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Simple Summary: Global autozygosity in the form of runs of homozygosity is associated with
various diseases. Heterozygosity ratio, an alternative measure of global autozygosity, is used to
assess cancer risk in this study. Our analysis shows strong and consistent associations between
heterozygosity ratios and various cancer types. Further analysis reveals the heterozygosity ratio’s
potential connections to mutational signatures and cancer prognosis.

Abstract: Global autozygosity quantifies the genome-wide levels of homozygous and heterozygous
variants. It is the signature of non-random reproduction, though it can also be driven by other
factors, and has been used to assess risk in various diseases. However, the association between global
autozygosity and cancer risk has not been studied. From 4057 cancer subjects and 1668 healthy
controls, we found strong associations between global autozygosity and risk in ten different cancer
types. For example, the heterozygosity ratio was found to be significantly associated with breast
invasive carcinoma in Blacks and with male skin cutaneous melanoma in Caucasians. We also
discovered eleven associations between global autozygosity and mutational signatures which can
explain a portion of the etiology. Furthermore, four significant associations for heterozygosity ratio
were revealed in disease-specific survival analyses. This study demonstrates that global autozygosity
is effective for cancer risk assessment.

Keywords: global autozygosity; runs of homozygosity; heterozygosity ratio; mutational signature;
prognosis

1. Introduction

The human genome is comprised of approximately three billion base pairs. Single Nucleotide
Polymorphisms (SNPs) can affect various disease risks as shown by numerous genome-wide association
studies (GWAS). According to the GWAS catalog (May 2020), 4424 unique SNPs have been found to
influence cancer risk with p < 10−5 significance. While an SNP describes the allelic information at a
single genomic position, global heterozygosity and homozygosity describe the genome-wide zygosity
level. Heterozygosity describes the possession of two different alleles of an SNP, and homozygosity
describes the possession of the same allele at a genomic position. Global homozygosity is often
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measured in the form of Runs of Homozygosity (ROH) [1], which is a measure of the segments of the
genome without heterozygous SNPs. The associations between ROH and many phenotypes have
been thoroughly established, such as height [2], schizophrenia [3], Alzheimer’s Disease [4], along with
many others. ROH can be calculated through common genomic toolboxes, such as PLINK [5] and
BCFtools [6]. The units of ROH can vary. In some studies [2–4], the number of ROH segments detected
(based on a minimum threshold) was used for the association study. In another [7], the median length
of ROH was used. Regardless, the computation of ROH is dependent on many factors, such as the
density and quality of SNP data, the number of tolerated heterozygous SNPs within an ROH, and the
size of the sliding window. It has been demonstrated that ROH is highly sensitive to SNP density
(the coverage of genome-wide SNPs by an array) and that genotyping arrays of different SNP densities
may produce very different ROH results [7]. These inconsistencies in ROH computation can lead to
contradictions in ROH association analyses [8–10].

An alternative measure of autozygosity is the Heterozygosity Ratio (HR), which is the ratio between
the number of heterozygous SNPs and the number of non-reference homozygous SNPs. The HR was
originally proposed as a quality control parameter for SNP data because it has a theoretically expected
value of 2 [11]. A subsequent study showed that the observed average HR value is dependent on
race, with only African ancestry individuals having a ratio close to 2, whereas the HRs for other races
are substantially lower in empirical data [12]. Unlike ROH, the computation of HR does not require
adjustable parameters. Thus, HR is more robust than ROH against variable SNP density [7]. ROHs
have previously been tested for cancer risk; most of those studies found no association [13,14]. HR’s
association with cancer risk has not been evaluated. In this study, we focused on global HR measures
and their associations with cancer risk, cancer prognosis, and the mutagenesis process.

2. Results

2.1. HRNonRef vs. HRMinor vs. ROH

The HR was traditionally computed as the ratio between the number of heterozygous SNPs
divided by the number of non-reference homozygous SNPs, which we define as HRNonRef. Since
the human reference genome was constructed from a small subset of individuals, it is limited by a
small sample size and poor global race representation. These limitations result in many cases where
the reference allele is not the major allele of the population. By comparing The Cancer Genome
Atlas (TCGA) SNP data and reference allele in the GRCh38 genome, we estimated that around 8%
of the variants in the human reference genome may not represent the major allele of the population.
This inconsistency between reference allele and major allele has a potential effect on HR computation,
which has not been previously considered. To investigate this potential difference, we define HRNonRef

and HRMinor, where HRNonRef uses reference alleles based on the traditional HR definition and HRMinor

uses major alleles defined by the study cohort instead. HRNonRef and HRMinor were computed for all
TCGA SNP and International Genome Sample Resources (IGSR) SNP datasets. High correlations were
observed between HRNonRef and HRMinor for all Caucasians, Blacks, and Asians (Figure 1), although
the correlation dropped slightly after imputation, most likely due to the additional noise introduced.
The only difference between HRNonRef and HRMinor is the scaling, as HRMinor appears to be 2 to
3 times the value of HRNonRef. Due to the similarity between HRNonRef and HRMinor, we chose to use
HRNonRef for all subsequent analyses. Furthermore, the scatter plot (Figure S1) between HRNonRef

and HRMinor resembles the scatter plot of principal component 1 vs. principal component 2 from a
principal component analysis of ancestry informative markers. This result implies that the differences
in HR measures between the two definitions is strongly associated with race.
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Figure 1. Scatter plots for HRNonRef vs. HRMinor. (A,B): Caucasian; (C,D): Black; (E,F): Asian. (A,C,E): 
Heterozygosity Ratio (HR) computed from original Single Nucleotide Polymorphism (SNP) data 
without imputation. (B,D,F): HR computed from SNP data after imputation. Each data point is an 
individual in the cohort. All results show excellent correlations between HRNonRef and HRMinor, with 
HRMinor two to three times higher than HRNonRef. 

A previous study [7] has shown that HR is more robust than ROH due to immunity to SNP 
density. We performed verification of this result by comparing the results before and after 
imputation. Figure 2 shows that imputation produced ROH outliers which severely hampered the 
overall correlation of ROH. We further evaluated the race and sex differences between HR and ROH. 
Differences by race for HRNonRef and ROH are shown in Figure 3A, with the highest average HR for 
Blacks, followed by Caucasians and Asians. These results are consistent with previous publications 
[7,12]. Sex differences for HR were not previously studied. For HRNonRef, females have a substantially 
higher HR than males for all races (Figure 3A). For ROH, females have higher ROH than males in 
Caucasians (Figure 3A) and Asians (Figure 3B), males had higher ROH than females in Blacks (Figure 
3C). However, the sex difference of HR and ROH is primarily contributed by the sex chromosomes, 
and after removing Chromosomes X and Y from the computation of HR and ROH, the difference is 

Figure 1. Scatter plots for HRNonRef vs. HRMinor. (A,B): Caucasian; (C,D): Black; (E,F): Asian. (A,C,E):
Heterozygosity Ratio (HR) computed from original Single Nucleotide Polymorphism (SNP) data
without imputation. (B,D,F): HR computed from SNP data after imputation. Each data point is an
individual in the cohort. All results show excellent correlations between HRNonRef and HRMinor, with
HRMinor two to three times higher than HRNonRef.

A previous study [7] has shown that HR is more robust than ROH due to immunity to SNP density.
We performed verification of this result by comparing the results before and after imputation. Figure 2
shows that imputation produced ROH outliers which severely hampered the overall correlation of
ROH. We further evaluated the race and sex differences between HR and ROH. Differences by race
for HRNonRef and ROH are shown in Figure 3A, with the highest average HR for Blacks, followed by
Caucasians and Asians. These results are consistent with previous publications [7,12]. Sex differences
for HR were not previously studied. For HRNonRef, females have a substantially higher HR than males
for all races (Figure 3A). For ROH, females have higher ROH than males in Caucasians (Figure 3A)
and Asians (Figure 3B), males had higher ROH than females in Blacks (Figure 3C). However, the sex
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difference of HR and ROH is primarily contributed by the sex chromosomes, and after removing
Chromosomes X and Y from the computation of HR and ROH, the difference is substantially reduced
(Figure S2). The violin plots also demonstrate that HRNonRef has less variation than ROH. The cancer
subjects’ median HRNonRef is visibly higher than normal subjects’ median HRNonRef, which results in
significant associations with cancer risk. Furthermore, we found no significant association between
HRNonRef/ROH and age, which is in concordance with the conventional genetic concept that that
germline variants should not be affected by age. Because of the strong differences of HRNonRef and
ROH based on sex and race, and varying prevalence of cancer, all subsequent analyses were stratified
by sex and race.
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Figure 2. Scatter plot for HRNonRef, Runs of Homozygosity (ROH), before and after imputation. (A,B):
Caucasian; (C,D): Black; (E,F): Asian. (A,C,E): HRNonRef; (B,D,F): ROH. The correlations for ROH are
weaker than HRNonRef before and after imputation due to the ROH outliers resulted from imputation.
This shows that HR is less prone to the effect of SNP density than ROH.
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Figure 3. Comparison of HRNonRef and ROH between sex across all three races tested. The computation 
of HRNonRef and ROH contains sex chromosomes X and Y. For the equivalent of this figure without 
chromosomes X and Y, please see Figure S2. (A) Violin and boxplots of ROH separated by sex for 
Caucasians. (B) Violin and boxplots of ROH separated by sex for Asians. (C) Violin and boxplots of 
ROH separated by sex for Blacks. (D) Violin and boxplots of HRNonRef separated by sex for Caucasians. 
(E) Violin and boxplots of HRNonRef separated by sex for Asians. (F) Violin and boxplots of HRNonRef 
separated by sex for Blacks. Females, in general, have higher HRNonRef than males and the difference 
is substantially more visible than ROH. 

2.2. Global Autozygosity and Cancer Risk 

We evaluated the association of HRNonRef and ROH with cancer risk using logistic regression with 
cancer cases from TCGA and healthy controls from IGSR. To avoid any selection bias, HRNonRef and 
ROH were computed from SNPs present in both TCGA and IGSR. Races (Caucasian, Black and 
Asian) and sex were tested separately. Tests were limited to case sample size greater than 100. Ten 
cancer types met the criteria and were tested. For Caucasians, logistic regression analyses showed 
that HRNonRef is significantly positively associated with cancer risk in all ten cancer types (Table 1). 
The strongest cancer association was for male skin cutaneous melanoma (𝑝 = 5.28 × 10ିଵଶ), followed 
by female ovarian cancer (𝑝 = 3.34 × 10ିଵଵ). For Blacks, only breast invasive carcinoma met the case 
sample size greater than 100 criteria. HRNonRef was found to be positively significantly associated with 
breast invasive carcinoma ( 𝑝 = 4.89 × 10ିଶ଼) , a result more extreme than the Caucasian’s 
counterpart. For Asians, only liver hepatocellular carcinoma met the sample size requirement, and 
HRNonRef was positively significantly associated (𝑝 = 0.001). The global positive associations between 
HRNonRef and cancer risk suggest that individuals with a more heterozygous genome are at higher risk 
for multiple cancer types. Receiver operating characteristic (ROC) curves show that statistically 
significant cancer, race, sex groups had area under curve (AUC) between 0.54 and 0.88, with Black 
females in breast cancer being the most predictive group (Figure S3). 

  

Figure 3. Comparison of HRNonRef and ROH between sex across all three races tested. The computation
of HRNonRef and ROH contains sex chromosomes X and Y. For the equivalent of this figure without
chromosomes X and Y, please see Figure S2. (A) Violin and boxplots of ROH separated by sex for
Caucasians. (B) Violin and boxplots of ROH separated by sex for Asians. (C) Violin and boxplots of
ROH separated by sex for Blacks. (D) Violin and boxplots of HRNonRef separated by sex for Caucasians.
(E) Violin and boxplots of HRNonRef separated by sex for Asians. (F) Violin and boxplots of HRNonRef

separated by sex for Blacks. Females, in general, have higher HRNonRef than males and the difference is
substantially more visible than ROH.

2.2. Global Autozygosity and Cancer Risk

We evaluated the association of HRNonRef and ROH with cancer risk using logistic regression with
cancer cases from TCGA and healthy controls from IGSR. To avoid any selection bias, HRNonRef and
ROH were computed from SNPs present in both TCGA and IGSR. Races (Caucasian, Black and Asian)
and sex were tested separately. Tests were limited to case sample size greater than 100. Ten cancer types
met the criteria and were tested. For Caucasians, logistic regression analyses showed that HRNonRef is
significantly positively associated with cancer risk in all ten cancer types (Table 1). The strongest cancer
association was for male skin cutaneous melanoma (p = 5.28× 10−12), followed by female ovarian
cancer

(
p = 3.34× 10−11

)
. For Blacks, only breast invasive carcinoma met the case sample size greater

than 100 criteria. HRNonRef was found to be positively significantly associated with breast invasive
carcinoma (p = 4.89× 10−28), a result more extreme than the Caucasian’s counterpart. For Asians,
only liver hepatocellular carcinoma met the sample size requirement, and HRNonRef was positively
significantly associated (p = 0.001). The global positive associations between HRNonRef and cancer
risk suggest that individuals with a more heterozygous genome are at higher risk for multiple cancer
types. Receiver operating characteristic (ROC) curves show that statistically significant cancer, race,
sex groups had area under curve (AUC) between 0.54 and 0.88, with Black females in breast cancer
being the most predictive group (Figure S3).
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Table 1. Results from logistic regression assessing HRNonRef’s cancer risk.

LogOR 1 (95% CI) p Cancer 2 Race Gender Cases Controls 3

1.8973 (1.6228–2.1920) 4.89 × 10−28 BRCA Black female 163 342
1.1487 (0.8858–1.4336) 5.28 × 10−12 SKCM Caucasian male 274 240
0.9630 (0.7327–1.2104) 3.34 × 10−11 OV Caucasian female 369 263
1.4445 (1.0980–1.8303) 8.83 × 10−11 STAD Caucasian male 153 240
1.1018 (0.8318–1.3940) 1.17 × 10−10 BRCA Caucasian female 653 263
1.1224 (0.8393–1.4289) 3.80 × 10−10 HNSC Caucasian male 300 240
1.2666 (0.9249–1.6396) 5.68 × 10−9 LUAD Caucasian female 165 263
0.9607 (0.6844–1.2734) 7.93 × 10−8 HNSC Caucasian female 120 263
0.9216 (0.6325–1.2450) 7.44 × 10−7 PRAD Caucasian male 127 240
0.8458 (0.5814–1.1452) 7.70 × 10−7 COAD Caucasian male 101 240
0.6438 (0.4208–0.8882) 6.00 × 10−6 SKCM Caucasian female 168 263
0.4797 (0.2712–0.7050) 2.71 × 10−4 LUAD Caucasian male 134 240
0.4689 (0.2634–0.6977) 3.82 × 10−4 LUSC Caucasian male 166 240
0.4903 (0.2585–0.7537) 1.12 × 10−3 LIHC Asian male 118 244

1 Log odds ratio, unit = per stand deviation. 2 Cancer abbreviations: BRCA—The Breast Cancer Gene; SKCM—Skin
Cutaneous Melanoma; OV—Ovarian Serous Cystadenocarcinoma; STAD—Stomach Adenocarcinoma; HNSC—Head
and Neck Squamous Cell Carcinoma; LUAD—Lung Adenocarcinoma; PRAD—Prostate Adenocarcinoma;
COAD—Colon Adenocarcinoma; LUSC—Lung Squamous Cell Carcinoma; LIHC—Liver Hepatocellular Carcinoma.
3 The number of matched normal control were taken from International Genome Sample Resources (IGSR).

For Caucasians, ROH was found to be significantly associated with nine out of ten cancer types
(Table 2). However, the directions of association were mixed, with four negative and five positive
associations. Furthermore, there were several differences based on sex. In head and neck squamous
cell carcinoma, ROH was not significantly associated with cancer risk for females but was nominally
significant for males (p = 0.02). In lung adenocarcinoma, ROH was significantly associated with
cancer risk for females (p = 0.007), but was not significant for males. Similarly, in skin cutaneous
melanoma, ROH was nominally significantly associated with cancer risk for females (p = 0.01),
but not for males. For Blacks, in breast invasive carcinoma, ROH was borderline associated with breast
invasive carcinoma (p = 0.07). For Asians, in liver hepatocellular carcinoma, ROH was significantly
associated with cancer risk for males (p = 0.03). The associations between HRNonRef and cancer risk
are stronger and more consistent than those of ROH. The inconsistency of association direction and
the inconsistency between sexes observed in ROH results may also represent the instability of ROH
measurement from incomplete genotyping data.

Table 2. Results from logistic regression assessing ROH’s cancer risk.

LogOR 1 (95% CI) p Cancer 2 Race Gender Cases Controls 3

15.6383 (7.9048–23.5950) 0.0010 COAD Caucasian male 101 240
−0.2304 (−0.3658–−0.0969) 0.0048 OV Caucasian female 369 263

5.3577 (2.2553–8.5218) 0.0048 PRAD Caucasian male 127 240
−0.2839 (−0.4606–−0.1132) 0.0071 LUAD Caucasian female 165 263
−0.1797 (−0.2989–−0.0623) 0.0122 BRCA Caucasian female 653 263
−0.2557 (−0.4285–−0.0882) 0.0133 SKCM Caucasian female 168 263

8.1083 (2.2387–14.1885) 0.0253 HNSC Caucasian male 300 240
0.2548 (0.0708–0.4519) 0.0269 LIHC Asian male 118 244

7.1487 (1.0826–13.0103) 0.0422 LUSC Caucasian male 166 240
5.0918 (0.6647–9.4886) 0.0483 STAD Caucasian male 153 240

−0.2022 (−0.3918–−0.0282) 0.0670 BRCA Black female 163 342
−0.0873 (−0.2877–0.0971) 0.4534 HNSC Caucasian female 120 263
0.7471 (−0.0236–2.9058) 0.5483 SKCM Caucasian male 274 240
0.0625 (−0.1152–0.2397) 0.5614 LUAD Caucasian male 134 240

1 Log odds ratio, unit = per stand deviation. 2 Cancer abbreviations: COAD—Colon Adenocarcinoma;
OV—Ovarian Serous Cystadenocarcinoma; PRAD—Prostate Adenocarcinoma; LUAD—Lung Adenocarcinoma;
BRCA—The Breast Cancer Gene; SKCM—Skin Cutaneous Melanoma; HNSC—Head and Neck Squamous Cell
Carcinoma; LIHC—Liver Hepatocellular Carcinoma; LUSC—Lung Squamous Cell Carcinoma; STAD—Stomach
Adenocarcinoma. 3 The number of matched normal control were taken from IGSR.
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In addition to the cancer risk analysis by race, sex and cancer type, we also conducted meta
analysis across all possible cancer types to study the overall effect. The meta-analyses were conducted
based on the results from cancer risk analysis with the same inclusion criteria. A random effect model
was used because the heterogeneity test was significant which indicated heterogeneity across the
cancer types. A meta-analysis on HRNonRef showed significant association of HRNonRef with cancers
(p = 3.04× 10−19) (Figure 4A). For ROH, the meta random effect model produced was not significant
(p = 0.1) (Figure 4B). The meta analysis further demonstrated the robustness of HRNonRef over ROH.
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Figure 4. Meta-analysis for cancer risk. (A) Meta-analysis of cancer risk results of HRNonRef

(Table 1). (B) Meta-analysis of cancer risk results of ROH (Table 2). Heterogeneity p < 0.05
indicates significant heterogeneity across cancer datasets, thus a random effect model was used
for the meta-analysis. HRNonRef behaved consistently across multiple cancer types, which resulted in a
significant meta-analysis p-value. ROH, on the other hand, was not significant.

2.3. Mutational Signatures and Survival Analysis

Somatic mutation is one of the most important aspects of cancer. Somatic mutations occur as the
consequence of a mutational process that is triggered by either endogenous errors in DNA replication
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and repair or exogenous mutagens. Taking into consideration DNA’s complementarity, six distinct
substitutions can be formed between the four nucleotides. When adding up the 5’-neighbor and the
3’-neighbor, we can derive a three-nucleotide motif from the focal substitution, and thus expand the
six-substitution inventory to a 96-motif catalog, known as mutational signatures [15]. The profile of
various mutational motifs in a cancer patient can be modeled as a combination of distinct mutational
signatures. A mutational signature is conceived as the footprint of a mutational process in the nuclear
genome, represented in the form of relative frequencies of the motifs of a mutational catalog [16–20].

Both mutational signature and global autozygosity represent genome-wide patterns,
with mutational pattern at the somatic level and HR and ROH at the underlying germline level.
As we have shown that HRNonRef is highly associated with cancer risk, we hypothesize that HRNonRef

may be related to mutational signatures. Using TCGA somatic mutation data, we fit each patient
into the established COSMIC reference mutational signatures, as described in the Methods section.
Linear regression models were used to describe the association between mutational signatures and
HRNonRef and ROH. False discovery Rate (FDR) < 0.05 was used as the significant threshold. Datasets
with a sample size greater than 100 were included in the analyses. Eleven significant associations were
identified, seven for HRNonRef and four for ROH (Table 3). All 11 significant results were from those
subjects of Caucasian descent. Five of the seven significant HRNonRef associations were from the ovarian
cancer dataset, and consisted of SBS9 (FDR = 0.001), SBS18 (FDR = 0.001), SBS5 (FDR = 0.007),
SBS7c (FDR = 0.007), and SBS22 (FDR = 0.03). SBS9 is a mutational signature resulting from
mutations during replication by polymerase eta. SBS18’s etiology is proposed to be damaged by reactive
oxygen species; SBS5’s etiology is currently unknown; SBS7c is related to ultraviolet light damage and
is possibly the consequence of translesion DNA synthesis by enzymes with a propensity to insert T,
and SBS22 is related to aristolochic acid exposure. The other two significant associations with HRNonRef

were SBS44 (related to DNA mismatch repair, FDR = 0.02) in female skin cutaneous melanoma and
SBS36 (related to defective base excision repair, FDR = 0.045) in prostate adenocarcinoma. The most
significant association was found between ROH and SBS44

(
FDR = 4.62× 10−8

)
in females with

head and neck squamous cell carcinoma. The other three significant associations with ROH were
SBS36 (FDR = 3.02 × 10−5) in prostate adenocarcinoma, SBS42 (related to haloalkanes exposure,
FDR = 0.0002) in male lung squamous cell carcinoma, and SBS7b (related to ultraviolet light exposure,
FDR = 0.02) in males in male lung squamous cell carcinoma.

Table 3. Association between global autozygosity and mutational signatures.

Effect Stderr 1 Adusted p Signature Case Predictor Gender Race Cancer 2

0.2638 0.0387 4.62 × 10−8 SBS44 116 ROH female Caucasian HNSC
0.3571 0.0679 3.02 × 10−5 SBS36 125 ROH male Caucasian PRAD
0.8407 0.1970 0.0013 SBS9 277 HRNonRef female Caucasian OV
1.3245 0.3223 0.0013 SBS18 277 HRNonRef female Caucasian OV
1.0001 0.2359 0.0018 SBS42 164 ROH male Caucasian LUSC
0.6597 0.1891 0.0070 SBS5 277 HRNonRef female Caucasian OV
0.8939 0.2564 0.0070 SBS7c 277 HRNonRef female Caucasian OV
2.9086 0.7533 0.0172 SBS7b 132 ROH male Caucasian LUAD
−0.0885 0.0234 0.0206 SBS44 166 HRNonRef female Caucasian SKCM
0.9714 0.3227 0.0280 SBS22 277 HRNonRef female Caucasian OV
0.2439 0.0718 0.0453 SBS36 125 HRNonRef male Caucasian PRAD

1 Standard error. 2 Cancer abbreviations: HNSC—Head and Neck Squamous Cell Carcinoma; PRAD—Prostate
Adenocarcinoma; OV—Ovarian Serous Cystadenocarcinoma; LUSC—Lung Squamous Cell Carcinoma;
LUAD—Lung Adenocarcinoma; SKCM—Skin Cutaneous Melanoma.

Next, we performed survival analyses to examine whether HRNonRef and ROH have prognostic
value. Disease-specific survival analyses using Cox proportional hazard models identified no significant
results for ROH under any scenarios. For HRNonRef, four race and gender-specific significant results
were found (Figure 5): Asian males and liver hepatocellular carcinoma (p = 5.96× 10−5), Caucasian
males and lung adenocarcinoma (p = 0.03), Caucasian females and lung adenocarcinoma (p = 0.01),



Cancers 2020, 12, 3646 9 of 13

and Caucasian males and skin cutaneous melanoma (p = 0.02). All survival results show that lower
HRNonRef is associated with better prognosis.
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Figure 5. Disease-specific survival analysis results presented in Kaplan–Meier plots. R’ maxstat
package was used to identify the optimal point for dichotomization. Two p-values are presented in the
figure, one from Cox proportional hazards regression models without dichotomizing the data, and one
from Cox proportional hazards regression models with dichotomized data.

3. Discussion

A single SNP can have a severe impact, as shown by Mendelian diseases. Multiple SNPs together
can help explain a portion of a disease’s variation in the population but never fully account for the
heritability. This is the famous missing heritability problem [21]. One proposed solution for this
problem is that a person’s susceptibility to disease may be polygenic and dependent on many low effect
variants [22]. Global autozygosity measurement expands on the polygenic idea, by measuring the
genome globally. Global autozygosity as a risk factor for diseases such as schizophrenia and Alzheimer’s
have been established. However, its connection to cancers has not been examined previously.

Cancer risk analysis showed that both HRNonRef and ROH are closely associated with cancer
risk. However, given the same sample size, HRNonRef demonstrated stronger associations than ROH.
Eight of the 14 significant HRNonRef associations were at ≤10−8, the GWAS significance level. However,
we stress that since we did not carry out 1 million independent tests, GWAS level significance is not
required for the multiple testing correction. For ROH, the most significant association is at p = 0.0009.
Furthermore, the associations between HRNonRef and cancer risk are more consistent than ROH.
While all 14 significant HRNonRef and cancer risk associations are positive, eight of the 14 significant
associations for ROH are positive, and six are negative. These results further illustrate the robustness
of HR as a characterization of the genome variability.

The literature [23,24] has shown that a single SNP can increase cancer risk. Our analysis results for
global autozygosity also suggest that genome-wide characteristics can also affect cancer risk. However,
the etiology behind global autozygosity and cancer risk is not well understood, and it would be
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even harder to study the etiology for global autozygosity compared to single SNPs due to the lack of
precise targets. Nonetheless, we performed additional analyses to assess the associations between
global autozygosity and mutational signatures. Mutational signatures are constructed from somatic
mutations, which can represent the mutagenesis history. A previous study has shown the link between
germline variants and somatic mutation [25]. For example, germline variants in RBFOX1 increased the
incidence of SF3B1 somatic mutation eight-fold via functional alterations in RNA splicing, and 19p13.3
variants were associated with a four-fold increased likelihood of somatic mutations in PTEN. Thus,
it is not unreasonable to hypothesize that there are connections between global autozygosity and
mutational signatures. Our analyses found eleven significant associations between global autozygosity
and various mutational signatures after correcting for false discovery. These results suggest that global
autozygosity is related to some mutational processes. It might affect the risk of DNA mismatch in the
repair process after exposure to carcinogens such as ultraviolet light and haloalkanes. Disease-specific
survival analysis also identified four significant associations for HRNonRef, which also suggest potential
prognosis associations of global autozygosity.

One of the limitations of HRNonRef is that it requires the measurement of the entire genome.
Compared to biomarkers of a few SNPs and genes, HRNonRef computation is more expensive and
time consuming. However, in previous work [7], we showed that HRNonRef computed from a random
subset of SNPs can be a robust representation of the true HRNonRef. Furthermore, the price of whole
genome genotyping has dropped below USD 100 per subject, well within the range of acceptable cost.
Further cost reduction can be achieved by estimating HRNonRef from the subset of SNPs. Although,
the criteria of the subset of SNPs to best estimate HRNonRef requires additional study.

4. Materials and Methods

4.1. Genotyping Data Acquisition and Imputation

Germline SNP data were obtained from 4833 subjects with 12 cancer types from the Affymetrix
Genome-Wide Human SNP Array 6.0 in The Cancer Genome Atlas (TCGA), which contains
934,968 SNPs. All SNP data used in this analysis were derived from blood samples. Additional SNP
imputation was performed using a Hapmap Phase 3.0 reference through the Michigan Imputation
Server [26]. Imputed SNPs with R2 > 0.8 were retained for further analysis. After imputation, each
cancer type contained 10–16 million SNPs. The total SNP number was 164,497,868. SNP data with
imputation of 1668 subjects from The International Genome Sample Resources (IGSR), formally known
as the 1000 Genome Project, were also downloaded.

4.2. Somatic Mutation Data Acquisition and Mutational Signature Computation

Somatic mutation data of 10,179 patients with 33 cancer types were downloaded from the Genomic
Data Commons, the gateway of TCGA. The cancer type abbreviations, full name, and detailed sample
size are available in Table S1. The probability matrix for 49 established COSMIC reference mutational
signatures (v3) was downloaded from Synapse Documentation (https://www.synapse.org/#!Synapse:
syn11738319) (Table S2). We formalized a catalog of 96 three-nucleotide motifs that surround the
mutational focus (one upstream nucleotide, one mutation site, and one downstream nucleotide site),
and derived frequency tables of this motif catalog for each patient. We leveraged a computational
function from the R package MutationalPatterns [27] to fit the patient mutational motif frequency
tables to the reference mutational signatures while requiring the coefficients, i.e., signature-to-patient
contribution strengths, to be non-negative values. The estimated coefficients formed a 96-by-10,179
matrix of non-negative values, representing the distribution of 96 mutational motifs across the
10,179 patients.

https://www.synapse.org/#!Synapse:syn11738319
https://www.synapse.org/#!Synapse:syn11738319
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4.3. HR and ROH Computation

Two types of HR were computed, which we denote as HRNonRef and HRMinor. HRNonRef is
computed as Nhet/NHomNonRef, where Nhet is the number of heterozygous SNPs, and NHomNonRef

is the number of homozygous non-reference SNPs. These definitions are consistent with previous
studies [7,11,12] of HR. To study the potential effect when the reference allele does not equal the
major allele in a cohort, we also defined HRMinor as Nhet/NHomMinor, where NHomMinor is the number
of homozygous minor alleles based on the patient cohort. ROHs were computed using PLINK [5].
The median ROH length was used for subsequent analyses.

4.4. Statistical Analyses

All statistical analyses were conducted using 64 bit R 4.0.2. Both Spearman’s and Pearson’s
correlation coefficients were used to compare HRNonRef and HRMinor. Linear regression (R glm function
with family = Gaussian parameter) was used to evaluate the association between age and HRNonRef.
Logistic regression (R glm function with family = binomial parameter) was used to evaluate the
association between HR/ROH and cancer risk. The cancer cases from TCGA were matched with
non-cancer controls from IGSR by race and sex. Moreover, to avoid any potential bias, the common set
of SNPs between TCGA and IGSR was used to compute HR and ROH. The unit for HRNonRef and ROH
was per standard deviation. The R function coxph was used to evaluate the survival predictability of
HRNonRef and ROH. Both HRNonRef continuous and dichotomized models were conducted. For the
dichotomized model, the R package maxstat was used to find the optimal dichotomization threshold.
This threshold was used for dichotomizing HRNonRef into high and low groups for the Kaplan–Meier
curve presentation. The associations between mutational signatures and HRNonRef/ROH were found
by linear regression (R glm function with family = Gaussian parameter). The R function p.adjust with
FDR parameter was used for adjusting for multiple test correction. ROC curves were drawn with the
ggplot2 package. The auc_roc function from mltools R package was used to compute AUC.

Meta-analyses across all possible cancer types and groups were conducted for HRNonRef and ROH.
The meta-analyses were conducted based on the results from cancer risk analysis (Tables 2 and 3).
The R function rma from the metafor package was used for the meta analysis. The random effect model
was used during the meta analysis because the heterogeneity test across cancer types was significant
(p < 0.05).

5. Conclusions

Our analyses of global autozygosity show that HRNonRef is a more robust measurement than
ROH. More importantly, our study demonstrates the connections between global autozygosity and
cancer risk. We identified strong associations between HRNonRef and cancer risk. Even though the
majority of the subjects were Cacuasian, strong associations for minority groups, such as breast invasive
carcinoma risk in Black women and liver hepatocellular carcinoma in Asian men, were identified.
Further evidence was identified by exploring the associations between global autozygosity, mutational
signatures, and cancer prognosis. These results show that global autozygosity can be used for reliable
cancer risk assessment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3646/s1,
Figure S1: Scatter plot between HRNonRef and HRMinor, Figure S2: Comparison of HRNonRef and ROH between
sex across all three races tested, Figure S3: ROC curves based on the cancer risk analysis in Table 1, Table S1:
Cancer names and sample size, Table S2: List of mutational signatures.
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