
Supplementary Materials

To the article by A. Kleppe, F. Albregtsen, J. Trovik, G. B. Kristensen and H. E. Danielsen, titled:

Prognostic Value of the Diversity of Nuclear Chromatin Compartments in Gynaecological

Carcinomas

S1 Segmentation of Chromatin Compartments

An algorithm for segmentation of visible chromatin compartments in nuclear images was developed

using the train subset of the ovarian carcinoma cohort. An important challenge implied by acquiring

two-dimensional images of entire cell nuclei, is that different chromatin compartments may overlap

in a nuclear image. Also, the physical size in the direction of projection may differ across an imaged

nucleus, typically being thinner near the periphery than the centre, warranting the segmentation

approach to be locally adaptive.

Technically, the segmentation was performed by assigned one of three unique labels to each pixel

in a nuclear image. Two of the labels were used to indicate pixels in relatively highly condensed

or relatively weakly condensed chromatin compartments, while the last label was used to indicate

that the pixel was not a part of such compartments. The appropriate label for each pixel was

automatically determined using two segmentation steps. The first step adaptively thresholded the

nuclear image, and the second separated overlapping chromatin compartments and removed small

objects. These steps are described in each of the two following subsections.

S1.1 Adaptive Thresholding

A nuclear image M ∈ {0, 1, . . . , G− 1}m,n, where G is the number of grey levels and m and n are

the height and width of the image, was thresholded using a generalisation of Niblack’s adaptive

thresholding algorithm [1]:

1. Calculate the gradient magnitude image using the 3x3 Sobel operator.

2. For every s = (w, kd, kb) tuple with window size w ∈ {5, 7, 9} and threshold parameters

kd, kb ∈ {0.3, 0.4, . . . , 1.0}, compute the thresholded image Ns ∈ {0, 1, 2}m,n by:

Ns(i, j) =


0 if M(i, j) < td(i, j)

1 if td(i, j) ≤M(i, j) ≤ tb(i, j)
2 if M(i, j) > tb(i, j)

(1)
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where 0, 1 and 2 indicates dark, grey and bright region, respectively, representing chromatin

compartments with relatively high, intermediate and weak condensation, and:

td(i, j) := µw(i, j)− kdσw(i, j) (2)

tb(i, j) := µw(i, j) + kbσw(i, j) (3)

for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1, and where µw(i, j) and σw(i, j) were the

expectation and standard deviation of the grey levels in a local window of size wxw with

centre (i, j) in M .

3. The dark and bright criterion value for Ns was defined as the mean gradient magnitude of

boundary pixels in dark and bright regions, respectively. The chosen thresholded image N

was the Ns that maximised the mean of the dark and bright criterion values.

The chosen values of the threshold parameters kd and kb were distributed as shown in Supple-

mentary Figure S4. The somewhat high lower bound of the threshold parameters, 0.3, assures that

dark and bright regions are primarily separated by grey regions, a characteristic that was initially

desired and later justified by evaluations in the train subset of the ovarian carcinoma cohort. These

evaluations indicated that the classification accuracy was similar irrespective of whether the small-

est possible value of the threshold parameters was 0.3, 0.2 or 0.1, and that accuracy was slightly

lower if the smallest possible value was 0.

The window size chosen by the algorithm was 9 for all but one nuclear image. This was expected

because an increased window size will shift the focus from highly local changes to larger trends,

which in itself cause growing and joining of adjacent and prominent regions of the same type (dark

or bright) and possibly shrinking or loss of smaller and more subtle regions, particularly if they are

surrounded by both dark and bright regions. While the loss of subtle regions is likely to increase

the criterion values, the growth of other objects may influence the criterion values either positively

or negatively. However, if the criterion values were decreased, then the enlargement could be

reversed by also increasing the threshold parameters, thus the combined result of increasing the

window size and possibly the threshold parameters is fewer and more prominent objects, which

should increase the criterion values. The choice of upper bound for the window size parameter is

therefore essentially an assertion of the window size. Setting the value too high will often result in

the selection of a thresholded image N where only the most prominent chromatin compartments

are identified, but conversely, proper labelling of all relevant chromatin compartments requires that

the desired compartments fit well within the windows. The applied upper bound, 9, is found to be

a reasonable compromise.

S1.2 Splitting and Cleaning

As suggested by Yanowitz and Bruckstein [2] in the validation step of their segmentation method,

the mean gradient magnitude of an object’s boundary pixels reflects how clearly the object is

distinguished from the background, making it a reasonable criterion for threshold fitness. However,
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when multiple chromatin compartments of the same type (relatively highly condensed or relatively

weakly condensed) overlap in a nuclear image, the gradient magnitude will not be high between the

compartments, only between the cluster of compartments and the outside. Overlapping chromatin

compartments can therefore not be expected to be separated in the thresholded image N , thus we

need to detect and divide objects in N that encapsulate multiple chromatin compartments.

For each 8-connected dark or bright object in N , the corresponding sub-image in M was low-pass

filtered by convolving it with:

1

6

0 1 0

1 2 1

0 1 0

The filtered image was watershed transformed and the label at the resulting 4-connected watershed

lines was set as grey. Finally, dark or bright objects with less than five pixels were assigned the

grey label.

The resulting image will subsequently be referred to as the class label image corresponding to

the input nuclear image. Supplementary Figure S5 shows a representative nuclear image and the

corresponding class label image. All prominent clusters of dark or bright pixels were detected as

dark and bright objects, and the meaning of cluster depended on the local average intensity, as

desired. Overlapping chromatin compartments seems appropriately handled; e.g., the relatively

large dark cluster northwest of the centroid was separated into three reasonable dark objects.

S2 Dual Entropy Matrices

The dual entropy matrix (DEM) can be defined in the context described by Mâıtre et al. [3] and

Tupin et al. [4], where each pixel was characterised by the following three quantities:

� The optical density or grey level g ∈ {0, 1, . . . , Gr−1} in a nuclear image uniformly requantified

to Gr = 64 grey levels.

� The class label l ∈ {0, 1, . . . , L − 1} in the corresponding class label image. L = 3 is the

number of unique labels.

� The context value v ∈ {1, 2, . . . , V }, here defined as the number of pixels in the 4-connected

object in N that contains the pixel. V was the maximum object size.

Collecting the three values for all pixels in a nuclear images will give a grey level image A ∈
{0, 1, . . . , Gr − 1}m,n, a class label image B ∈ {0, 1, . . . , L − 1}m,n and a context value image

C ∈ {1, 2, . . . , V }m,n.

Let f(g, l, v) be the discrete probability that the combination of grey level g, class label l and

context value v occurs in a specific (A,B,C)-tuple. By the definition of conditional probability and

the law of total probability, the class conditional pmf is then:

f(g, v|l) =
f(g, l, v)∑Gr−1

g′=0

∑V
v′=1 f(g′, l, v′)

(4)
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if the denominator is positive; otherwise, no pixels have class label l and we defined f(g, v|l) as 0.

The marginals of the class conditional pmf are the grey level histogram for class l, f(g|l), and

the context value histogram for class l, f(v|l):

f(g|l) :=

V∑
v=1

f(g, v|l) =

∑V
v=1 f(g, l, v)∑Gr−1

g′=0

∑V
v=1 f(g′, l, v)

(5)

f(v|l) :=

Gr−1∑
g=0

f(g, v|l) =

∑Gr−1
g=0 f(g, l, v)∑Gr−1

g=0

∑V
v′=1 f(g, l, v′)

(6)

Again the denominators are assumed positive, if not, then all f(g, v|l) for class l are zero, which

implies that the histograms f(g|l) and f(v|l) are also zero. Supplementary Figure S6 visualises the

histograms for the bright label in the representative nuclear image.

The binary Shannon entropy of a grey level or context value histogram for class l was denoted

εl and ζl, respectively, and defined as:

εl := −
Gr−1∑
g=0

f(g|l) log2 f(g|l) , f(g|l) > 0 (7)

ζl := −
V∑

v=1

f(v|l) log2 f(v|l) , f(v|l) > 0 (8)

We defined the DEM for class l and using qGr and qV quantification levels per integer grey level

and spatial entropy, respectively, as:

P := δ(x− bqGr
εlc, y − bqV ζlc) (9)

where δ is the Kronecker delta and the discrete variables x and y range from 0 to their respective

theoretical maxima, which are the flooring of qGr
logGr and qV log V , respectively. The DEM of a

nuclear image is thus a binary matrix where only element (bqGr
εlc, bqV ζlc) has value one.

The DEMs of the nuclear images from a patient was averaged to obtain the patient’s DEM, i.e.

the element (x, y) of the kth patient’s DEM for label l was:

P̄k(x, y|l) :=
1

mk

∑
j

Pk,j(x, y|l) (10)

where Pk,j was the DEM of the jth nuclear image from patient k, which had mk nuclear images in

total.

The DEM for the bright label is illustrated in Supplementary Figure S7 for a patient with good

and a patient with poor clinical outcome. In this example, both entropies were typically larger for

the patient with poor clinical outcome.

S3 Features from DEMs

Both predefined and adaptive features could be extracted from a patient’s DEM. An adaptive

feature method initiated by Walker et al. [5] and later developed by Albregtsen et al. [6–9] was
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based on weighting each texture matrix element by its discriminatory ability. The feature value for

label l would be a T -weighted sum of the patient’s DEM, i.e.:

Uk,l :=
∑
x

∑
y

T (x, y|l)P̄k(x, y|l) (11)

where the weight T (x, y|l) should reflect the relative ability to discriminate between the two outcome

classes in element (x, y) of the DEM for label l.

To compute the weight matrix T , consider the DEMs of the nuclear images from patients in a

train subset. Let Pk,j(x, y|l, ωc) be the value of element (x, y) in the DEM for label l of the jth

nuclear image in the kth patient with outcome class ωc. The class-specific arithmetic mean and

unbiased sample variance at each element can then be written as:

P̄ (x, y|l, ωc) =
1

nc

∑
k

∑
j

Pk,j(x, y|l, ωc) (12)

S2(x, y|l, ωc) =
1

nc − 1

∑
k

∑
j

(Pk,j(x, y|l, ωc)− P̄ (x, y|l, ωc))
2 (13)

where nc is the number of DEMs in outcome class ωc.

Walker et al. [5] suggested to measure the discriminatory ability in each element by the Maha-

lanobis distance between the outcome classes:

D(x, y|l) :=
|P̄ (x, y|l, ω0)− P̄ (x, y|l, ω1)|

S(x, y|l)
(14)

where ω0 and ω1 specifies the good and poor outcome class, respectively, and S(x, y|l) is the square

root of the unbiased pooled variance estimate:

S2(x, y|l) :=
(n0 − 1)S2(x, y|l, ω0) + (n1 − 1)S2(x, y|l, ω1)

n0 + n1 − 2
(15)

The estimated Mahalanobis distances can be signed by the outcome class with the highest mean

probability to form the weights, giving:

T (x, y|l) :=
P̄ (x, y|l, ω0)− P̄ (x, y|l, ω1)

S(x, y|l)
(16)

Recognise that T (x, y|l) is the t-statistic in the two-sample t-test that assumes equal variances,

under the null hypothesis that the expectations of the outcome classes are equal in element (x, y)

for label l, when we disregard the constant scaling factor (1/n0 + 1/n1)−1/2 that is irrelevant for

our application.

Supplementary Figure S8 displays the weight matrix T for the dark and bright label when

computed using the train subset of the ovarian carcinoma cohort. For both labels, poor clinical

outcome was associated with higher entropies and the elements with high discriminatory ability

formed two clusters. One of these clusters indicated good clinical outcome (depicted as bright
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elements in Supplementary Figure S8) and the other indicated poor clinical outcome (depicted

as dark elements in Supplementary Figure S8). Such clustering of highly discriminatory elements

signifies consistent and large prognostic trends in the DEMs, and also reliable estimation of the

discriminatory ability in the elements that form the clusters.

As the class-specific grey level entropy is likely to be positively correlated with the local grey

level entropy, the increase in class-specific entropy associated with poor clinical outcome is in ac-

cordance with the prognostic shift in local entropy observed by Nielsen et al. [10]. The relatively

high spatial entropy in the poor outcome class indicates that increased size and number of chro-

matin compartments is a characteristic of cancer cell nuclei in patients with worse clinical outcome.

This finding in established cancer extends previous reports on the changes in size and number of

chromatin compartments that occur during carcinogenesis [11–16].

S4 Dual Entropy Sum Histograms and Their Features

Each weight matrix shown in Supplementary Figure S8 strongly suggests that the same change in

either entropy affects the discriminatory ability equally. If this holds in general, then all discrimi-

natory information is maintained in the projection of the DEM onto its diagonal, i.e. in the sum

histogram [17] of the DEM. We define the dual entropy sum histogram (DESH) as this projection:

~p := δ(i− bq(εl + ζl)c) (17)

where q is the number of quantification levels per integer entropy sum and the discrete variable i

ranges from 0 to its theoretical maximum, which is the flooring of q(logGr + log V ). An important

advantage with performing the projection is that DESHs are more reliably estimated than DEMs

due to much fewer elements, which also increases the accuracy of the computed weights in the

adaptive feature method.

As for the DEMs, we could compute the signed Mahalanobis distance between good and poor

clinical outcome at each DESH element. The resulting weight vectors in the train subset of the

ovarian carcinoma cohort are illustrated in Supplementary Figure S9. As expected, the trends from

the corresponding weight matrices persisted and the transitions became less noisy because of more

reliable estimation.

It was far more common for a nuclear image to have entropy sums in the clusters of highly

discriminatory elements than outside the clusters. Consequently, the estimation reliability varied

across DESH elements, being highest in the clusters and relatively low outside of them. To obtain

similar reliability in all elements, the element edges were automatically selected to give the same

number of entropy sums in each element when considering only the nuclear images in the train

subset. Evaluations in the train subset of the ovarian carcinoma cohort indicated that the best

choice was three quantification levels that each contained the entropy sum of about 12000 nuclear

images. When using the entire train subset, targeting to have the entropy sum of about 12000

nuclear images in each DESH element resulted in the weight vectors shown in Supplementary
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Figure S10 and Supplementary Figure S11. These were used to compute adaptive feature values

from DESHs in the same manner as described for DEMs.
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Supplementary Table S1. Characteristics of the 246 ovarian carcinoma patients

Characteristic Subgroup Statistic

Pathological risk classification* - no. (%)

Low risk 48 (20)

Medium risk 67 (27)

High risk 131 (53)

Diversity of chromatin compartments - no. (%)

Similar chromatin compartments 156 (63)

Diverse chromatin compartments 90 (37)

Chromatin heterogeneity - no. (%)

Chromatin homogeneous 169 (69)

Chromatin heterogeneous 77 (31)

GLEM4D classification� - no. (%)

Low chromatin entropy 164 (67)

High chromatin entropy 82 (33)

Median age at surgery (IQR) - yr 57 (49-66)

Age at surgery - no. (%)

≤60 yr 141 (57)

>60 yr 105 (43)

FIGO stage - no. (%)

IA 86 (35)

IB 13 (5)

IC 147 (60)

Histological grade - no. (%)

1 106 (43)

2 36 (15)

3 46 (19)

Not graded (clear cell) 58 (24)

Histological type - no. (%)

Mucinous 65 (26)

Endometrioid 49 (20)

Serous 49 (20)

Clear cell 58 (24)

Small cell 2 (1)

Mixed 8 (3)

Unclassifiable 15 (6)

Dense adhesions - no. (%)

Absent 157 (65)

Present 85 (35)

Rupture - no. (%)

Absent 128 (53)

Present 115 (47)

Median follow-up time (IQR) - yr 11.7 (8.3-13.6)

FIGO, International Federation of Gynecology and Obstetrics; GLEM4D, four-dimensional grey level entropy

matrix; IQR, interquartile range. *Pathological risk classification was: Low risk if FIGO stage IA and well differen-

tiated; Medium risk if FIGO stage IA and well differentiated or FIGO stage IB or IC and moderately differentiated;

High risk if either clear cell histology, poorly differentiated or both moderately differentiated and FIGO stage IB

or IC [18]. �GLEM4D classification reported by Nielsen et al. [10].
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Supplementary Table S2. Characteristics of the 791 endometrial carcinoma patients

Characteristic Subgroup Statistic

Pathological risk classification* – no. (%)

Low risk 610 (78)

High risk 175 (22)

Diversity of chromatin compartments - no. (%)

Similar chromatin compartments 601 (76)

Diverse chromatin compartments 190 (24)

Chromatin heterogeneity - no. (%)

Chromatin homogeneous 673 (85)

Chromatin heterogeneous 118 (15)

GLEM4D classification� - no. (%)

Low chromatin entropy 573 (72)

High chromatin entropy 218 (28)

Median age at primary treatment (IQR) - yr 66 (59-74)

Age at primary treatment - no. (%)

≤70 yr 507 (64)

>70 yr 284 (36)

Primary treatment - no. (%)

Hysterectomy 767 (97)

Tumour reduction 3 (0)

Curettage 21 (3)

FIGO stage - no. (%)

IA 434 (55)

IB 174 (22)

II 55 (7)

III 90 (12)

IV 29 (4)

Pathologic node (N) stage - no. (%)

N0 517 (88)

N1/2 72 (12)

Myometrial invasion - no. (%)

<50% 457 (65)

≥50% 250 (35)

Histological grade - no. (%)

1 290 (37)

2 265 (34)

3 233 (30)

Histological type - no. (%)

Endometrioid carcinoma 665 (84)

Serous carcinoma 53 (7)

Clear cell carcinoma 30 (4)

Carcinosarcoma 29 (4)

Other 14 (2)

Median follow-up time (IQR) - yr 2.96 (1.47-4.44)

FIGO, International Federation of Gynecology and Obstetrics; GLEM4D, four-dimensional grey level entropy

matrix; IQR, interquartile range. *Pathological risk classification was based on the curettage histology report and

was: Low risk if benign, hyperplasia or endometrioid grade 1 or 2; High risk if non-endometrioid or endometrioid

grade 3 [19]. �GLEM4D classification reported by Hveem et al. [20].
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(a) (b)

(c) (d)

Supplementary Figure S1. Difference in distribution of number of regions from good to poor

clinical outcome. (a) Dark regions in ovarian carcinoma cohort. (b) Dark regions in endometrial

carcinoma cohort. (c) Bright regions in ovarian carcinoma cohort. (d) Bright regions in endometrial

carcinoma cohort.
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(a) (b)

(c) (d)

Supplementary Figure S2. Difference in distribution of chromatin compartment size from good

to poor clinical outcome. (a) Dark regions in ovarian carcinoma cohort. (b) Dark regions in

endometrial carcinoma cohort. (c) Bright regions in ovarian carcinoma cohort. (d) Bright regions

in endometrial carcinoma cohort.
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(a) (b)

Supplementary Figure S3. Scatter plot of the dual entropy sum histogram (DESH) features in

the (a) ovarian and (b) endometrial carcinoma patient cohort. The line in each scatter plot is the

classifier’s decision boundary when trained on the respective train subsets; the classification is di-

verse chromatin compartments (DCC) below the decision line and similar chromatin compartments

(SCC) above the line. The ellipses are level curves at 0.2 of (~x− ~mi)
TS−1i (~x− ~mi), where Si is an

unbiased feature sample covariance matrix and ~mi is the corresponding mean feature vector.
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(a) (b)

Supplementary Figure S4. Distribution of the chosen value of parameter (a) kd and (b) kb in

the adaptive thresholding.

(a) (b)

Supplementary Figure S5. (a) A representative nuclear image and (b) the corresponding class

label image. The bright, grey and dark labels in the class label image are shown as light grey, dark

grey and black, respectively. The applied watershed lines are shown in green, and the cleaned small

objects are shown in red. The chosen parameters in the generalisation of Niblack’s algorithm were

w = 9, kd = 0.5 and kb = 0.3.
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(a) (b)

Supplementary Figure S6. (a) Grey level and (b) context value histogram for the bright label

of the nuclear image shown in Supplementary Figure S5.

(a) (b)

Supplementary Figure S7. Dual entropy matrix (DEM) for the bright label of a ovarian car-

cinoma patient with (a) good clinical outcome and (b) poor clinical outcome when applying five

quantification levels per integer entropy. The nuclear image in Supplementary Figure S5 is from

the patient with good clinical outcome. The values of the DEMs range from 0 to 0.069 and 0.061,

respectively.
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(a) (b)

Supplementary Figure S8. DEM weight matrix for the (a) dark and (b) bright label when

applying five quantification levels per integer entropy. The weights were estimated using the nu-

clear images in the train subset of the ovarian carcinoma cohort and span [−0.095, 0.060] and

[−0.154, 0.096], respectively.

DEM, dual entropy matrix.

(a) (b)

Supplementary Figure S9. DESH weight vector for the (a) dark and (b) bright label when

applying five quantification levels per integer entropy sum. The weights were estimated using the

nuclear images in the train subset of the ovarian carcinoma cohort.

DESH, dual entropy sum histogram.
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(a) (b)

Supplementary Figure S10. DESH weight vector for the (a) dark and (b) bright label when

targeting 12000 entropy sums in each element. The weights were estimated using the nuclear images

in the train subset of the ovarian carcinoma cohort.

DESH, dual entropy sum histogram.

(a) (b)

Supplementary Figure S11. DESH weight vector for the (a) dark and (b) bright label when

targeting 12000 entropy sums in each element. The weights were estimated using the nuclear images

in the train subset of the endometrial carcinoma cohort.

DESH, dual entropy sum histogram.
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