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Simple Summary: Distinguishing malignancy from healthy tissue is essential for oncologic surgery.
Targeted imaging during an operation aids the surgeon to operate better. The present tracers for
detecting cancer are directed against proteins that are overexpressed on the membrane of tumor
cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins
to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane
proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules
might be better targets for tumor imaging than proteins.

Abstract: Real-time tumor imaging techniques are increasingly used in oncological surgery, but still
need to be supplemented with novel targeted tracers, providing specific tumor tissue detection
based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast,
targets should be highly and homogenously expressed on tumor tissue only, preferably from the
earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear
not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of
proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor
progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins
and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed
and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor
imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily
glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing
the preclinical and clinical accomplishments within this field. Additionally, we describe the major
advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly,
by providing a brief overview of the most attractive tumor-associated glycans and glycosylated
proteins in association with their respective tumor types, we set out the way for implementing
glycan-based imaging in a clinical practice.
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1. Introduction

Cancer is a leading cause of death worldwide, accompanied by a high burden on society.
Biomedical imaging of malignant tissue plays a pivotal role in cancer detection, biopsy/therapeutic
guidance, and monitoring, and, thus, is a major contributor in defining treatment and surgical
planning [1]. Current imaging methodologies such as X-ray, ultrasound (US) computed tomography
(CT), (functional) magnetic resonance imaging ((f)MRI), positron emission tomography (PET),
and single-photon emission computed tomography (SPECT) are routinely applied within the standard
of care before surgery takes place [1,2]. Untargeted techniques, such as X-ray, US, and CT, detect tissue
irregularities based on anatomy and are, therefore, not exclusively specific for neoplastic tissue.
Since tumor-targeted contrast agents provide a more specific indication of molecular processes in both
premalignant lesions and tumors, their employment is of particular interest for preoperative staging,
intraoperative detection, and postoperative monitoring of cancer.

An adequate tumor-to-background ratio (TBR), which allows a clear differentiation between
healthy and malignant tissue, is the cornerstone of tumor imaging [3]. To maximize the TBR, an imaging
target should be highly and homogenously expressed, ideally confined to tumor tissue only. Since the
most available protein-based imaging targets appear to have limitations, such as substantial expression
on normal surrounding tissues or lack of overexpression in early disease stages, the search for novel
targets is an ever-continuing topic of research.

Aberrant glycosylation represents a hallmark of cancer, offering a set of novel tumor-specific
targets [4]. In man, more than half of all membrane-bound or soluble, secreted proteins carry sugar
molecules, referred to as glycans. These proteins are, therefore, categorized as glycosylated proteins
or, in short, glycoproteins. Glycans can also be attached to lipids, forming glycolipid structures,
such as gangliosides [5,6]. Of note, particular glycoproteins, such as proteoglycans and mucins,
carry an extensive amount of glycans that account for the majority of their molecular weight and size,
while extensively orchestrating their function. These glycoproteins are further referred to as heavily
glycosylated proteins.

In cancer and other pathological process, including infection and chronic inflammation,
glycans and heavily glycosylated proteins, which are intricately linked to disease progression,
become overexpressed [7–10]. Despite the tumor-specific expression of these structures, only a
few of these determinants have, so far, been validated as targets for tumor imaging. Table 1 summarizes
the recent studies evaluating tumor-associated glycans and heavily glycosylated proteins as targets for
molecular imaging of cancer and provides an overview of the most promising targets with respect to
their tumor type. In this review, we provide a background on the most promising glycome targets and
highlight the great potential of these structures as imaging targets by discussing the recent preclinical
and clinical research into glycan-related tumor imaging.
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Table 1. An overview of recent imaging studies evaluating glycans and heavily glycosylated proteins.

Preclinical Studies

Target Targeting Moiety Appl. Conjugate Cancer Type Cell Line Mouse Model or Phase Reference

Thomsen-Friedenreich PNA-coated nano-beacon FI Coumarin 6 Colon HCT 116 Subcutaneous [11]
TF peptide PET 64Cu-NO2A Breast MDA-MB-435 Subcutaneous [12]

A38C tetramer NIRF AF647 Ovarian Peritoneal
Carcinomatosis IGROV-1 Orthotopic [13]

Thomsen-Nouveau 2154F12A4 mAb NIRF Qdot-800 Breast MCF7 Subcutaneous [14]

sialyl-Thomsen-Nouveau 3E8 scFv NIRF IRDye 800 Colon LS174T Orthotopic [15]
CC49 mAb

HuCC49∆CH2 mAb NIRF Cy7 Colon LS174T Subcutaneous [16]

HuCC49∆CH2 PET 124I-DOTA Colon LS174T Subcutaneous [17]
Pre-target: CC49-HaloTag SPECT 111In-HaloTag ligands Colon LS174T Subcutaneous [18]

HuCC49∆CH2 SPECT/γ-scin 111In Colon LS174T Subcutaneous [19]
CC49 mAb-benzamide-TCO SPECT/γ-scin 111In-Tz Colon LS174T Subcutaneous [20]
CC49 mAb-acetamide-TCO SPECT/γ-scin 111In-Tz Colon LS174T Subcutaneous [21]

Lewisa/c/x CH88.2 NIRF IRDye 800CW Colon, Pancreas HT-29, BxPC-3 Subcutaneous [22]

sialyl-Lewisa Anti-CA19-9 mAb FI AF488 dye Pancreas BxPC-3 Subcutaneous,
orthotopic [23]

Anti-CA 19-9 mAb FI DyLight 650 Pancreas PDOX Orthotopic [24]

Anti-CA19-9 diabody PET 124I Pancreas BxPc-3, Capan-2,
MIA PaCa-2 Subcutaneous [25]

Anti-CA19-9 cys- diabody PET 124I Pancreas BxPC-3 Subcutaneous [26]
HuMAb-5B1 mAb PET 89Zr-DFO123456 Bladder HT 1197 Subcutaneous [27]

Pre-targeted: 5B1 mAb PET 89Zr Pancreas Capan-2 Subcutaneous,
orthotopic [28]

5B1 mAb-TCO PET 64Cu-NOTA-PEG7-Tz Pancreas BxPC-3, Capan-2 Subcutaneous,
orthotopic [29]

PEGPH20 and
HuMab-5B1 mAb PET 89Zr-DFO Pancreas BxPC3-HAS3 Subcutaneous [30]

5B1 mAb PET/NIRF 89Zr-DFO FL dye Pancreas BxPC-3, MIA
PaCa-2, Suit-2

Subcutaneous,
orthotopic [31]

sialyl-Lewisx sLeX-carrying liposomes NIRF Cy5.5 - Ehrlich Ascites tumor Subcutaneous [32]

Lewisy hu3S193 mAb PET SPECT/γ-scin 111In, 86Y Colon HCT-15 Subcutaneous [33]
hu3S193 diabody F(ab’)2 SPECT/γ-scin 111In-CHX-A”-DTPA Breast MCF-7 Subcutaneous [34]

GD2 ch14.18-CHO NIRF IRDye 800CW Neuroblastoma KCNR, patient-derived Orthotopic [35]

hu14.18K322A mAb PET 64Cu-p-NH2-Bn-DOTA
Neuroblastoma,

melanoma M21, PC-3. Subcutaneous [36]

hu14.18K322A mAb PET 64Cu-Bn-NOTA Osteosarcoma SJOS072 Subcutaneous [37]
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Table 1. Cont.

Preclinical Studies

Target Targeting Moiety Appl. Conjugate Cancer Type Cell Line Mouse Model or Phase Reference

Syndecan-1 Recombinant syndecan-1 MSOT CF750 succinyl ester Pancreas S2VP10 Orthotopic [38]

9E7.4 mAb PET 64Cu-TE2A Multiple myeloma 5T33 Subcutaneous,
orthotopic [39]

Glypican-1 Glypican-1 mAb FI/MRI Gd-Au-nanoclusters Pancreas COLO-357 Subcutaneous [40]

Glypican-3 Pretarget: L5 peptide MRI SA-PEG-USPIO HCC HepG2 Subcutaneous [41]
TJ12P1 peptide NIRF Cy5.5 HCC, Prostate HepG2, PC3 Subcutaneous [42]
αGPC3 mAb PET 89Zr HCC HepG2 Orthotopic [43]
αGPC3 F(ab’)2 PET 89Zr HCC HepG2 Orthotopic [44]

MUC1 EPPT peptide MRI/NIRF Magnetic NP-Cy5.5 Colon MC38 MUC1 Orthotopic [45]
EPPT peptide MRI/NIRF Magnetic NP-Cy5.5 Breast Spontaneous Orthotopic [46]
EPPT peptide MRI/NIRF Magnetic NP-Cy5.5 Pancreas Spontaneous Orthotopic [47]
EPPT peptide MRI/NIRF Magnetic NP-Cy5.5 Colon LS174T Subcutaneous [48]

CT2 mAb NIRF DyLight 650 Pancreas Panc-1, BxPC-3 Subcutaneous,
orthotopic [49]

hMUC1 mAb NIRF DyLight 755 Pancreas Capan-2 Subcutaneous [50]
CD227 mAb NIRF Fluorescein-Cy5.5 Ovary OVCAR3 Subcutaneous [51]

MUC1 aptamer NIRF MPA-PEG Breast, liver MCF-7, HepG2 Subcutaneous [52]
TAB 004 mAb NIRF ICG Breast PyMT, MMT, spontaneous Orthotopic [53]

GGSK-1/30 PET/MRI 89Zr Breast PyMTxhuMUC1 Subcutaneous [54]
PR81 mAb PET/SPECT 64Cu-DOTA Breast MCF-7 Subcutaneous [55]
PR81 mAb SPECT/γ-scin 99mTc Breast Spontaneous Orthotopic [56]

MUC1/MUC5AC Pretarget: TF10
bispecific mAb γ-scin 125I-IMP-288 Pancreas Capan-1 Subcutaneous [57]

bsPAM4 F(ab’)2 γ-scin 125I Pancreas Capan-1 Subcutaneous [58]

Pretarget: bsPAM4 F(ab’)2 γ-scin
111In-IMP-156
99mTc-IMP-192

Pancreas Capan-1 Subcutaneous [58]

MUC5AC 60C peptide MRI USPIO Colon HT-29, HCT 116 Subcutaneous [59]

MUC16 AR9.6 mAb NIRF IRDye 800CW Pancreas COLO 357, T3M4 Subcutaneous,
orthotopic [60]

B43.13 mAb B43.13 scFv PET 64Cu Ovary OVCAR3, SKOV3 Subcutaneous [61]
B43.13 mAb PET 89Zr Ovary OVCAR3, SKOV3 Subcutaneous [62]

B43.13 mAb B43.13 scFv PET 18F (FBz) Ovary OVCAR3, SKOV3 Subcutaneous [63]
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Table 1. Cont.

Preclinical Studies

Target Targeting Moiety Appl. Conjugate Cancer Type Cell Line Mouse Model or Phase Reference

Clinical Studies

sialyl-Thomsen-Nouveau B72.3 mAb RIGS 125I Colon, rectum - Phase 1/2 [64]
CC49 mAb RIGS 125I Colon, rectum - Phase 1 [65]
CC49 mAb RIGS 125I Colon, rectum - Phase 1 [66]

HuCC49∆CH2 mAb RIGS 125I Colon, rectum - Phase 1 [67]
HuCC49∆CH2 mAb RIGS 125I Colon, rectum - Phase 1 [68]

sialyl-Lewisa HuMAb-5B1 mAb PET 89Zr-DFO Pancreas - Phase 1 [69]

B3 mAb SPECT 111In Various - Phase 1 [70]

Lewisy hu3S193 mAb SPECT/γ-scin 111In Lung - Phase 1 [71]

GD2 ch14.18 mAb γ-scin 99mTc Neuroblastoma - Phase 1 [72]
3F8 mAb γ-scin 131I Neuroblastoma - Phase 1 [73]
3F8 mAb PET 124I Neuroblastoma - Case report [74]

MUC1 C595 mAb γ-scin 111In Bladder - Phase 1 [75]

C595 mAb γ-scin 99mTc Bladder - Phase 1 [76]

MUC1/MUC5AC hPAM4 mAb γ-scin 111In Pancreas - Phase 1 [77]

Abbreviations: Appl.: application, CHX-A”-DTPA: C-functionalized Trans-cyclohexyl Diethylenetriaminepentaacetic acid, γ-scin: Gamma Scintigraphy, DFO: Desferrioxamine, DOTA: 1, 4,
7, 10-Tetraazacyclododecane-1, 4, 7, 10-Tetra-Acetic Acid, GSG: Gly-Ser-Gly, FI: Fluorescence Imaging, HCC: Hepatocellular Carcinoma, ICG: Indocyanine Green, PEG: Polyethylene Glycol,
MAb: Monoclonal Antibody, MSOT: Multispectral Optoacoustic Imaging, MRI: Magnetic Resonance Imaging, NIRF: Near-Infrared Fluorescence, NP: Nanoparticle NOTA: 1, 4,
7-Triazacyclononane-1, 4, 7-Triacetic Acid, NO2A: 1, 4, 7-Triazacyclononane-1, 4-Diacetate, PDOX: Patient-Derived Orthotopic Xenograft, PNA: Arachis Hypogaea Agglutinin, RIGS:
radioimmunoguided surgery, SA: Streptavidin, TCO: Trans-Cyclooctene, Tz: Tetrazine, USPIO: Ultrasmall Superparamagnetic Iron Oxide.
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2. Glycans

2.1. Background

The attachment of glycans to proteins occurs mainly in two forms, namely O-and N-linked.
O-linked glycosylation occurs via the attachment of a sugar molecule to the hydroxyl group of mainly
serine (Ser) or threonine (Thr) residue side chains in a protein, whereas N-linked glycosylation occurs
via the attachment of an oligosaccharide consisting of multiple sugar molecules to the nitrogen atom
of asparagine (Asn) side chains (Figure 1a,b) [78]. N-glycans, which all share a common glycan
core, can be grouped into high-mannose, hybrid, and complex N-glycan structures, as depicted in
Figure 1a. However, since the development of N-glycan-specific targeting vehicles is challenging
due to the extensive structural similarity of N-glycans, therapeutic and imaging tracer development
generally focusses on O-linked glycans (explained in detail in Section 6: Targeting the Glycome:
Opportunities and Challenges).

Figure 1. Schematic structures of oligosaccharides: (a) N-Linked glycans are covalently attached to
proteins via asparagine (Asn). N-Glycans are assigned to three groups in which all share the same
Pentasaccharide, Trimannosyl core structure: (1) High-Mannose N-glycans (2) Hybrid N-glycans
in which the core is extended via both mannose and N-Acetylglucosamine (GlcNAc) residues and
(3) complex N-glycans in which GlcNAc-initiated antennae are present. (b) O-linked glycans are
covalently attached to proteins via Serine (Ser) or Threonine (Thr). Mucin-type O-Glycans are initiated
by N-Acetylgalactosamine (GalNAc), while elongated, GlcNAc-containing glycans (displayed in
dashed boxes) contribute to Type 1 (Galβ1, 3GlcNAc) and Type 2 (Galβ1, 4GlcNAc) structures. In this
figure, sLea and sLex extend from a core 1 structure (Galβ1–3GalNAc), while Lea, Lex, and Ley

are attached to a core 2 structure (Galβ1, 3[β1, 6lcNAc]GalNAc). Both N-and O-glycan antigens
can carry N-Acetylneuraminic (Neu5Ac) acids, categorizing these structures as sialylated antigens.
(c) Gangliosides consist of varying arrangement of sialic acid-containing glycan chain attached to the
cell membrane via a lipid anchor, the ceramide. GM1 to GM3 are initiated by glucose and carry one
sialic acid, while GD2 and GD3 carry two sialic acids.
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The most abundant form of O-glycosylation is mucin-type (GalNAc) O-glycosylation in
which extracellular or secreted glycoproteins are modified with N-acetylgalactosamine residues
(GalNAc-alpha-O-Ser/Thr) that, by the addition of Galactose and N-acetylglucosamine (GlcNAc)
residues, constitute different O-GalNAc core structures. O-glycan cores can be further elongated by
the addition of additional monosaccharides, which results in specific terminal glycan motifs, of which
some are shown in Figure 1b. These structures play roles in biological processes such as cell adhesion,
receptor activation, cell growth, signal transduction, apoptosis, and endocytosis and may confer
antigenicity or provide cell protection by contributing to the glycocalyx formation [79–81].

2.2. Aberrant Glycosylation in Cancer

In cancer, aberrant glycosylation is mainly characterized by increased N-glycan branching,
augmented O-glycan density, incomplete glycan synthesis, and, in more advanced cancers, synthesis of
neo-glycan determinants that carry large amounts of sialic acids or fucose residues [10–82]. This leads to
the appearance of immature truncated GalNAc/mucin-type O-glycans, such as sialyl-Thomsen-nouveau
(sTn) and complex versions of Lewis glycans, such as sialyl-di-Lewisa (s-di-Lea) [83]. In addition,
overexpression of normally expressed Lewis glycan antigens, such as sialyl-Lewisa (sLea, known as
CA19-9) and its structural isomer sialyl-Lewisx (sLex) is observed. sTn, its non-sialylated counterpart
Tn, and Lewis glycans are extensively expressed in a wide variety of epithelial-derived cancers [9,84]
such as cancers of the digestive tract [8,85–87], breast [86,88–90], lung [86,91,92], bladder [86,90,93],
and ovaries [86,87,94]. Figure 1b depicts the schematic structure of these and other tumor-associated
O-glycoantigens and illustrates the most frequently observed O-GalNAc core structures from which
they extend.

Tumor-associated glycans are heavily involved in tumor progression both directly or indirectly by
influencing its protein or lipid carrier’s function [95]. For instance, both sLex and sLea can serve as
ligands for E-selectins and P-selectins present on endothelial cells, thereby facilitating cell adhesion,
extravasation, and metastasis [85]. sLea is overexpressed on a wide variety of tumor-associated
glycoproteins, including mucin-1 (MUC1), MUC5AC, and MUC16 (CA125) [96,97]. Moreover, sLex,
also called CD15s, is overexpressed on liver acute-phase proteins, including haptoglobin [98]
and ceruloplasmin [99] and on mucins MUC1, MUC5AC, and MUC6 in pancreatic cancer [97–100].
This suggests a major advantage of targeting glycans in relation to protein targeting, as multiple
tumor-associated proteins can be targeted simultaneously via a single glycan motif (described in detail
in Section 6: Targeting the Glycome: Opportunities and Challenges). Moreover, glycans are, in relation
to proteins, very densely distributed on the outermost layer of the cell membrane [101], making them
easily accessible for targeting vehicles and, consequently, attractive targets for imaging.

2.3. Imaging of sTn

Despite its abundant expression in a wide variety of carcinomas, e.g., lung, ovarian, bladder, breast,
and almost all gastrointestinal cancers with low normal tissue distribution (reviewed in Reference [84]).
Studies into sTn-targeted molecular imaging have particularly focused on colorectal tumors and
reported clear tumor delineation. sTn, which is overexpressed on mucins MUC1 [102,103], MUC2 [97],
MUC5AC [97], and MUC6 [97], and oncoprotein CD44(v6) [103,104], has been evaluated as a target in
several imaging studies aiming to optimize a SPECT imaging contrast in colorectal cancer. For instance,
Rossin et al. described a strategy using anti-sTn monoclonal antibody (mAb) CC49 to pre-target tumor
cells prior to administration of two mAb-clearing agents followed by administration of the CC49-binding
radiolabel. Pre-targeting could theoretically provide higher tumor-to-background contrast by clearing
unbound CC49 mAbs from the circulation [20]. LS174T colon carcinoma-carrying mice that were
administered with clearing agents showed a remarkable 125-fold improvement of the tumor-to-blood
ratio 3 h post-injection, when compared to administration of (non-pre-targeted) 177Lu-NOTA-CC49.

Apart from SPECT imaging, sTn has been evaluated as a target for real-time intra-operative
imaging using near-infrared fluorescent (NIRF) light. For instance, murine CC49 and its humanized,
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CH2-deleted variant HuCC49∆CH2, were conjugated to NIR dye Cy7 and evaluated for NIRF imaging
in a subcutaneous mouse model of colorectal cancer [16]. Administration of murine CC49–Cy7 allowed
clear tumor visualization with a tumor-to-blood ratio of 15.5 at 96 h post-injection. Even though its
humanized counterpart was cleared roughly twice as fast, it showed a tumor-to-blood ratio of 12.0 at
18 h post-injection with a low specific uptake in other organs, confirming the great potential of sTn
as a target for imaging of colorectal tumors. However, since Cy7 has not been clinically approved,
the translational potential of the CC49–Cy7 tracer in this confirmation is currently limited. Apart from
NIRF imaging, the same research group conjugated HuCC49∆CH2 to 124I and showed excellent tumor
delineation using PET imaging in the same mouse model [17].

The low immunogenicity of glycans has both challenged therapeutic efficacy as well as the
development of specific and high-affinity IgG mAbs (described in detail in Section 6: Targeting the
Glycome: Opportunities and Challenges) [105,106]. For instance, sTn antibodies have been shown to
additionally react with the non-sialylated Tn epitope and binding to sTn that was dependent on the
glycoprotein it was expressed on. Thus, the need for novel antibodies that could serve as a sTn-targeting
moiety arose [86,107]. For example, Loureiro et al. developed and characterized the novel sTn mAb
L2A5, which showed tumor-specific reactivity with all included bladder and colorectal cancer tissues,
and 20% of triple-negative breast cancer tissues [90]. Moreover, Prendergast et al. developed a panel
of murine, high-affinity, internalizing sTn antibodies that showed positive immunohistochemical
staining of the majority of human ovarian, bladder, colorectal, pancreatic, lung, and gastric tumor
tissues, with low reactivity to normal human tissues [86]. Two mAbs, 5G2-1B3 and 2G12-2B2,
were subsequently humanized, whilst maintaining limited reactivity with normal human tissues.
Of these mAbs, 2G12-2B2-MMAE showed effective tumor targeting by inhibiting tumor growth in
both an ovarian cancer cell line and patient-derived ovarian xenograft mouse models [87]. Thus, sTn,
although underexplored, may pose a very suitable target considering its potential employment for
imaging of a wide range of tumor types [84].

2.4. Imaging of sLea/CA19-9

Considering its clinically applied tumor-specific upregulation in tissues and sera of pancreatic
cancer patients, sLea/CA19-9 has been exploited as a target for imaging and therapy [23,25,26,28–31].
Houghton et al. have used the humanized mAb 5B1 conjugated to a NIRF dye and radionuclide
89Zr [108] for bimodal fluorescence/PET imaging of pancreatic tumors, resulting in an excellent tumor,
a positive lymph node, and metastases localization in both a subcutaneous and orthotopic metastasizing
mouse model [31]. To improve tumor/non-tumor contrast even further, several studies using anti-sLea

mAbs to pre-target tumor cells before radiolabel administration have been developed, which have led
to remarkable improvements in TBR via various techniques [28,29].

During malignant transformation, sLea but also sLex, become expressed on the glycoprotein CEA
(carcinoembryonic antigen) [109,110], which is currently undergoing clinical translation facilitated by
our group as a target for NIRF imaging of colorectal cancer (SGM-101, SurgiMab) [111]. Given their
wide expression across different tumor types and multiple tumor-associated proteins, sLea and sLex,
may be very suitable candidates for pan-carcinoma tumor imaging.

Several mAbs recognizing alternative Lewis glycans have been developed and described.
Noble et al. described the mAb 692/29, which recognizes a unique set of Lewisy and Lewisb

glyco-epitopes. Despite some reactivity with normal gastrointestinal epithelia, 696/29, bound to
82% of colorectal tumors showed inhibition of cell growth in vivo that was further supplemented by
chemotherapy [112]. More recently, the novel murine/chimeric IgG mAbs FG88.2 and FG129/CH129
were described, which were bound to Lewisa/c/x-related and sialyl-di-Lewisa glyco-epitopes,
respectively, that were highly expressed on pancreatic, colorectal, stomach, lung, and ovarian
carcinomas with restricted expression in normal tissues [83,113]. Subsequently, our group evaluated
IRDye 800CW-conjugated FG88.2 and its chimeric mouse/human counterpart, CH88.2, for real-time
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NIRF imaging in subcutaneous mouse models of colon and pancreatic cancer, which provided excellent
tumor localization and delineation using a clinical camera system [22].

Lastly, Shimomura et al. described an alternative approach for glycan-targeting by using
glycan-binding lectin rBC2LC-N, which binds to type 1 (Fucα1-2 Galβ1-3GlcNAc) and type 3/4
fucosylated glycans (Fucα1-2 Galβ1-3GalNAc, see Figure 1a). This showed reactivity with almost
all tested human pancreatic ductal adenocarcinoma (PDAC) specimens [114]. After conjugation
with a bacterial exotoxin, a remarkable cytotoxicity was observed in several patient-derived models,
suggesting excellent tumor penetration. Most importantly, the authors excluded that rBC2LC-N
caused human serum agglutination in vitro, which is a frequently observed phenomenon after lectin
administration [115]. These results not only pave the way for a potential imaging strategy for PDAC,
but also provide a novel explorable approach for glycan targeting.

2.5. Glycan Imaging in the Clinic

Several glycan-targeting imaging tracers have already been evaluated in a clinical setting.
For instance, anti-sTn mAb CC49 and its predecessor mAb B72.3 were conjugated to 125I and used
as a tracer for radio-immuno-guided surgery (RIGS) of colorectal cancer [64–68]. Intraoperatively,
RIGS using 125I-CC49 allowed detection of 86% and 97% of primary and recurrent tumors, respectively,
while the surgical resection was influenced in roughly half of the cases [65]. However, routine clinical
implementation of RIGS is limited by the inconveniently long period between tracer administration
and surgery (one week) and handling of the long-lived 125I isotope, and, therefore, RIGS has been
overtaken by other imaging strategies, such as NIRF imaging [116]. In addition, the anti-CA19.9 tracer
89Zr-DFO-HuMab-5B1 (MVT-2163) has recently been evaluated in a Phase I trial for PET imaging of
pancreatic cancer and allowed high-contrast imaging of tumors and metastases, including lesions
that were not detected with traditional imaging methods [69]. Administration of MVT-2163 was safe,
causing mild to moderate side effects on the first day, including nausea, fever, and hypertension, in 50%
of patients.

3. Gangliosides

3.1. Background

Gangliosides are sialic acid-containing glycosphingolipids (a glycolipid subclass) that are attached
to the cell membrane via a lipid portion: the ceramide (Figure 1c). These structures are abundantly
present in the central nervous system where they serve pivotal roles in its development and
maintenance [117]. Simple ganglioside structures, such as GD2, GD3, or GM1-3, are aberrantly expressed
in several neuroectodermal-derived cancers, including melanoma, osteosarcoma, and neuroblastoma,
and in breast cancer [118–121]. Several studies have shown that gangliosides are involved in tumor
cell proliferation, mobilization, and metastasis [122,123].

In 2015, the human/mouse chimeric anti-GD2 mAb ch14.18 (dinutuximab) became the first
and only FDA-approved therapeutic anti-glycan antibody. Administered in combination with IL-2,
GM-CSF, and isotretinoin, dinutuximab increased by two-year event-free, and overall survival (OS)
rates of high-risk neuroblastoma patients with 20% and 10.9%, respectively [124,125]. Phase II and III
dinutuximab trials in neuroblastoma (NCT02743429, NCT01704716), osteosarcoma (NCT02484443),
and small cell lung cancer (NCT03098030) are underway.

3.2. Imaging of GD2

Several studies have validated the humanized variant of dinutuximab, hu14.18, as a targeting
moiety for tumor imaging. For instance, Vāvere et al. validated the hu14.18K322A variant of hu14.18,
which was developed to decrease neuropathic pain after administration while maintaining cytotoxicity,
as a targeting moiety for PET imaging. Administration of 64Cu-labeled hu14.18K322A to GD2-postive
M21 melanoma xenograft-carrying mice allowed excellent tumor delineation and localization with low
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tracer uptake in other organs [36]. More recently, the same group additionally validated the tracer
in a patient-derived and metastatic orthotopic in vivo model of osteosarcoma and observed similar
tumor-specificity related to GD2 expression and detected tumor lesions as small as 29 mm3 at 48 h
after injection [37]. Dinutuximab-beta (ch18.18/CHO), which is an FDA-approved biosimilar variant of
ch14.18, was recently conjugated to IRDye 800CW and evaluated for NIRF imaging of neuroblastoma in
a mouse model [35]. At four days post-injection, the tracer showed high-contrast tumor accumulation
in both orthotopic transplanted human KCNR neuroblastoma cells and patient-derived organoid
xenograft mouse models. Moreover, the authors showed that neoadjuvant anti-GD2 immunotherapy
did not influence tracer uptake, supporting an application of the tracer in a clinical setting. Alternatively,
Jiao et al. used gold nanoparticles (GNPs) conjugated to hu14.18K322A as NK-cell activators as well
as CT contrast agents [126]. After incubating NB1691 neuroblastoma cells and M21 melanoma cells
with the construct, the authors observed a two-fold higher antibody-dependent cellular cytotoxicity
efficacy, along with a 5-fold to 8-fold increase in CT imaging contrast compared to controls, proposing a
potent bimodal application of the tracer. None of the previously mentioned studies evaluated
neurotoxicity following administration of anti-GD2 contrast agents’ administration. Providing that
imaging tracers are administrated in a substantially lower dose than therapeutic agents, one may
expect that neurotoxicity will not pose a limiting factor for GD2-based imaging.

3.3. Ganglioside-Based Nerve Imaging

Although other gangliosides have been established as not specific for tumor cells, they might
still be of use as targets for imaging during oncological surgery. For instance, to avoid nerve injury
during prostatectomy, surgeons may be assisted by a real-time nerve monitoring system, based on a
ganglioside specific NIRF tracer. Massaad et al. used the anti-GT1b-2b mAb, which has been shown
to bind axons in spinal roots, peripheral nerves, and neurons of dorsal root ganglia and the spinal
cord, as a targeting moiety [127]. Conjugated to fluorescent dye Dylight550, peripheral nerves could
be imaged using the tracer from 24 hours up to 20 days after intravenous administration to wild-type
mice. Furthermore, the authors reported that GT1b-2b-induced nerve fiber damage was not present.

4. Proteoglycans

4.1. Background

Heavily glycosylated proteins, such as proteoglycans, also form an interesting array of targets
for tumor imaging, in addition to tumor-associated glycans Figure 2a. Proteoglycans (PGs) consist of
linear polysaccharide chains (glycosaminoglycans, GAGs) that are covalently attached to a protein
core. PGs form a major component of the extracellular matrix and contribute significantly to the
structural integrity of tissues [128]. Moreover, PGs play multifaceted roles in the regulation of
essential signaling pathways that are involved in cell proliferation, adhesion and migration, apoptosis,
and angiogenesis [129]. Heparan sulfate proteoglycans (HSPGs), such as syndecans and glypicans,
have gained significant scientific interest within the oncological field [130,131]. Syndecans and
glypicans are localized at the cell surface, allowing them to be heavily involved in integrin and
growth factor signaling and regulation of Wnt and Hedgehog signaling, which are pathways known
to be dysregulated in cancer [132–135]. Many recent studies reported overexpression [131] and,
understandably, great involvement of HSPGs in carcinogenesis and tumor progression in a wide range
of tumors, making these structures potential targets for molecular imaging of cancer [129,131,135–138].
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Figure 2. Schematic structure of heavily glycosylated glycoproteins. (a) Proteoglycans are transmembrane
glycoproteins that consist of a core protein decorated with glycosaminoglycan (GAG) chains. In glypicans,
the protein core is stabilized by disulphide bridges and linked to the cell membrane via GPI-anchors.
Both glypicans and syndecans contain serine-linked heparin sulphate and chondroitin sulphate
GAGs at both sides of the protein (here only depicted on one side), classifying them as HSPGs.
(b) Mucins are high-molecular weight proteins that are extensively decorated with mucin-type
O-Glycans, schematically illustrated here by the sTn epitope. Mucins are subdivided into transmembrane
(MUC1, MUC3, MUC4, MUC12, MUC13, MUC16, and MUC17) and secreted mucins (MUC2, MUC5AC,
MUC5B, and MUC6).

4.2. Imaging of Syndecan-1

Syndecan-1 (CD138) was evaluated as a target for bimodal NIRF imaging and multispectral
optoacoustic tomography (MSOT, also known as photoacoustic imaging) in an orthotopic in vivo
model of pancreatic cancer [38]. At 6 h post-injection, the fluorescent tumor signal was undetectable,
while MSOT provided a clear high-contrast imaging of tumor location with inferior liver and kidney
uptake. Taken together, these results underline both the advantage of MSOT imaging in relation
to NIRF imaging, i.e., deeper imaging depth as well as the great potential of this syndecan-1 tracer
for combined MSOT/NIR imaging of a wide arrange of tumors, given the broad tumor expression
of syndecan-1 [138].

More recently, Bailly et al. compared the mAb-based syndecan-1 tracer 64Cu-TE2A-9E7.4 with the
conventional tracer 18F-FDG and 64CuCl2 for PET imaging of primary multiple myeloma lesions and
metastases using a syngeneic mouse model [39]. Although 64Cu-TE2A-9E7.4 was found to accumulate
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in the liver, spleen, kidneys, and digestive tract, the tracer outperformed both 18F-FDG and 64CuCl2
in terms of non-tumor uptake and tumor-to-blood contrast (41 at 24 h post-injection). Moreover,
the tracer allowed high-contrast imaging of most metastatic depositions of which one was not observed
using 18F-FDG.

4.3. Imaging of Glypican-3

Glypican-3 is a highly sensitive biomarker of hepatocellular carcinoma (HCC) [139,140]. Over 70%
of HCC cases express high levels of glypican-3, while expression is absent on benign hepatic lesions
and normal liver tissue [136,140,141]. A vast number of studies evaluated glypican-3 as a PET,
ultrasound (US), NIR, and MR imaging target for HCC using several targeting moieties and conjugates
of a different origin [40–44,142]. In all in vivo studies, HepG2 cells could be clearly localized
and delineated using a glypican-3-specific tracer. Meanwhile, glypican-3 is validated as a target
for immunotherapy of HCC in various phase I trials, paving the way for a potential combined
therapeutic/imaging application [143].

5. Mucins

5.1. Background

Mucins form another class of high molecular weight proteins heavily glycosylated with
truncated O-glycans (Figure 2b) [144]. These often negatively charged sugar branches on both
transmembrane (MUC1, MUC4, MUC13, and MUC16) and secreted mucins (MUC2, MUC5AC,
MUC5B, and MUC6) form a physical barrier, protecting the underlying epithelium [144–146].
In cancer, aberrantly glycosylated mucins become overexpressed and are, directly or indirectly
via their truncated sTn/Tn/TF (Thomsen-Friedenreich) glyco-epitopes, heavily involved in proliferation,
migration, invasion, metastasis, and chemo-resistance, and radio-resistance of tumor cells [147–152].
For instance, both MUC1, also called epithelial membrane antigen (EMA), and MUC16, also called
CA125, are overexpressed in a wide variety of cancer types, including breast [153], lung [154,155],
gastrointestinal [146,151,156,157], head-and-neck [158,159], ovarian [160,161], and other gynecological
malignancies [162,163], making them potential targets for pan-carcinoma imaging.

5.2. Imaging of MUC1

Several preclinical studies described MUC1 as a promising target for molecular imaging [45–53,55].
For instance, Chen et al. evaluated MUC1-specific aptamers, conjugated to indocyanine green (ICG)
as a fluorescence imaging tracer in breast, non-small cell lung, or hepatocellular carcinoma-bearing
mice [52]. The tracer showed fast clearance via the kidneys, while still providing tumor-to-background
ratios of 4.0 ± 0.2 in low MUC1-expressing HepG2 tumor cells. Tumors could be clearly localized and
delineated in all models.

The expression of MUC1 on the apical surface of normal glandular epithelial cells may reduce
tumor-to-background contrast, thus, limiting the application of MUC1-targeting contrast agents [47].
Although most mAbs recognize MUC1 irrespective of its glycosylation pattern, several targeting
moieties target a highly tumor-specific conformational MUC1 epitope induced through increased
expression of truncated O-glycans sTn and Tn. The under-glycosylated (u) MUC1 or (tumor-associated)
TA-MUC1 epitope, which becomes expressed on the entire cell surface. Zhao et al. described a
promising alternative for serum marker-based therapeutic response monitoring by developing the
bimodal MR/fluorescence imaging probe MN-EPPT, which targets uMUC1 [45–48]. Using spontaneous,
human uMUC1-expressing mouse models of breast and pancreatic cancer, uMUC1 expression
was detected using MR and fluorescence imaging as early as ductal carcinoma in situ (DCIS)
and pancreatic intraepithelial neoplasia (PanIN) lesions onward [46,47]. Tracer uptake decreased
after treatment with chemotherapy, suggesting a decrease of uMUC1 expression [45–47]. Conversely,
increased tracer uptake after chemotherapy was observed in unresponsive tumors, even before
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anatomical changes were present, indicating uMUC1 as a marker for in vivo imaging of in situ lesions
and chemoresistance and/or tumor progression [45,47]. Meanwhile, positive TA-MUC1 expression has
been shown in non-small cell lung, ovarian, breast, gastric, colorectal, liver, cervical, kidney, thyroid,
and other (non-epithelial) cancers [164,165]. Administration of gatipotuzumab (previously known as
PankoMab-GEX), a humanized mAb that binds TA-MUC1 in a Tn/TF-dependent manner, was found
safe and was well-tolerated in patients with advanced carcinomas, suggesting a potential pan-carcinoma
imaging application of the targeting moiety [166].

Alternatively, GGSK-1/30, which is a murine mAb specific for an alternative MUC1 glycoprotein
epitope, was conjugated to 89Zr and evaluated for combined PET/MRI imaging of breast cancer-bearing
human MUC1-expressing transgenic mice [54]. At 72 h post-injection, administration of 89Zr-GGSK-1/30
revealed high tracer tumor uptake with lower uptake in excreting organs and healthy mammary
tissue, providing high-contrast tumor delineation. Considering its expression in 90% of breast tumors,
including triple-negative breast carcinomas, GGSK-1/30 also seems a promising targeting moiety for
pan-breast cancer detection [54].

5.3. Imaging of MUC1/MUC5AC:PAM4-Based Systems

The PAM4 mAb, which recognizes a carbohydrate-induced conformational epitope on MUC1
and MUC5AC, has been evaluated as a targeting vehicle for therapy and imaging of pancreatic cancer.
PAM4 stained approximately 85% of pancreatic carcinomas, while reactivity with pancreatitis and
healthy pancreatic tissue was, respectively, less than 25% and absent [167]. Moreover, the PAM4-epitope
is abundantly expressed in PDAC precursor lesions, namely in intraductal papillary mucinous
neoplasms and from earliest PanIN lesions (PanIN-1A) onward, suggesting a role for PAM4 in early
pancreatic cancer detection [168].

Several studies evaluated PAM4-based contrast agents for γ-scintigraphy of PDAC. Cardillo et al.
used bsPAM4 to pre-target Capan-1 pancreatic tumor cells, following administration of
histamine-succinyl-glycine peptide haptens 111In-IMP-156 or 99mTc-IMP-192, that were developed
to interact with bsPAM4 [58]. Subcutaneous Capan-1 xenografts could be imaged as early as 0.5 h
after peptide hapten administration. At 3 h post-injection, high tumor-to-blood ratios of 36.5 ± 8.3 and
9.9 ± 5.2 were achieved using 111In-IMP-156 and 99mTc-IMP-192, respectively, which was significantly
higher when compared to administration of direct-labeled bsPAM4 F(ab’)2. More recently, the same
group developed the bispecific, trivalent mAb TF10, which consists of two PAM4-derived Fab’
fragments and one mAb-679-derived Fab’, enabling interaction with the radio-labeled hapten-peptide
111In-IMP-288 [57]. At 3 h post-injection to Capan-1 tumor-bearing mice, a tumor-to-blood ratio
of 915.2 ± 404.3 was observed (vs. 5.2 ± 1.0 using 111In-DOTA-PAM4 IgG at 24 h), allowing clear
delineation of small tumor lesions. These results clearly show the advantages of a pre-targeting regime
that both demonstrate the feasibility of PAM4-based systems for molecular imaging of PDAC.

5.4. Imaging of MUC16

MUC16 has been preclinically evaluated as a target for PET imaging of ovarian tumors, using
the mAb B43.13 (oregevomab) or derived fragments conjugated to radionuclides 64Cu or 89Zr [61–63].
In human OVCAR3 tumor-bearing mice, 89Zr-B43.13 provided higher TBRs when compared to 18F-FDG,
which is the gold standard for PET imaging in ovarian cancer [62]. Moreover, the tracer showed uptake
in adjacent lymph nodes, which correlated with the lymphatic spread of tumor cells. Since a one-day
imaging protocol is more attractive in a clinical setting, the authors attempted using a faster-clearing
scFv fragment of B43.13 conjugated to 18F in the same in vivo model [63]. Unfortunately, only a
modest OVCAR3 tumor uptake was observed. In addition, since mouse B43.13 has been administered
to patients and was well tolerated despite human-anti-mouse responses based on serum analysis,
clinical application of the tracer seems feasible [62,169].
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6. Targeting the Glycome: Opportunities and Challenges

Glycan targeting may offer major advantages in relation to protein targeting. Firstly, tumor-associated
glycans may be very suitable targets for both therapy and imaging, taking into account their often-low
abundance or absence on normal tissues and very dense expression on a wide range of tumors
(Figure 3a) [170,171]. Secondly, since glycans are expressed on the outermost layer of the cell surface,
they are highly likely to be accessible by administrated targeting vehicles, in contrast to membrane-bound
proteins, that may even be masked by glycans (Figure 3b). Thirdly, glycosylation changes may be more
pronounced as a response to disease compared to changes in the proteome with atypically-expressed
glycans potentially present on many glycoproteins, essentially amplifying their expression [172,173].
These characteristics provide major advantages for imaging of early cancer stages onward, but also for
the employment as a serum biomarker for diagnosis, follow-up, monitoring of therapeutic response,
or patient stratification, with CA19.9/sLea as the most illustrative example for monitoring of pancreatic
cancer (Figure 3c) [171,174,175]. Most importantly, glycan-directed tracers target multiple tumor-associated
proteins simultaneously and provide a broader tumor-targeting strategy than individual protein targeting
(Figure 3d). Within this context, especially mucin-type O-glycan sTn poses a suitable pan-carcinoma
glycotarget, given its high, tumor-specific expression on oncoprotein CD44 as well as MUC1, MUC2,
MUC5AC, and MUC6 [84].

Figure 3. Schematic comparison of glycan-targeting versus traditional (glyco)protein targeting for
molecular imaging of tumors. (a) Tumor-associated glycans (dark blue branches) are densely packed
on multiple proteins (displayed in pink and dark blue) with higher density than binding epitopes on
tumor-associated proteins (displayed in yellow). This may result in a denser accumulation of conjugated
antibodies, subsequently enhancing tumor signal during imaging. (b) Glycans form the outer layer of
proteins, making them easily accessible to administered targeting moieties. Noteworthily, glycans may
mask binding domains on proteins, challenging specific binding of protein-directed targeting moieties.
(c) Since aberrantly expressed glycans may be expressed on many glycoproteins (amplified expression),
changes in glycoprotein glycosylation are more attractive for use as serum biomarkers than targeting of
individual glycoproteins. (d) As similar tumor-associated glycan structures are expressed on multiple
tumor-associated proteins, glycan-targeting can be more efficient compared to single protein targeting.
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Nevertheless, despite over 50 years of glycobiology, glycan-targeting seems still in its infancy.
There may be several reasons for this, likely related to difficulties in anti-glycan mAb development [176].
Glycans are not very immunogenic, which results in a major disadvantage. Hybridoma-produced
mAbs against glycans are often IgM pentamers that are less optimal, if not unsuitable, for in vivo
targeting due to their low affinity and large size, essentially preventing extravasation [106,177–179].
Of note, several N-glycans are intrinsically expressed by host species used in mAb production,
which may explain low glycan immunogenicity. Thus, non-immunoglobin-derived targeting moieties,
for which production is less dependent on sufficient immunogenicity, such as aptamers, lectins,
and boronic acid derivatives, may represent promising alternatives to mAbs [176]. Alternatively,
efforts have been made to improve glycan immunogenicity via various complex immunization
protocols, with several successes [83,86]. In addition, the current lack of high-throughput screening
methods, which are essential considering the extraordinarily high number of glycan structures,
challenges the development of anti-glycan mAbs [176–180]. Since groups of glycans-and particularly
N-glycans—may be structurally highly related, mAbs are often promiscuous to a certain extent and
may, thus, interact with multiple glyco-epitopes, which might be present on normal tissues [181,182].
N-glycan targeting is, therefore, regularly overshadowed by the potential of O-glycans. However,
since novel techniques such as MALDI-TOF-MSI have recently improved N-glycan detection and
are estimated to increasingly contribute to the identification of novel tumor-specific N-glycans,
the development of tracers targeting a very specific N-glycan structure seems feasible in the near
future [183]. In fact, various studies have already indicated that several serum N-glycan profiles
have extraordinarily high sensitivities and specificities for diagnosis of diverse cancer types [184–186].
Lastly, the translation of the results of preclinical glycan-based imaging studies to the human situation
is often confounded. Since mice do not express fucosyltransferase-3, a major enzyme involved in
Lewis glycan synthesis [187], and their glycome is, in various respects, not directly comparable to
humans. This undoubtedly results in overestimation of TBR imaging contrast in studies evaluating
these glycans as an imaging target. Therefore, the use of transgenic mice seems inevitable, but the
same is true for virtually all protein-directed tracers.

7. Conclusions

The search for novel tumor-specific targets for targeted therapy and molecular imaging is an
ever-continuing topic of research. Aberrant glycosylation of proteins and lipids as well as overexpression
of mucins and proteoglycans is an increasingly relevant feature of cancer, providing tumor cells with
unique attributes associated with disease progression. However, the perfect pan-carcinoma target
may not exist. Tumor-associated glycans and heavily glycosylated proteins form a panel of targets
that deserves extensive attention. As described here, glycan targeting, while remaining challenging,
potentially offers major advantages over protein targeting for imaging and therapy. Several promising
targeting moieties are currently available, of which some have been already evaluated for imaging and
therapeutic purposes. In this review, we summarized the ongoing research within the field of glycan
imaging and intended to provide a firm foundation for glycan-based improvement of cancer care in
the near future.
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