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Simple Summary: Increasing numbers of cancer patients are turning to complementary and
alternative medicines (CAM) to facilitate or replace their cancer treatments, or they are obtaining
natural products in their diet. This is concerning, as there is evidence of molecular interactions
between these bioactive compounds and cancer drugs that can impede or reverse their efficacy
and prevent cancer regression. High-throughput drug screening and deep learning techniques
have successfully been applied in the past to evaluate synergistic cancer drug and natural product
combinations. However, these techniques should be applied more commonly in the context of
drug antagonism to uncover potentially harmful interactions and drive safer recommendations for
cancer patients. In this review, we evaluate the antagonistic interactions between natural products
and chemotherapeutics and highlight how the application of high-throughput screening and deep
learning techniques can strengthen this area of research.

Abstract: Natural products have been used for centuries to treat various human ailments. In recent
decades, multi-drug combinations that utilize natural products to synergistically enhance the
therapeutic effects of cancer drugs have been identified and have shown success in improving
treatment outcomes. While drug synergy research is a burgeoning field, there are disagreements on
the definitions and mathematical parameters that prevent the standardization and proper usage of the
terms synergy, antagonism, and additivity. This contributes to the relatively small amount of data on
the antagonistic effects of natural products on cancer drugs that can diminish their therapeutic efficacy
and prevent cancer regression. The ability of natural products to potentially degrade or reverse
the molecular activity of cancer therapeutics represents an important but highly under-emphasized
area of research that is often overlooked in both pre-clinical and clinical studies. This review aims
to evaluate the body of work surrounding the antagonistic interactions between natural products
and cancer therapeutics and highlight applications for high-throughput screening (HTS) and deep
learning techniques for the identification of natural products that antagonize cancer drug efficacy.
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1. Introduction

Cancer is a general term used to describe a group of diseases that exhibit abnormal cell growth
and proliferation. Second only to cardiovascular disease, cancer is the most common cause of death
in the United States and remains a leading cause of death worldwide [1,2]. As precision medicine
has become more prevalent, cancer treatments are increasingly cancer type- and individual-specific
and often involve targeting multiple oncogenic molecular pathways with combinations of therapeutic
agents [3,4]. However, the development of drug resistance and the toxicity and adverse secondary side
effects of these treatments remains an obstacle for optimizing patient outcomes and quality of life [3,5].
As described in detail in the following section, synergistic combinations of drugs that work together to
enhance therapeutic efficacy are often used to overcome these challenges. These combinations may
include natural compounds, which are an attractive treatment option due to their ability to prevent
cancer development and progression by inhibiting cancer metastasis, angiogenesis, proliferation,
and differentiation, regulating autophagy, and inducing apoptosis with increased therapeutic efficacy
and reduced general toxicity [6-11].

Bioactive natural compounds, including phytochemicals, such as polyphenols and flavonoids,
vitamins, and other micronutrients, are obtained from plants, fungi, and bacteria, and other living
organisms. Some are present in our food, herbs, and spices, while others are extracted from non-food
sources that we would not normally obtain otherwise [12]. Bioactive natural products also form the
basis for many types of complementary and alternative medicines (CAM), an umbrella term that is
used to describe medical treatments and practices that are not a part of standard medical care but rather
used alongside or potentially instead of it to facilitate healing, prevent disease recurrence, or alleviate
adverse side effects [13]. Bioactive compounds are not limited to CAM applications and are also
heavily used in standard medicine. Indeed, bioactive products have been used for over 60 years in the
treatment of cancer, and approximately 60% of chemotherapeutic agents currently in use today are
natural products or natural product derivatives [6]. Many of them, including curcumin from turmeric,
resveratrol from red wine, isothiocyanates from cruciferous vegetables, and quercetin and ursolic acid
from apples have been shown to have profound anti-tumor activity [14-19].

On the other hand, many common CAM treatments and natural products may be ineffective [20].
Worse, they can produce unintended adverse side effects or alter the actions of conventional medical
treatments by inhibiting or amplifying their effects to dangerous levels [20-22]. For example, it is
well known that furanocoumarins from grapefruit juice can interact with over 85 commonly used
drugs, including statins, antiretroviral medications, and antihypertensive medications, and cause
serious side effects by interacting with the cytochrome P450 3A4 enzyme and altering drug metabolism
and bioavailability [23]. Because these adverse events are severe and can cause rhabdomyolysis,
nephrotoxicity, heart issues, and even death, patients taking these medications are advised to avoid
grapefruit altogether. While CAM and natural products can have serious, acute negative health effects,
they may also be significantly less severe and present as subtle perturbations in health status or even go
unnoticed [24]. As discussed in later sections, some natural products, including those found commonly
in the Western diet such as fruits, vegetables, and green tea extracts, can directly interact with and
antagonize conventional drugs and prevent them from exerting their desired treatment effects without
causing overt adverse health events [20]. Table 1 includes a list of natural products, most of which are
naturally present in foods that are common in the diet that can directly inhibit the molecular actions of
chemotherapeutic agents in cancer models. Many of the natural products found in Table 1 are also
considered to be components of CAM and touted as anti-cancer compounds, which may encourage
individuals with cancer to supplement with these compounds in high amounts [20,25]. This is a
growing concern, as up to 52% of cancer patients report using CAM before being diagnosed with
cancer, and approximately 60% report using CAM after diagnosis and are often reluctant to notify their
doctor of their CAM use [26-28]. Even cancer patients who do not partake in CAM use or supplement
with natural products can still obtain potentially harmful bioactive natural products through the diet
that may impede their treatment. Because CAM, natural products, and food and dietary supplements
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are all generally regarded as safe by cancer patients, they are more likely to consume natural products
and supplements as complementary treatments and less likely to report adverse health events related
to their usage [29]. This information, taken together with the fact that the sale and use of CAM and
natural products are not subject to governmental regulation in many countries, represents a significant
challenge to the safe and efficacious use of natural products concurrently with cancer treatments [22,26].
As outlined in Figure 1, this review aims to describe the body of work surrounding the inhibitory or
antagonistic effects of natural products on chemotherapeutics in pre-clinical research and highlight
high-throughput screening (HTS) and deep learning as essential tools that can be used to improve
this field.

-
( Chemotherapeutics Natural Products

Deep Learning
Antagonism
Prediction

Antagonism
Scoring

In vivo validation

Figure 1. Natural product antagonism of chemotherapeutics can be predicted and quantified
through the application of high-throughput screening techniques and deep learning that allow
for mathematical quantification of antagonism and prioritization of combinations for further in vivo
analysis and validation.
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Table 1. Natural products that antagonize or inhibit chemotherapeutics.
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Natural Product

Common Sources

Chemotherapy Drug

Cancer Type

Antagonism Mechanism

Antagonism Values
(Cell Line-Value)

Soybeans, fava
beans, kudzu

Tamoxifen, letrozole,

palbociclib + letrozole

Breast cancer

Reversed the anti-cancer effects of
tamoxifen by inducing increased
expression of estrogen responsive
and cell cycle proteins pS2, PR,

and cyclin D1 [30,31]; and activating
mTOR by preventing amino acid
depletion induced by palbociclib +
letrozole [32]

Undetermined

Green tea, berries,
pears, apples,
avocadoes

Bortezomib

Multiple myeloma,
glioblastoma,
prostate cancer

Protected against cancer cell death
induced by bortezomib by
preventing proteosome inhibition
and ER stress induction and
exacerbating autophagy activation to
prevent apoptosis [34]; and by direct
interaction with the drug’s boronic
acid moiety that prevented
proteosome inhibition [35,36]

U266-3.02
RPM1/8226-3.99
MC/CAR-4.01

Curcumin

Turmeric

Etoposide,
doxorubicin,
mechlorethamine,
camptothecin

Breast cancer

Prevented cancer cell death induced
by etoposide and camptothecin by
causing cell cycle arrest in the G1, S,
or G2/M phases and allowing time
for DNA repair prior to cell division
[37,38]; and by inhibiting ROS
generation and JNK activation
induced by mechlorethamine and
camptothecin [39]

MCF-7-2.5

HepG2-3.3

HCT116-67
HeLa-19

[37-39]

HO, OH

OH
o
OH

Vitamin C

Citrus fruits,
potatoes, red and
green peppers,

broccoli, cauliflower,

tomatoes

Bortezomib,
doxorubicin,
vinicristine,
methotrexate,
cisplatin, imatinib
mesylate

Multiple myeloma,
chronic
myelogenous
leukemia, B-cell
lymphoma, breast,
prostate, lung, oral,
endometrial, and
cervical cancer

Inhibited the anti-cancer effects of
vinicristine, doxorubicin,
methotrexate, imatinib mesylate, and
cisplatin by preserving mitochondrial
membrane potential and preventing
apoptosis [40]; and by forming a
chemical complex with bortezomib
and blocking its activity [41,42]

Undetermined [40-43]
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2. Drug Synergy and Antagonism

Synergy is generally defined as a combined treatment effect that is greater than the additive effect,
or the sum of the individual effects of two non-interactive compounds, and indicates that the combined
components “work together” to enhance the treatment [49]. Analogously, antagonism represents a
combined treatment effect that is less than the additive effect, meaning that the combined components
oppose each other [49]. For any two given drugs, the quality of synergism, antagonism, or additivity
is highly dependent on the relative and absolute concentrations of the drugs and can change with
increasing or decreasing concentrations [50]. Drug synergy research is based on the principle that drugs
used in combination to treat a disease, as opposed to single-drug therapies, can improve the therapeutic
effect of treatment by acting on the diseased cells via more than one molecular mechanism [17,51].
This can lead to lower toxicity and less adverse side effects by requiring lower doses of the drugs,
and prevent the development of drug resistance. Ideally, a drug combination will both synergize to
amplify the desired effect (i.e., lower proliferation, tumor shrinkage, enhanced apoptosis, etc.) due to
increased efficacy while lowering the undesirable effects (i.e., toxicity to non-cancerous tissues, pain,
etc.) due to increased potency [52]. Traditional synergy models do not take into account this difference
between the potency and the efficacy of a drug combination and often conflate the two [53].

Drugs may interact via several mechanisms. These include pharmacokinetic interactions in
which compounds can alter the absorption, metabolism, distribution, and clearance of drugs;
and pharmacodynamic interactions, the focus here, whereby compounds achieve a physiological effect
by acting on one or more molecular targets or pathways [54-60]. Unfortunately, clinical drug—drug or
drug—nutrient interaction studies primarily focus on the pharmacokinetic components and adverse
side effects of drug interactions and often overlook the pharmacodynamics and molecular actions [61].
As the use of natural products becomes more prevalent both in and out of clinical settings, it is
increasingly important to fully characterize the potentially harmful and antagonistic effects of these
compounds on cancer therapies, including their impacts on cellular growth, metabolism, and resistance
mechanisms, to ensure their safe and efficacious use.

In recent years, combinations of natural products with cancer drugs that exhibit synergy have been
developed to further improve upon existing treatment strategies due to the propensity of some natural
products to provide improved therapeutic efficacy or overcome drug resistance with decreased risk for
adverse side effects and toxicity in normal cells [9,10,17,62]. However, drug synergy research has been
marked by conflicting principles and a failure to reach consensus on the appropriate way to define
and quantify drug synergy, additivity, and antagonism [51,52,60,63-65]. Though this disagreement
has persisted for nearly a century, drug synergy research remains an attractive and growing field that
capitalizes on the ability of natural products to synergize with traditional cancer therapeutics [17].
The body of research on the topic of natural product and chemotherapeutic synergy is reviewed
extensively elsewhere [17]. In contrast, relatively few studies have been done to assess the potential
antagonistic effects of natural products on conventional chemotherapy drugs and how they may
impede cancer therapy. Of the studies that report inhibitory interactions between natural products and
chemotherapeutics in cancer models, the vast majority do not include a mathematical or statistical
basis for the claim of “antagonism”, as emphasized in later sections. This area of research could be
significantly improved by the standardization and widespread use of the appropriate mathematical
foundations of synergy, additivity, and antagonism, and quantification of antagonism for each drug
interaction bearing the claim “antagonistic”.
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Multiple mathematical models have been developed to quantify drug combination synergy,
antagonism, and additivity. Herein, we report the most commonly utilized models and their
limitations (Table 2). These and many other models for drug synergy have been reviewed extensively
elsewhere [49,52,53,63]. While drug combination data can be analyzed using personalized scripts
in Matlab, R, and other computing environments based on the equations outlined in Table 2,
several software packages have been developed to visualize drug combination data and quantify
synergy, additivity, and antagonism based on univariate or bivariate data: CompuSyn (version 1.0,
https://www.combosyn.com/index.html), Combenefit (version 2.021, https://sourceforge.net/projects/
combenefit/), SynergyFinder (version 2.0, https://synergyfinder.fimm.fi/), and CImbinator (version 1.0,
https://bio.tools/cimbinator). [51,66-68]. Example outputs from these software programs are included
in Figure 2. In the following section, we describe natural products that inhibit the activity or outcomes
of chemotherapeutics and indicate whether a mathematical model has been used to support and
quantify antagonism in each case.

Synergy and Antagonism Synergy and Antagonism
A Mapped to Dose-Response B Drug Combination Analysis
N=1 Drug 2
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Figure 2. Examples based on mock data of a Loewe surface plot (A) and synergy matrix (B) generated
with Combenefit, and dose—effect curve (C) and Chou-Talalay combination index plot (D) generated
with CompuSyn.
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Table 2. Common mathematical models for drug synergy and their limitations [49,69].
Synergy/Antagonism Model Features Strategy Limitations Equation Software(s)
Constant potency ratio Requir?s dose};effect d Effect(a +b) = Ea(a+ay) = Eg( b, + b)A: Eap Combenefit
e Equal individual maximum effects curves for €ach Compound g 44, =A ©a+bxR=A oa+bxg =A ombenett
Loewe Additivity . Dose-effect based Constant potency ratio e b SynergyFinder
Sham compliant: a drug cannot and equal maximum atp=1 CImbinator
exhibit synergy with itself offec tgis unlikely Cl=4%+ %
Druigs wc1>rk b.y separe;ce, . Most compounds do not
Ron overlapping T.ei anisms have single, isolated Ep+Ep(1-E4) = Eq+ Egp—EAER Combenefit
Bliss Independence dzzg}:;z;iizgig 1a Effect-based mechanisms of action 0 <E 4 <land0 <Eg<1 S on;r en;i; der
. Exponential dose-effect Cl= M ynersy
Expressed as a probability curves unlikel AB
(0<Egp<1) y
A combined effect greater than that Fails to reflect true
. . .Of the mo.st.effectlve single agent synergistic interactions max(E Ep) Combenefit
Highest Single Agent is synergistic Effect-based Cl = B2 ass) .
I . (does not account for Eap SynergyFinder
Quantified by p-value of combined additivity)
effect vs. highest individual agent y
Based on the median effect
equation derived from the mass
action law Requires a dose-effect m . .
= (D/D, dian — t t
Chou-Talalay Takes into account the Hill Dose-effectbased  curve for each individual Joy fu = (D/Din)" (median = ef fect equation) CompuSyn

equation, Michaelis-Menten
equation, Henderson-Hasselbalch
equation, and Scatchard equations

compound

D D
=2+2

CI = Combination index. CI = 1 represents additivity, CI > 1 represents antagonism, and CI < 1 represents synergy. Drugs A and B administered at doses a and b give individual effects of
Ea and Eg and a combined effect of Epg. R = potency ratio. a + a, = dose of A giving effect Epp. b, + b = dose of B giving effect Exp. f, = fraction of cells killed. f,, = fraction of cells alive.
m represents the dose-effect curve sigmoidicity. Dy, = median-effect dose. D; and D, = actual experimental doses. E; and E; = expected doses to produce the observed effect.
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3. Natural Products that Inhibit Chemotherapeutics

3.1. Genistein

Genistein is an isoflavonoid derived from soybeans and soy-containing products, such as tofu,
as well as fava beans and kudzu. Genistein supplementation (a form of CAM) is commonly used as a
hormone replacement therapy alternative for postmenopausal women [70]. It is classified as a natural
xenoestrogen, or a chemical that mimics estrogen in the body. Genistein has been shown to exhibit
potent anticancer effects and synergize with certain cancer therapeutics [71-73]. However, it has also
been shown to directly inhibit the anti-cancer activity of the chemotherapy drugs tamoxifen, letrozole,
and palbociclib/letrozole combination therapy in breast cancer models [30-33].

Genistein was reported to prevent the anti-cancer activity of the aromatase inhibitor letrozole and
stimulated tumor growth both alone and in combination with letrozole therapy in an MCF-7Ca xenograft
model at concentrations that were consistent with dietary exposure levels [31]. Concentrations of
genistein relevant to the human diet were also shown to inhibit the anti-cancer activity of the
antiestrogen drug tamoxifen in ovariectomized nude mice bearing MCF-7 breast cancer tumors [31].
Additional in vivo and in vitro data support that low doses of genistein negate the growth inhibitory
effects of tamoxifen in the tumors of MMTV-neu/ErbB2 transgenic mice and MCF-7 cells [33]. However,
Mai et al. (2007) reported a synergistic induction of apoptosis following the administration of the
combination of genistein and tamoxifen in a different breast cancer cell line (BT-474) [74]. Warth et al.
(2018) found that concentrations representative of food consumption of genistein and the estrogenic
mycotoxin zearalenone both reversed the anti-oncogenic effects of combination letrozole and palbociclib
therapy in MCF-7 breast cancer cells by counteracting the metabolic aberrations induced by the
combination treatment [32]. These findings are especially relevant as the palbociclib/letrozole drug
combination was granted accelerated US FDA approval for the treatment of estrogen receptor-positive
breast cancer in 2015 [32]. These findings did not include the quantification of antagonism using a
mathematical or statistical model.

3.2. (-)-Epigallocatechin Gallate (EGCG)

(-)-Epigallocatechin gallate (EGCG) is the predominant bioactive polyphenol present in green
tea. It is also present in smaller amounts in other types of tea, berries, pears, apples, avocadoes,
and some stone fruits. Green tea extract is widely available for purchase as a highly concentrated
supplement and is a very commonly used form of CAM due to its low toxicity and health benefits,
including neuroprotective, cardioprotective, and anti-cancer effects [75-81]. However, EGCG was
found to directly inhibit the tumor-suppressive activity of the proteasome inhibitor bortezomib
in in vitro and in vivo models of multiple myeloma, and in vitro models of prostate cancer and
glioblastoma [34-36].

Golden et al. (2009) found that EGCG, as well as various other green tea polyphenols, and complete
green tea extract blocked the cytotoxic effects of bortezomib in RPMI/8226 and U266 multiple myeloma
cell lines and LN229 glioblastoma cells by direct chemical interaction with the drug at concentrations
that were realistically achievable through the diet [35]. EGCG was also shown to negate the anti-tumor
effects of bortezomib in nude mice implanted with RPMI/8226 multiple myeloma tumors [35]. Kim et al.
(2009) quantified the antagonistic effect of EGCG on bortezomib treatment in U266, RPMI/8226,
and MC/CAR multiple myeloma cell lines using the Chou Talalay method combination index (CI).
They found that EGCG directly antagonized the cancer growth inhibition of bortezomib in U266,
RPMI/8226, and MC/CAR with CI values at ED-90 of 3.02, 3.99, and 4.01, respectively [36]. EGCG was
also shown to inhibit bortezomib activity at concentrations representative of human serum in PC3
prostate cancer cells via direct binding and the inhibition of bortezomib [34]. However, a pre-clinical
study found that EGCG only inhibited bortezomib activity in vivo at concentrations 80-fold higher
than those achieved through supplementation [82].
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3.3. Curcumin

Curcumin is the predominant diarylheptanoid in turmeric, a spice derived from the perennial
plant Curcuma longa. Curcumin is what provides the characteristic yellow pigment in turmeric,
which is commonly used in Indian and Southeast Asian cuisines and medicines, and celebrated for its
efficacy in treating wounds, inflammation, digestive issues, and some cancer types [83]. In recent years,
supplementation with curcumin has gained popularity in Western nations due to emerging evidence
that it is a potent chemopreventive and chemotherapeutic agent [84]. Indeed, curcumin has shown
efficacy in inhibiting the growth and development of many cancer types, including prostate, breast,
colorectal, hepatic, and lung cancers, among several others [15,84-88]. Even so, there have been reports
that curcumin has the potential to inhibit the activity of certain anticancer agents in vitro [37-39,89].

Curcumin, at realistic concentrations representative of human serum after ingestion, was found to
inhibit MCF-7, MDA-MB-231, and BT-474 breast cancer cell apoptosis mediated by chemotherapy drugs,
camptothecin, mechlorethamine, and doxorubicin, by preventing the generation of reactive oxygen
species (ROS) [39]. Curcumin also blunted the tumor growth inhibition of cyclophosphamide in mice
bearing BT-474 breast cancer tumor xenografts [39]. However, Ma et al. (2017) reported that micellar
co-delivery of curcumin combined with doxorubicin synergistically improved anti-tumor efficacy in
MCF-7/Adr cells and 4T1 tumors [90]. Saleh et al. (2012) quantified the antagonistic interaction between
curcumin and the topoisomerase inhibitor etoposide using isobologram analysis and found that the
co-treatment of curcumin with etoposide significantly reduced the cytotoxicity of both agents in MCF-7
breast cancer cells, HepG2 liver cells, HCT116 colorectal cancer cells, and HeLa cervical cancer cells
with interaction index values of 2.5, 3.3, 67, and 19, respectively [37]. In contrast, the curcumin and
etoposide combination treatment exhibited a synergistic interaction in U251 glioblastoma cells with an
interaction index value of 0.59 [37]. Curcumin was also shown to inhibit apoptosis mediated by both
camptothecin and etoposide in Hep3B liver cancer cells [38].

3.4. Vitamin C

Vitamin C is an essential vitamin present in citrus fruits, potatoes, red and green peppers, broccoli,
tomatoes, and other foods, and is one of the most widely consumed supplements in the United
States [91]. Vitamin C is used for a variety of health benefits, most commonly related to immunity
and wound healing, and there is emerging evidence that vitamin C may be able to aid in cancer
treatment [92]. However, vitamin C has been found to directly inhibit many chemotherapeutics across
several cancer types both in vivo and in vitro [40-43].

Vitamin C has been shown to directly bind and inactivate bortezomib and prevent its anti-cancer
activity in prostate, breast, oral, cervical, endometrial, and lung cancer cell lines at concentrations
representative of human serum [41,43]. Perrone et al. (2009) found that vitamin C inhibited the
activity of bortezomib on MM1S multiple myeloma cells as well as RPMI/8226 multiple myeloma
xenografted severe combined immune deficient (SCID) mice [42]. They also showed that plasma
taken from healthy volunteers given 1 g per day of vitamin C was able to negate the cancer growth
suppression of bortezomib in RPMI/8226 cells in vitro [42]. Clinically relevant concentrations of
vitamin C have also been demonstrated to reduce the cytotoxicity of multiple chemotherapeutic
agents, including vincristine, doxorubicin, methotrexate, cisplatin, and imatinib mesylate in K562
chronic myeloid leukemia cells and RL lymphoma cells by preserving the membrane potential of
the mitochondria [40]. Vitamin C also negated the anti-cancer effects of doxorubicin in vivo in mice
with RL lymphoma xenografted tumors [40]. These findings did not include the quantification of
antagonism using a mathematical or statistical model.

3.5. Tangeretin

Tangeretin is a dietary flavonoid found in the peels of citrus fruits, such as tangerines, mandarins,
oranges, and grapefruits. It is also a major constituent of citrus bioflavonoid supplements (a form of
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CAM) that are frequently used for their antioxidant and anti-inflammatory activity [93]. Tangeretin was
reported to negate the anti-cancer effects of tamoxifen in MCF-7/6 breast tumor bearing mice when
added to the drinking water along with tamoxifen and reduced their median survival time compared to
those that received tamoxifen alone [44]. However, this effect was not replicated in vitro, as tangeretin
was shown to enhance cancer growth inhibition in MCF-7/6 cells [44]. This discrepancy is likely due to
the ability of tangeretin to downregulate natural killer cells and prevent the elimination of tumor cells
in vivo [45]. These findings did not include the quantification of antagonism using a mathematical or
statistical model.

3.6. Xanthorrhizol

Xanthorrhizol is a sesquiterpenoid derived from the rhizome of Curcuma xanthorriza, also called
Javanese turmeric in Indonesia, Thailand, and Malaysia, where it has been used for its medicinal
properties for many years. It is available for purchase as a supplement both alone and in combination
with curcumin and other bioactive compounds. Xanthorrhizol has been shown to have many
anti-cancer effects, including its ability to inhibit the proliferation of colon cancer cells in vitro and
prevent metastasis and tumor promotion in mouse models of skin and lung cancer [94-97]. However,
there is evidence that repeated dosing of xanthorrhizol can negate the tumor-suppressive ability of
tamoxifen in MCF-7 implanted nude mice, though this interaction was not seen in the MCF-7 in vitro
model [46]. These findings did not include the quantification of antagonism using a mathematical or
statistical model.

3.7. Si-Wu-Tang (SWT)

Si-Wu-Tang (SWT) is a form of traditional Chinese medicine comprised of the combined extracts
from four herbs: Radix Paeoniae Alba (bai shao yao), Rhizoma Ligusticum Chuanxiong (chuan xiong),
Radix Angelica Sinensis (dang gui), and Radix Rehmanniae Preparata (shu di huang). It has been
used to treat gynecological disorders and support menstrual health since the 12th century [98].
SWT supplementation has also gained popularity in Western nations to support women’s health and
is available for purchase in the United States from multiple online retailers. Despite its claimed health
benefits, SWT has been shown to stimulate the proliferation of breast cancer and reverse the anticancer
effects of the antiestrogen chemotherapy drug, tamoxifen, in both in vitro and in vivo MCF-7 breast
cancer models [48,99]. SWT also reversed the antiproliferative effects of the monoclonal antibody
drug, trastuzumab, in SK-BR-3 and BT-474 breast cancer cells [48]. These findings did not include the
quantification of antagonism using a mathematical or statistical model.

3.8. Quercetin and Myricetin

Quercetin and myricetin are dietary flavonoids that are present in a diverse array of fruits and
vegetables, including apples, onions, red grapes, berries, and herbs. Both are widely available for
purchase, either alone or in combination with other bioactive compounds. Quercetin and myricetin are
well known for their potent antioxidant activity, and both have been shown to exhibit anti-cancer activity
via proteasome inhibition and the induction of apoptosis in several cancer types in vitro [100-103].
Even so, there is evidence that quercetin and myricetin prevent the anti-cancer and pro-apoptotic
activity of the proteasome inhibitor, bortezomib, in chronic lymphocytic leukemia primary cells and
several malignant B cell lines [47]. Quercetin was also shown to strongly antagonize the activity of
bortezomib (based on the Chou Talalay combination index) in MC/CAR, U266, and RPM1/8226 multiple
myeloma cell lines with CI values at ED-90 of 5.04, 3.70, and 5.27, respectively, as well as primary
myeloma cells by direct chemical interaction with the drug [36].

3.9. Tannic Acid, Gallic Acid, Caffeic Acid

Tannic acid, gallic acid, and caffeic acid are natural phenolic compounds present in a wide variety
of grains, fruits, vegetables, and beverages, including coffee, wine, tea, berries, and herbs, along with



Cancers 2020, 12, 3714 12 of 20

many additional sources. They are all also widely available for purchase in the form of supplements,
both individually and in various combinations. Kim et al. (2009) found that these compounds were
able to directly interact with bortezomib and antagonize its anti-cancer activity (based on the Chou
Talalay combination index) in MC/CAR, U266, and RPMI/8226 multiple myeloma cell lines, as well
as primary myeloma cells [36]. The CI values at ED-90 for tannic acid, gallic acid, and caffeic acid,
respectively, were 27.24, 6.94, and 4.97 for MC/CAR, 6.70, 3.08, and 4.22 for U266, and 11.39, 3.34,
and 8.54 for RPMI/8226 [36].

4. Tools for Evaluating or Predicting Drug Synergy and Antagonism and Their Applications

Techniques commonly used in pre-clinical settings to study drug synergy, such as high-throughput
screening, can also be used to study antagonistic interactions between natural products and CAM and
cancer drugs, often within the same methodology and utilizing the same mathematical parameters [104].
Additionally, recent innovations in deep learning models have made it possible to predict drug
interactions with great accuracy and have the potential to be applicable to natural product and
chemotherapeutic drug antagonism research in the future.

4.1. High Throughput Screening for Natural Product-Drug Antagonism

High-throughput screening (HTS) is a biomedical research technique that allows for the rapid
analysis of the biological activity of chemical substances, alone or in combination, on a particular
cellular model or pathway in 2-dimensional cell cultures [105]. As automation has improved in
accuracy and precision, microplates have been developed with smaller and more dense wells (96-,
384-, 1536-, and even 3456-well plates are in use today) so that tens to hundreds of thousands of
compounds can be tested in a single day. In HTS experiments, drugs may be combined with other
drugs or bioactive compounds, and the effect on the cells can be quantified relative to controls via
mathematical models for drug synergy, as previously described.

A limitation of in vitro cancer models for drug combination screening is that they often generate
results that are not reproducible in in vivo models. However, in vitro methods for evaluating drug
interactions, while they are limited in their ability to accurately represent the disease environment and
conditions, are preferred over in vivo disease models for HTS techniques, due to their feasibility for
testing multiple drug concentrations, low cost, and rapid completion time [106]. It has been shown
that the utilization of a culture medium that more accurately mimics the tumor microenvironment for
in vitro assays can improve their concordance with in vivo models of disease and reduce unwanted
environmental features that result from the culturing of tissues ex vivo [107]. The use of primary,
patient-derived tissues or implementation of co-culturing methods for screening experiments can also
help to reduce disparities between in vitro and in vivo results [108]. It is important that in vitro drug
combinations that exhibit synergy or antagonism be used not as absolute proof of drug interaction
effects but to identify drug combinations that warrant further mechanistic investigation, which may
include metabolomics, proteomics, genomics, and in vivo experiments for validation [60,109].

In pre-clinical cancer drug development, the utilization of HTS to assess the ability of natural
products to amplify the anti-cancer effects of chemotherapeutics, or produce synergy, is becoming
increasingly common. However, likely due to the relatively lower interest in natural product
antagonism of chemotherapeutic drugs, these techniques are often underutilized to study natural
product-mediated drug antagonism in cancer, although it can be undertaken in the same experiments
and utilize the same mathematical models. HTS is especially conducive to the study of drug interactions
involving CAM, as many alternative medicines are comprised of multiple active compounds used
in combination, which can be applied separately or in concert in HTS experiments to elucidate
the individual effects as well as the interactions between the compounds in the CAM itself. This is
also unique in that it can employ the use of libraries of bioactive natural compounds and identify
previously unknown inhibitors of chemotherapeutics across multiple types of cancer cell lines as
well as assess their impact on normal cell lines [105]. The lack of application of HTS to study natural
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product-drug antagonism is likely worsened by the fact that no single mathematical framework
has been established to allow for standardized quantification of antagonism in in vitro models.
Even so, HTS techniques and implementation of mathematical models to support claims of antagonism
between natural products and chemotherapeutics should be more commonly utilized in the study
of drug-nutrient interactions. This unbiased methodology for identifying unwanted and potentially
deleterious herb—drug, food—drug, or nutrient-drug interactions could significantly improve the safe
and efficacious use of chemotherapeutics and potentially lead to improved therapeutic outcomes in
cancer patients.

4.2. Deep Learning for Prediction of Natural Product Antagonism

As natural product libraries grow in size and it becomes increasingly infeasible to investigate
every possible combination of natural products with chemotherapeutics due to cost and time restraints,
it can be beneficial to employ a framework for predicting synergistic or antagonistic interactions.
As described in detail by Adam et al. (2020), several methods exist for predicting combination therapy
interactions, and deep learning techniques are at the cutting edge of this research [110]. Deep learning is
a subcategory of machine learning that employs algorithms to create multiple layers of artificial neural
networks (ANNSs) that mimic the structure of the human brain and synthesize large data sets to create
highly powerful predictive tools [111]. The application of these emerging tools in natural product
drug combination studies could accelerate the identification of natural products that antagonize
chemotherapeutics and allow for a much more robust understanding of potentially harmful natural
product-drug interactions.

Xia et al. (2018) developed a deep learning technique to predict synergistic combination
drug interactions based on molecular features, including gene expression, microRNA expression,
protein abundance, and drug descriptors and fingerprints [112]. This is based on the NCI-ALMANAC,
a drug screening resource that includes growth inhibition data on 5000 pairs of FDA approved cancer
drugs in a panel of 60 cancer cell lines (NCI-60) [113]. This model is highly accurate, and explained
94% of the response variance, with much of the predictive power coming from drug descriptor
data [112]. However, it is not yet applicable to new drugs or natural products and other cell lines and
tumor samples.

DeepSynergy is another deep learning tool that implements a feed-forward neural network
to model drug combination effects based on cancer cell genomic profiles and chemical profiles of
drugs [114]. DeepSynergy performed well compared to other machine learning tools to predict
synergistic combinations (AUC of 0.90) and was 7.2% more accurate than their second-best model [114].
While this approach is highly accurate, it is limited in its inability to provide predictions based on
novel drugs and cancer cell lines and would require additional data and updated algorithms to be
applied to the natural product and chemotherapy synergy and antagonism research.

Currently, there are several more tools available to quantify and visualize synergy than
tools to predict synergy [110]. Moreover, the majority of these models are intended for the
quantification or prediction of synergistic or greater-than-additive responses rather than antagonistic
or lower-than-additive responses. The development of these tools is at the forefront of drug discovery
innovation and they are still relatively new, and as such they will require additional datasets,
input variables, and algorithm optimization in the future to further bolster their predictive capacity
and applicability for new drugs and cell types. It is critical that future developments in deep learning
models for drug combination prediction prioritize antagonistic interactions as well as synergistic
interactions and permit the analysis of natural products and other novel bioactive compounds. This will
allow for accelerated identification of antagonistic drug interactions with natural products and has the
potential to help improve treatment outcomes and prevent poor treatment response in cancer patients.
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5. Conclusions

Drug synergy research is a burgeoning field, despite disagreements regarding the mathematical
definitions of synergy, additivity, and antagonism and issues with translatability between in vitro and
in vivo systems. As natural products used in combination with traditional anti-cancer drugs become
more common, and cancer patients continue to seek out alternative medicines outside of clinical
recommendations, it is increasingly important to pinpoint and understand the potentially inhibitory
and antagonistic impacts of natural products on the activity of chemotherapeutics. High throughput
screening (HTS) is a relatively low-cost and expeditious technique used frequently to reveal synergistic
drug interactions. However, HTS should be utilized more commonly to study antagonism between
natural products and chemotherapeutics and bolster drug—nutrient interaction research in cancer.
Advances in deep learning models that take into account natural products as well as conventional
drugs will be essential for continued progress in this field. The identification of natural products that
antagonize chemotherapeutics and the elucidation of their mechanisms of action have the potential
to improve the safety and efficacy of chemotherapeutics, as they are commonly used in combination
with various natural products and CAM, and can potentially help explain causes for drug failure or
resistance. Improvements in this field can also help fuel better recommendations for the timing and use
of natural products and CAM alongside chemotherapy and prevent potentially dangerous interactions.
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