interface genes). 
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Figure 3. Cont. 

Figure 3. Percentage share in different cancer types of genes belonging to four groups of molecular 
pathways: (A) cytoskeleton, (B) DNA repair, (C) metabolic, (D) signaling pathways. Color represents 
cancer type. Color density is proportionate to number of mutant genes per group per decile. Point 
width reflects number of samples in cancer type. 

 
Figure 4. Intersection of gene composition for different functional groups of molecular pathways. 
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Table 1. Similarity coefficients between gene compositions of different groups of molecular pathways. 
Jaccard coefficients are shown above and Szymkiewicz-Simpson coefficients—below the main 
diagonal. 

Intersection Signaling Metabolic Cytoskeleton DNA Repair 
Signaling 1 0.019 0.196 0.119 
Metabolic 0.087 1 0.014 0.006 

Cytoskeleton 0.621 0.031 1 0.045 
DNA repair 0.738 0.016 0.135 1 

In total, all the 419 pathways contained 3281 unique genes, of them 809 were the interface genes, 
i.e., simultaneously members of two or more groups of pathways. Signaling pathways included 2295 
genes, of them 1513 were specific for this group and the rest were the interface genes. Metabolic 
pathways had totally 635 genes and 574 specific genes; cytoskeleton pathways—824 and 307 genes, 
respectively; DNA repair pathways—385 and 98 genes, respectively. The highest intersection level 
was seen for the signaling and cytoskeleton pathway genes (JC = 0.196, SS = 0.621) and for the signaling 
and DNA repair genes (JC = 0.119, SS = 0.738). 

To avoid any possible bias linked with the interface genes, we then repeated the decile 
distribution analysis for the fraction of pathway-specific, non-overlapping genes. The decile-specific 
gene distribution trends previously seen for the signaling/cytoskeleton vs metabolic/DNA repair groups 
of pathways were also clearly detectable for the pathway type-specific genes (Figure 2B). Moreover, 
the fraction of interface genes that was mostly formed by genes from the intersection of signaling and 
cytoskeleton groups of pathways also showed the same trend as for the signaling/cytoskeleton groups 
(Figure 2C). Interestingly, the interface genes had overall higher mutation rates than the pathway 
type-specific genes (Figures 2B,C), which can relate to their relatively more important functions in 
tumorigenesis, e.g., because of their simultaneous participation in different types of molecular 
processes. 

Every tumor sample investigated had mutated genes. Among them, 78% of samples had at least 
one mutated gene from cytoskeleton, 53%—from DNA repair, 58%—from metabolic, and 94%—from 
signaling pathways (Table 2). Moreover, 65% of tumor samples had at least two mutated genes from 
cytoskeleton, 35%—from DNA repair, 41%—from metabolic, and 89%—from signaling pathways, 
and so on up to 20 mutated genes, further showing prevalence of signaling and cytoskeleton 
pathways (Table 2).  

Table 2. Percentage of 4910 tumor samples with mutated genes of four pathway groups. 

Minimal 
Number of 

Mutated Genes 
Cytoskelton 

DNA 
Repair Metabolic Signaling 

Minimal 
Number of 

Mutated Genes 
Cytoskelton 

DNA 
Repair Metabolic Signaling 

1 78% 53% 58% 94% 11 17% 6% 9% 46% 
2 65% 35% 41% 89% 12 16% 5% 8% 42% 
3 54% 24% 31% 84% 13 15% 5% 8% 39% 
4 45% 18% 24% 78% 14 14% 4% 7% 37% 
5 38% 14% 19% 72% 15 13% 4% 6% 35% 
6 32% 11% 16% 66% 16 12% 4% 6% 33% 
7 27% 9% 14% 61% 17 11% 3% 5% 31% 
8 24% 8% 12% 56% 18 10% 3% 5% 29% 
9 21% 7% 11% 52% 19 10% 3% 5% 28% 
10 19% 6% 10% 48% 20 9% 3% 5% 26% 

2.2. Mutation Enrichment and Pathway Activation Levels 

The above 4910 tumor samples were selected for the pathway analysis based on simultaneous 
availability of both RNA sequencing and whole exome mutation profiles. In addition, from the TCGA 
data repository we extracted the gene expression profiles for 655 tumor-matched adjacent normal 
tissue samples. These normal samples represented the same localizations/tissue types as the 
corresponding primary tumor samples (Supplementary Table S5).  
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We then used tumor and normal RNA sequencing profiles to analyze differential gene 
expression and to assess activation levels of molecular pathways. For every comparison, the tumor 
profiles were normalized on the corresponding normal tissues, e.g., breast cancer profiles were 
normalized on the normal breast samples, etc. Pathway activation level (PAL) values were calculated 
to characterize molecular pathway activation using differential gene expression data [23,50,51], 
Supplementary Table S6. PAL scores can take positive and negative values and are congruent with 
the expected differential activation of a pathway [23]. 

The mutation enrichment of the same molecular pathways in 4910 tumors was assessed using 
Pathway instability (PI) metric that characterizes average mutation load per gene in a pathway [14], 
Supplementary Table S7. PI score can take only positive values and is congruent with the pathway 
mutation burden. 

In the tumor samples investigated, 32.3% of signaling pathways, 30.4% of cytoskeleton pathways, 
29.2% of DNA repair pathways, and 9.6% of metabolic pathways had mutations in their genes and, 
therefore, had PI values greater than zero. Interestingly, the distribution of PI scores demonstrated 
that overall the DNA repair pathways had the highest relative mutation rates per gene, the signaling 
pathways had intermediate scores and the metabolic and cytoskeleton pathways had the lowest relative 
mutation levels (Figure 5A). 

 

Figure 5. (A) Distributions of PI > 0 scores for cytoskeleton, metabolic, DNA repair and signaling 
molecular pathways in 4910 cancer samples. PI axis is given in logarithmic scale. Vertical dashed lines 
show mean PI values calculated for all cases including PI = 0. (B) Distributions of PAL scores for 
cytoskeleton, metabolic, DNA repair and signaling molecular pathways in the same cancer samples. 
Vertical dashed lines show mean PAL values calculated for the respective group of pathways for all 
tumor samples. 

We then investigated in more details what biological processes were connected with the genes 
from the most and least mutated pathways. To this end, for every type of pathways we took top and 
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bottom 15% pathways (Figure 6; Supplementary Table S8). To identify relevant Gene Ontology terms, 
the gene lists from these top and bottom pathways were analyzed using GOrilla software [52]. The 
obtained terms were then plotted with REVIGO software [53], Figure 7. The least mutated pathways 
(Figure 7A–D, left panels) dealt (cytoskeleton, Figure 7A) with membrane organization, receptor-
mediated endocytosis, actin filament binding and locomotion, calcium-independent cell-cell 
adhesion via plasma membrane; (DNA repair, Figure 7B) with regulation of DNA quality and 
associated DNA repair, and with rearrangement of immunoglobulin loci; (metabolic, Figure 7C) with 
biosynthesis of nucleotides and DNA replication; (signaling, Figure 7D) with negative regulation of 
glucocorticoid receptor pathway, regulation of hormone levels, circadian rhythms, H3 histone 
deacetylation and protein catabolism.  

 

Figure 6. Distributions of molecular pathways according to percentage of tumor samples having 
mutations within them, for cytoskeleton, DNA repair, metabolic, signaling pathways. Vertical solid 
lines delineate 15% most frequently mutated pathways (on the right), vertical dashed lines delineate 
15% least mutated pathways (on the left). 

In turn, the most strongly mutated pathways (Figures 7A–D, right panels) were responsible for 
(cytoskeleton, Figure 7A) cellular adhesion and cell surface receptor binding, exocytosis, cell motility, 
cell communication and locomotion, cell cycle progression, processing and presentation of antigens 
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via the major histocompatibility complex (MHC )class II; (DNA repair, Figure 7B) cellular response to 
stress, chromosome organization, hydrolysis of phosphodiester bonds; (metabolic, Figure 7C) drug 
response and catabolism, arachidonic acid secretion, fatty acid derivative pathways, glycosylation, 
sulfur and benzene-containing compound pathways, production of mitochondrial RNA, and tRNA 
aminoacetylation for protein translation; (signaling, Figure 7D) regulation through phosphatidyl 
inositol, cell surface receptor pathways, growth and proliferation, regulation of calcium transport, 
transcription by RNA polymerase II, and regulation of immune cell activation. 

 

Figure 7. Representation of Gene Ontology annotations for genes from 15% least (left) and 15% most 
frequently (right) mutated (A) cytoskeleton, (B) DNA repair, (C) metabolic, (D) signaling pathways. 
Bubble size indicates the frequency of the gene ontology term in the underlying GOA database [54] 
(bubbles corresponding to more general terms are shown larger). “P” stands for process, “MP”—for 
metabolic process. Too general and non-informative gene ontology terms are not defined. 
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At the level of pathway activation (PAL scores), most of the pathway types were mostly 
downregulated in cancer, except for the DNA repair pathways that were mostly upregulated (Figure 5B). 
The general downregulation observed was maximal for the cytoskeleton pathways (Figure 5B). 
Overall, averaged PAL scores showed cancer-specific activation in approximately 60.3% of DNA 
repair, 44.7% of metabolic, 42.8% of signaling and 37.5% of cytoskeleton pathways.  

We then investigated in more detail up- and downregulated pathways in each group. Because 
the same pathway can be differently regulated in different samples, we tried to focus on cancer type-
specific changes. To this end, for every pathway in every cancer type, we calculated percentage of 
samples in which the pathway was upregulated, as reflected by PAL > 0 (Figure 8). Most of DNA 
repair pathways were activated in the majority of samples (Figure 8B), whereas cytoskeleton, 
metabolic and signaling pathways showed mosaic picture (Figures 8A,C,D). We also found that most 
of the pathways showed uniform, cancer type-independent activation pattern in tumor samples 
(Figure 8).  

 
Figure 8. Percentage shares of cancer samples with PAL > 0 in thirteen cancer types for: (A) 
cytoskeleton, (B) DNA repair, (C) metabolic, (D) signaling pathways under investigation. For every 
pathway, color scale corresponds to percentage of samples where it is upregulated (PAL > 0). 

We then performed Gene Ontology analyses of up/downregulated pathways. To this end, we 
took fractions of top pathways with PAL > 0 in more than 80% of cancer samples under investigation, 
and of bottom pathways with PAL < 0 in more than 80% of the samples. In this way we selected 



Cancers 2020, 12, 271 11 of 23 

 

totally 8 up/14 downregulated signaling pathways, 4/2 metabolic pathways, 15/0 DNA repair 
pathways, and 0/2 cytoskeleton pathways, accordingly. As before, the genes from these pathways 
were subjected for gene ontology analysis using GOrilla software [52] the results of which were 
visualized using REVIGO [53] viewer (Figure 9; Supplementary Table S9). The most strongly cancer-
downregulated pathways related to (cytoskeleton, Figure 9A) movement of cell or subcellular 
components and locomotion, regulation of development and cell proliferation; (metabolic, Figure 9C) 
cellular ketone body metabolism, neurotransmitter catabolic processes, sulfur pathways, drug 
response pathways; (signaling, Figure 9D) regulation of transcription by RNA polymerase II, 
interleukin-7-mediated pathway. We found no strongly cancer-downregulated DNA repair 
pathways. 

Among the most strongly cancer-upregulated pathways (Figure 9A–D, right panels), there were 
no cytoskeleton pathways, whereas the others dealt with (DNA repair, Figure 9B) response to DNA 
templated transcription and elongation, 7-methylguanosine RNA capping, protein localization on 
chromosomes and chromosomal organization, rearrangement of immune receptor loci; (metabolic, 
Figure 9C) oligosaccharide biosynthesis and protein oligomerization, nucleotide biosynthesis and 
DNA replication; (signaling, Figure 9D) cell migration and adhesion, regulation of cell death, calcium 
ion transmembrane transport, extracellular matrix organization, regulation of mRNA stability, 
processing and presentation of exogenous peptide antigen via MHC class I, and activation of immune 
cells. 

 
Figure 9. Representation of Gene Ontology annotations for genes from most strongly downregulated 
(PAL < 0; left) and upregulated (PAL > 0; right) (A) cytoskeleton, (B) DNA repair, (C) metabolic, (D) 
signaling pathways. Bubble size indicates the frequency of the Gene Ontology term in the underlying 
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GOA database [54] (bubbles corresponding to more general terms are shown larger). “P” stands for 
process, “MP”—for metabolic process. Too general and non-informative gene ontology terms are not 
defined. No cytoskeleton pathways with PAL < 0 and DNA repair pathways with PAL > 0 could be 
identified in 80% and more samples. 

Remarkably, we found no connection between mutation burden (PI scores) and the respective 
activation of the specific molecular processes (PAL scores). For example, the processes of 
transcription by RNA polymerase II, chromosomal organization, processing and presentation of 
antigens via MHC class II and activation of immune cells were featured for the genes from strongly 
mutated and at the same time upregulated molecular pathways. The drug response, sulfur pathway 
categories included genes from strongly mutated, downregulated pathways. The rearrangement of 
immunoglobulin loci, biosynthesis of nucleotides, DNA replication, and circadian rhythmic 
processes involved genes of poorly mutated, upregulated pathways.  

For all types of the pathways, we found no correlation between mutation burden and expression 
changes at the level of individual genes, i.e., case-to-normal ratio (CNR) and normalized mutation 
rate (nMR) values (Supplementary Figure S1). We also found no correlation at the pathway level—
between the PAL and PI values, for all four pathway types (Figure 10).  

 
Figure 10. Correlation of PI and PAL scores for different types of molecular pathways in 4910 tumor 
samples.  
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We then assessed correlations between all tumor samples for mutation burden at gene (nMR) 
and pathway (PI) levels, and also for expression changes at gene (CNR) and pathway (PAL) levels 
(Figure 11). To this end for every pair of tumor samples we calculated pairwise Spearman correlation 
coefficient, separately in all four pathway groups (Figure 11). For mutation signatures, the samples 
were highly heterogeneous with near-zero medians of Spearman correlation at the gene (nMR) and 
the pathway (PI) levels, except for slightly higher PI of signaling pathways (Spearman correlation 
0.16). In contrast, for gene expression, the medians of Spearman correlation coefficients varied from 
0.1 till 0.18 at the gene level (CNR), and much higher at the pathway level (PAL): from 0.12 till 0.52. 
These results evidence significantly greater inter-tumoral similarity at the level of pathway activation 
compared to the individual gene expression level and, especially, in comparison with both types of 
mutational data (Figure 11). These trends were also confirmed in thirteen analyses performed for all 
separate cancer types (Supplementary File S1). Interestingly, in most of the analyses, intertumoral 
activation profiles of the DNA repair pathways showed significantly higher congruences than it was 
observed for the other pathway types (Figure 11, Supplementary File S1). 

Taken together, these data suggest that for both mutation and gene expression data, the 
intertumoral similarities are much higher at the pathway level (Figure 11, Supplementary File S1). 
On the other hand, DNA repair pathways demonstrate the most congruent activation patterns among 
the tumors.  

 
Figure 11. Distribution of pairwise Spearman correlation coefficients between all possible 
combinations of tumor samples under investigation for mutation and expression data at both gene 
wise (nMR, CNR) and pathway (PAL, PI) level in cytoskeleton, DNA repair, metabolic and signaling 
pathway groups. Vertical dashed lines indicate the medians of the distributions. 
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3. Discussion 

Juxtaposition of clinical and molecular tumor phenotypes provides a basis for further 
improvement of cancer treatments. High-throughput cancer gene expression and mutation data can 
help identifying new oncogenes and driver mutations [55]. In turn, further analysis of cancer data at 
the level of molecular pathways helps understanding pathological molecular changes in a 
quantitative way [50,56–58].  

Nowadays, many molecular pathways were reported and collected in specific databases. 
Despite the existence of universal methods to pathway annotation like PathwayCommons, these 
databases were mostly generated separately and utilize different approaches to pathways 
nomenclature, and the same or very similar pathways can be included in different databases under 
different names [59]. Functional classification of the pathways also depends on a database, e.g., 
HumanCyc repository contains only metabolic pathways [45]. The structure and composition of the 
different pathway databases are continuously being revised in search for uniformity and 
comprehensiveness [59,60].  

However, most studies of cancer biology focus on only single pathways or small groups of 
pathways [61,62]. For example, in 2018, a detailed study of the mechanisms and patterns of somatic 
alterations in 10 signaling pathways in 33 cancer types revealed patterns of co-occurrence and mutual 
exclusivity, driver changes, single and multiple potentially targeted mutations [22]. However, high-
throughput simultaneous comparison of mutation and activation features of different types of 
molecular pathways was missing [63,64]. 

In this study, we performed more thorough analysis in terms of number of molecular pathways 
investigated. We explored 419 molecular pathways using new instruments to algorithmically assess 
pathway activation levels [23] and pathway mutation instability scores [24] by analyzing high 
throughput gene expression and whole exome sequencing data. To our knowledge, these metrics 
were never systemically investigated before for simultaneous large-scale characterization of 
molecular pathways in cancers. This enabled us to perform the comprehensive comparative 
characterization of four major functional groups of pathways in thirteen human cancer types. For the 
first time, for thirteen cancer primary localizations we investigated general mutation and activation 
features specifically for each type of the signaling, cytoskeleton, metabolic and DNA repair pathways.  

We then compared our results with the previous study “Oncogenic Signaling Pathways in The 
Cancer Genome Atlas” on genetic alterations scoring in ten signaling pathways using TCGA data 
[22]. The pathways were ranked on the basis of specific alteration score, where genes in each 
individual tumor were defined as either altered or not altered. Altered genes had at least one of the 
following: copy-number alterations, mutations, fusions or specific features of epigenetic silencing. 
Consequently, altered pathway was defined as pathway having at least one altered gene. Alterations 
(binary alteration score, BAS) were marked as binary values. Therefore, binary alteration scores were 
calculated both at the gene and the pathway levels. Totally 9125 tumor samples of 38 tumor subtypes 
were investigated, among them 4382 were also investigated in our study. To compare the results 
obtained, for those overlapping 4382 tumor samples, we calculated our functional metrics (nMR, 
CNR, PAL, PI) for the same ten pathways that were investigated in the previous study [22]. Then we 
performed correlation analysis on gene and pathway levels between BAS from the previous study 
[22] and our metrics (Figure 12). We found positive correlations between BAS and our mutation 
metrics both on gene and pathway levels, but no correlation was found with the expression data 
(Figure 12).  
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Figure 12. Distribution of correlation coefficients calculated for 4382 tumor samples for ten signaling 
pathways from [22] and enclosed individual genes between: (i) binary alteration score (BAS) at the 
gene level with absolute values of lg(CNR) and normalized mutation rate (nMR); (ii) BAS at the 
pathway level and absolute values of pathway activation level (PAL) and pathway instability (PI). 

We also compared our results with the trends previously revealed for BAS in different tumor 
subtypes. To this end, we calculated on the pathway level average BAS, PAL and PI scores per tumor 
subtype (Figure 13). At the gene level, we compared average BAS, CNR and nMR per tumor subtype 
(Supplementary File S2). Overall, we observed similarities for the mutational scores, but no common 
trends for the comparison with the expression data. Thus, previously reported complex binary 
alteration score partially resembles to mutation metrics like nMR ad PI because BAS includes 
mutation data as compound, but it doesn’t reflect changes at the expression level (Figures 12 and 13). 

Totally, in our study we analyzed 4910 individual cancer gene expression and matching whole 
exome sequencing profiles collectively covering ~1.3 million mutations in thirteen cancer types. We 
found that for both mutation and gene expression data, the intertumoral similarities were much 
higher at the pathway level than at the level of individual genes. We identified common trends for 
the representatives of signaling/cytoskeleton and metabolism/DNA repair groups of pathways at the level 
of mutation data. Most importantly, the signaling/cytoskeleton group members were outstandingly 
enriched by the most highly mutated genes and deficient by the genes with the low mutation levels. 
This suggests their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other 
groups of molecular pathways.  

However, at the level of gene expression, the DNA repair group showed markedly upregulated 
activation levels in cancers, whereas for the other groups of pathways, the downregulated members 
prevailed. On the other hand, DNA repair pathways also demonstrated the most congruent 
activation patterns among all the tumor samples. 

Our results also confirmed largely downregulated activities of the metabolic molecular pathways 
in cancer. In many reports, a focus was made on the metabolic alterations in tumors, so that cancer is 
even called a metabolic disorder [65–68]. We identified here multiple differentially 
regulated/mutated metabolic pathways in cancer, and several related biochemical processes were 
suggested by the gene ontology analyses. We found that metabolic pathways had the lowest 
mutational burden, and revealed that only the pathways related to nucleotide metabolism were 
significantly systemically up-regulated that argues some previous reports about hyperactivation of 
common metabolic background [65–68]. 

More specifically, the least mutated pathways dealt (cytoskeleton) with membrane organization, 
receptor-mediated endocytosis; (DNA repair) with regulation of DNA quality and associated DNA 
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repair, and with rearrangement of immunoglobulin loci; (metabolic) with biosynthesis of nucleotides 
and DNA replication; (signaling) with negative regulation of glucocorticoid receptor pathway, 
regulation of hormone levels, circadian rhythms, regulation of H3 histone deacetylation and protein 
catabolism.  

 

Figure 13. Comparison of pathway functional metrics for 4382 tumor samples common for this and 
previous study [22] calculated for ten signaling pathways from [22]. (A) Average BAS (on pathway 
level) per tumor subtype. (B) Average PAL per tumor subtype. (C) Average lg(PI) per tumor subtype. 
Molecular tumor subtypes were referred according to [22]: BLCA—Urothelial bladder cancer; 
BRCA—Breast cancer; CESC—Cervical cancer; KICH—Chromophobe renal cell carcinoma; KIRC—
Clear cell kidney carcinoma; COAD—Colon adenocarcinoma; READ—Rectal adenocarcinoma; 
SKCM—Cutaneous melanoma; GBM—Glioblastoma multiforme; LIHC—Liver hepatocellular 
carcinoma; LGG—Lower Grade Glioma; LUAD—Lung adenocarcinoma; LUSC—Lung squamous 
cell carcinoma; KIRP—Papillary kidney carcinoma; PRAD—Prostate adenocarcinoma; STAD—
Stomach adenocarcinoma; THCA—Papillary thyroid carcinoma; UCEC—Uterine corpus endometrial 
carcinoma; CIN—Chromosomal Instability; CN_HIGH—copy-number high; CN_LOW—copy-
number low; EBV—Epstein-Barr Virus; GS—Genomically Stable; Her2—Her2-enriched; IDHwt—
IDH1-wild-type; IDH mutant-codel—IDH mutant with codeletion of chromosome arm 1p and 19q; 
IDH mutant-non-codel—IDH mutant with euploid 1p/19q; LumA—Luminal A; LumB—Luminal B; 
MSI—Microsatellite Instability; POLE—polymerase ε mutant subtype. 

In turn, the most strongly mutated pathways were responsible for (cytoskeleton) exocytosis, cell 
cycle progression, processing and presentation of antigens via MHC class II; (DNA repair) cellular 
response to stress, chromosome organization, hydrolysis of phosphodiester bonds; (metabolic) drug 
response and catabolism, arachidonic acid secretion, fatty acid derivative pathways, glycosylation, 
sulfur and benzene-containing compound pathways, production of mitochondrial RNA, and tRNA 
aminoacetylation for protein translation; (signaling) regulation through phosphatidyl inositol, cell 
surface receptor pathways, growth and proliferation, transport of calcium, transcription by RNA 
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polymerase II, and regulation of immune cell activation. On the other hand, the most strongly cancer- 
downregulated pathways related to (cytoskeleton) movement of cell or subcellular components and 
locomotion, regulation of development and cell proliferation; (metabolic) cellular ketone body 
metabolism, neurotransmitter catabolic processes, sulfur pathways, drug response pathways; 
(signaling) transcription by RNA polymerase II, interleukin-7-mediated pathway. 

Among the most strongly cancer-upregulated pathways, there were no cytoskeleton pathways, 
whereas the others dealt with (DNA repair) rearrangement of immune receptor loci, protein 
localization on chromosomes and chromosomal organization; (metabolic) oligosaccharide 
biosynthesis, nucleotide biosynthesis and DNA replication; (signaling) cell migration and adhesion, 
regulation of cell death, calcium ion transmembrane transport, extracellular matrix organization, 
regulation of mRNA stability, processing and presentation of exogenous peptide antigen via MHC 
class I, and activation of immune cells. 

Finally, our study poses a challenge of analyzing the whole cancer interactome model where 
separate pathways would be connected into a single graph with known connectivity and functional 
relationships between its nodes. In the future, this type of analysis could be beneficial for 
personalized finding of causative cancer mutations and clinically actionable therapeutic molecular 
targets. 

4. Materials and Methods 

4.1. Mutation Data 

DNA mutation data were extracted from the Catalogue Of Somatic Mutations In Cancer 
(COSMIC) project database [69]. We used genome-wide screen dataset, including whole exome and 
genome sequencing data, database version 76. The whole dataset included information for 19 434 
tumor samples of different localizations obtained from different sources but here we considered only 
the samples obtained from The Cancer Genome Atlas (TCGA) project because of their uniform 
experimental and analytic pipeline [42]. We took only tumor samples that had the matching RNA 
sequencing data for the same tumor samples and also had corresponding RNA sequencing data for 
the normal samples of the same tissue type on Genomic Data Commons (GDC) data portal [70]. We 
extracted non-synonymous somatic mutations by selecting the following mutation types: 
“substitution-missense”, “deletion-frameshift”, “substitution-nonsense”, “insertion-in frame”, 
“deletion-in frame”, “insertion-frameshift”, “complex-deletion in frame”, “nonstop extension”, 
“complex”, “complex-compound substitution”, “complex-frameshift”, “complex-insertion in frame” 
(Supplementary Tables S10). The final dataset contained 1,252,669 mutation records for 19,608 genes 
from 4910 individual tumor samples. The tumor samples selected had the following primary 
localizations: bladder, breast, brain, cervix, kidney, colon and rectum, liver, lung, prostate, skin, 
stomach, thyroid and uterus (Supplementary Table S5). Every patient case corresponded to only one 
tumor sample. Individual mutation profiles are listed in Supplementary Table S11. 

4.2. Gene Expression Data 

Gene expression profiles were obtained from GDC data portal [70]. We downloaded RNA 
sequencing data (HTSeq counts modification) for the tumor samples that also had somatic mutation 
profiles from COSMIC database [48]; the normal tissues were taken for the same tissue types as the 
tumor samples investigated. Totally, gene expression data were collected for 655 normal and 4910 
tumor tissue samples (13 cancer types, Supplementary Table S5). Individual gene expression profile 
IDs are listed in Supplementary Table S12.  

4.3. Pathway Databases 

The gene structures and molecular architectures of 419 intracellular pathways were extracted 
from the public databases Reactome [43], NCI Pathway Interaction Database [44], Kyoto 
Encyclopedia of Genes and Genomes [17], HumanCyc [45], Biocarta [46], Bio-rad [71], Qiagen [47] 

(Supplementary Table S1).  
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To increase statistical accuracy, we considered only 419 molecular pathways including ten or 
more genes. These pathways were classified into four functional groups by expert supervision: 278 
signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton pathways (Supplementary Table S1; gene 
lists are available in Supplementary Table S2). 26 pathways were marked as simultaneously signaling 
and DNA repair pathways.  

4.4. Calculation of Mutation Frequency Metrics 

Pathway instability (PI) reflects mutation enrichment of a molecular pathway [14]. PI calculation 
utilizes mutation frequencies of genes forming a pathway. To assess mutation frequencies of 
individual genes, we introduced normalized mutation rate (nMR) value expressed by the formula: 𝒏𝑴𝑹𝒏 = 𝑵 𝒎𝒖𝒕ሺ 𝒏,𝒈ሻ × 𝟏𝟎𝟎𝟎𝑵 𝒔𝒂𝒎𝒑𝒍𝒆𝒔 ሺ𝒈ሻ × 𝑳𝒆𝒏𝒈𝒕𝒉 𝑪𝑫𝑺 (𝒏) 𝒏𝑴𝑹𝒏= 𝑵 𝒎𝒖𝒕( 𝒏,𝒈) × 𝟏𝟎𝟎𝟎𝑵 𝒔𝒂𝒎𝒑𝒍𝒆𝒔 (𝒈) ∗ 𝑳𝒆𝒏𝒈𝒕𝒉 𝑪𝑫𝑺 (𝒏)  (1) 

where nMRn is normalized mutation rate of gene n; N mut(n,g) is total number of mutations for gene n 
in group of samples g; N samples (g) is number of samples in group g; Length CDS(n) is length of 
coding DNA sequence (CDS) of gene n in nucleotides. PI levels were calculated as follows: 

 
(2) 

where PIp is PI for pathway p; nMRn is as described above;   𝑃𝐺௣.௡ is pathway-gene indicator that 
equals to one if gene n belongs to pathway p, or equals to zero if not; 𝑁௣—total number of gene 
products belonging to pathway p. The calculations were made using Amazon and Microsoft Azure 
cloud services. 

4.5. Calculation of Pathway Activation Level 

Pathway activation level (PAL) characterizes cumulative changes of expression levels of genes 
belonging to a certain molecular pathway [12,23,50,72,73]. PAL is calculated as follows [23]: 

 (3) 

where PALp is PAL for pathway p, CNRn is case-to-normal ratio, the ratio of gene n expression level in 
a tumor sample under study to an average level for the control group; ARR (activator/repressor role) is 
Boolean flag that depends on function of gene n product in pathway p. ARR is −1 if gene product n 
inhibits pathway p; 1 if n activates apthway; 0 if n has ambiguous or unclear role in a pathway; 0.5 or 
−0.5, if n is rather activator of a pathway or its inhibitor, respectively. The calculations were made 
using Amazon and Microsoft Azure cloud services. 

4.6. Gene Ontology Analysis 

We performed analysis of biological processes involving gene sets under investigation using 
GOrilla tool for Gene Ontology terms analysis [52]. We used modification of two unranked gene lists: 
target dataset was the gene set of interest and background was list of protein coding human genes from 
Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) database, version 
20170717 [74], p-value threshold was set as 10−3.  

Gorilla outputs were visualized using REVIGO viewer with the default settings (allowed 
similarity = 0.7, semantic similarity measure was SimRel), except for dispensability cut-off level (0.25). 
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We excluded from visualization the non-informative general terms like “biological processes” and 
irrelevant terms like “kidney morphogenesis” by expert curation.  

4.7. Comparison with the Study “Oncogenic Signaling Pathways in The Cancer Genome Atlas”. 

We used Genomic Alteration matrixes of gene and pathway levels from the study “Oncogenic 
Signaling Pathways in The Cancer Genome Atlas” [22] to compare the results of this study. Genomic 
Alteration matrixes contained information about the following alterations: copy-number alterations, 
mutations, fusions or epigenetic silencing in the form of binary alteration score (BAS). If one or more 
alterations was in the gene in the tumor sample, BAS (gene level) for this gene and this tumor sample 
was “1”, otherwise—“0”. If one or more genes had BAS equal to one in the pathway in the tumor 
sample, BAS (pathway level) for this pathway and this tumor sample was “1”, otherwise—“0”. We 
used BAS for ten signaling pathways: (1) cell cycle, (2) Hippo signaling, (3) Myc signaling, (4) Notch 
signaling, (5) oxidative stress response/ Nuclear factor erythroid 2-related factor 2 (NRF2) pathway, 
(6) PI-3-Kinase signaling, (7) receptor-tyrosine kinase (RTK)/ Rat sarcoma (RAS) kinase/ Mitogen-
Activated Protein (MAP) kinase signaling, (8) Transforming growth factor beta (TGFβ) signaling, (9) 
P53 and (10) β-catenin/ Wingless-related integration site (WNT) signaling, and 186 enclosed genes 
[22].  

The study [22] analyzed 9125 tumor samples of 64 tumor subtypes, among them 4382 
(representing 38 tumor subtypes) were also included in our study. This dataset of 4382 samples of 38 
tumor subtypes was used for the comparative analysis. Tumor sample barcodes and molecular 
subtypes are given in Supplementary Table S13. For ten above pathways, we calculated expression 
and mutation functional metrics: PAL, PI and CNR, nMR for 186 genes (Supplementary Table S14). 
Average BAS on gene level, BAS on pathway level, CNR, nMR, PAL and PI per tumor subtype were 
calculated as arithmetic mean for tumor samples of a tumor subtype under consideration.  

5. Conclusions 

Using high throughput mutation and gene expression data, we established pathway activation 
and mutation enrichment metrics of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton 
molecular pathways in 4910 individual cancer samples RNA sequencing and whole exome 
sequencing profiles representing thirteen cancer types. We found no correlation between mutation 
enrichment and expression changes both at the individual gene and molecular pathway levels. We 
observed generally congruent pathway activation profiles for different cancer types. The highest 
cancer-specific activation levels were seen in the DNA repair pathways, which had also the highest 
mutation enrichment levels. Moreover, the DNA repair pathways also demonstrated the most 
congruent activation patterns among all the tumor samples. However, the signaling and cytoskeleton 
pathways had the highest proportions of outstandingly frequently mutated genes thus suggesting 
their initiator roles in carcinogenesis and the supporting roles for the other groups of molecular 
pathways. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Referenced 
list of molecular pathways investigated in this study, Table S2: Gene lists of pathway groups: signaling, 
metabolic, DNA repair, cytoskeleton pathways, Table S3: Averaged normalized mutation rates (nMRs) for 19 
608 genes, for 4910 cancer samples, Table S4: Averaged normalized mutation rates (nMRs) for 19 608 genes, 
given separately for 13 cancer types, Table S5: Structure of dataset of 4910 cancer samples and 655 normal 
samples, IDs of expression and mutation data samples, Table S6: PAL scores for 4910 tumor samples, Table S7: 
PI scores for 4910 tumor samples, Table S8: Top and bottom 15% frequently mutated pathways and their gene 
compositions, Table S9: Top and bottom cancer-upregulated pathways and their gene compositions, Table S10: 
Mutation types in cancers, Table S11: Individual mutation profiles of 4910 tumor samples, Table S12: Links to 
individual gene expression profiles of 4910 cancer samples and 661 matched normal samples, Table S13: 
Barcodes and molecular subtypes of 4832 tumor samples, which were included in our study and in [22], Table 
S14: Expression and mutation functional metrics: PAL, PI for ten signaling pathways and CNR, nMR for 186 
genes, for 4382 tumor samples. Supplementary File S1: Cancer type-specific distributions of pairwise Spearman 
correlation coefficients between all possible combinations of tumor samples under investigation for mutation 
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and expression data at both gene wise (nMR, CNR) and pathway (PAL, PI) level in cytoskeleton, DNA repair, 
metabolic and signaling pathway groups. Vertical dashed lines indicate the medians of the distributions, 
Supplementary File S2: Comparison of gene functional metrics for 4382 tumor samples common for this and 
previous study [22] calculated for 186 genes from [22]: Average BAS (on gene level), average CNR, average 
lg(nMR) per tumor subtype. Molecular tumor subtypes were referred according to [22]: BLCA—Urothelial 
bladder cancer; BRCA—Breast cancer; CESC—Cervical cancer; KICH—Chromophobe renal cell carcinoma; 
KIRC—Clear cell kidney carcinoma; COAD—Colon adenocarcinoma; READ—Rectal adenocarcinoma; SKCM—
Cutaneous melanoma; GBM—Glioblastoma multiforme; LIHC—Liver hepatocellular carcinoma; LGG—Lower 
Grade Glioma; LUAD—Lung adenocarcinoma; LUSC—Lung squamous cell carcinoma; KIRP—Papillary kidney 
carcinoma; PRAD—Prostate adenocarcinoma; STAD—Stomach adenocarcinoma; THCA—Papillary thyroid 
carcinoma; UCEC—Uterine corpus endometrial carcinoma; CIN—Chromosomal Instability; CN_HIGH—copy-
number high; CN_LOW—copy-number low; EBV—Epstein-Barr Virus; GS—Genomically Stable; Her2—Her2-
enriched; IDHwt—IDH1-wild-type; IDH mutant-codel—IDH mutant with codeletion of chromosome arm 1p 
and 19q; IDH mutant-non-codel—IDH mutant with euploid 1p/19q; LumA—Luminal A; LumB—Luminal B; 
MSI—Microsatellite Instability; POLE—polymerase ε mutant subtype. Supplementary Figure S1. Correlation of 
nMR and CNR values for 4910 cancer samples under investigation.  
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