Supplementary Materials: Computed Tomography Radiomics for Residual Positron Emission Tomography-Computed Tomography Uptake in Lymph Nodes after Treatment

Chu Hyun Kim, Hyunjin Park, Ho Yun Lee, Joong Hyun Ahn, Seung-hak Lee, Insuk Sohn, Joon Young Choi and Hong Kwan Kim

Figure S1. Selection of radiomics features using the least absolute shrinkage and selection operator (LASSO) logistic regression model. (**A**) LASSO coefficient analysis of 161 radiomics features. (**B**) Coefficient plotted against the log (λ) sequence. Four nonzero coefficients (indicated by a vertical line in the plot) were selected. (**C**) Predictive accuracy of the radiomics signature.

Table S1. Radiomics features based on histogram, shape and size, texture, fractal, filters, and sigmoid functions.

Histogram Features		Shape and Size Features	Т	exture Features	
Based on Whole Pixels	Based on Positive Pixels	Based on 2D, 3D Images	Based on GLCM	Based on ISZ	Based on NGTDM
Maximum*	Mean	Compactness	Auto correlation**	Size zone variance	Busyness
Minimum*	Standard variation	Surface area	Cluster tendency**	Intensive variance	Coarseness
Median*	Variance	Convexity	Maximum probability**		Complexity
Mean*	Maximum	Sphericity	Contrast**		Contrast
Variance*	Median	Spherical disproportion	Difference entropy**		Strength
Standard variation*	Minimum	Maximum 3D diameter	Dissimilarity**		
Energy	Interquartile range	Surface-to-volume ratio	Energy**		
Skewness*	Range	Volume	Entropy**		
Kurtosis*	Root mean square	Density	Homogeneity**		

Root mean square	Skewness	Mass	Informational measure of correlation**	
Inter quartile range	Energy	Roundness factor	Variance**	
Range	Entropy	Eccentricity		
Percentile 2.5%, 25%, 50%, 75%, 97.5%	Kurtosis	Solidity		
Entropy*	Uniformity			
Uniformity				
Mean value of positive pixels				
Uniformity of positive pixels				
Fractal Fe	atures	Filtered Feature	es (LoG***)	Sigmoid Function Features
Based on the Box- Counting Method	Based on the Blanket Method	$\sigma = 0.5 - 3$	3.5	3,5,7 mm
Dimension	Fractal signature dissimilarity	Mean		Amplitude mean
				1
Lacunarity	y	Max		Amplitude standard deviation
Lacunarity		Max Min		Amplitude standard deviation Slope mean
Lacunarity		Max Min Media	n	Amplitude standard deviation Slope mean Slope standard deviation
Lacunarity		Max Min Media: Standard de	n viation	Amplitude standard deviation Slope mean Slope standard deviation Offset mean
Lacunarity		Max Min Media: Standard de Skewne	n viation ss	Amplitude standard deviation Slope mean Slope standard deviation Offset mean Offset standard deviation
Lacunarity		Max Min Media Standard de Skewne Kurtos	n viation ss is	Amplitude standard deviation Slope mean Slope standard deviation Offset mean Offset standard deviation
Lacunarity		Max Min Media Standard de Skewne Kurtos Uniform	n viation ss is ity	Amplitude standard deviation Slope mean Slope standard deviation Offset mean Offset standard deviation

ISZ, intensity variance and size zone variance value; GLCM, gray-level co-occurrence matrix; NGTDM, neighborhood gray tone difference matrix; LoG, Laplacian of Gaussian. *These features were calculated from the whole, inner 2/3, and outer 1/3 of the ROI. Difference (delta) between inner and outer ROIs was computed. **These features were calculated from the setting of * plus sub-sampled ROIs. ***Sigma values for LoG features were computed for σ = 0.5–3.5 in 0.5 increments.

Table S2. Definitions of extracted radiomics features.

Category	Parameter	Formula	Description
Histogram- based features [1]	Max, Min	Max = Max(X(i)) or Min = Min(X(i)) where X denotes the 3D image matrix with N voxels.	Measures maximum or minimum intensity value of a histogram
	Median	Median = $\frac{X(i)}{2}$ where X denotes the 3D image matrix	Measures median intensity value of a histogram
	Mean	Mean = $\frac{1}{N} \sum_{i}^{N} X(i)$ where X denotes the 3D image matrix with N voxels.	Measures mean intensity value of a histogram

Variance	Variance $=\frac{1}{N-1}\sum_{i=1}^{N} (X(i) - \bar{x})^2$	Measures squared distances of each value of a histogram from the mean
Standard deviation	Std = $\left(\frac{1}{N-1}\sum_{i=1}^{N} (X(i) - \bar{x})^2\right)^{1/2}$ where X denotes the 3D image matrix with N voxels.	Measures amount of variation of a histogram.
Energy	Energy = $\sum_{i}^{N} X(i)^{2}$ where X denotes the 3D image matrix with N voxels. $F(x = u)^{3}$	Measures squared magnitude value of a histogram
Skewness	Skewness = $\frac{E(x - \mu)}{\sigma^3}$ where μ is the mean of x , σ is the standard deviation of x , and E is the expectation operator.	Measures asymmetry of a histogram.
Kurtosis	Kurtosis = $\frac{E(x - \mu)^{4}}{\sigma^{4}}$ where μ is the mean of x, σ is the standard deviation of x, and E is the expectation operator.	Measures "peakedness" of a histogram (flatness of histogram)
Root mean square (RMS)	$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} X_n ^2}$ where X denotes the 3D image matrix with N voxels.	Measures the square root of the mean of the squares of the values of the histogram. This feature is another measure of the magnitude of a histogram
Interquartile range	IQR = $Q_3 - Q_1$ where Q_3 denote the 3rd quartile of the histogram, and Q_1 denotes the 1 st quartile of the histogram	Measure of variability, based on dividing a histogram into quartiles
Range	Range = range(X(i))	Measures difference between the highest and lowest voxel values of a histogram
Percentile	Percentile = $\left(\frac{n^{th} \ percentile}{100}\right) X(i)$	the 2.5th, 25th ,50th ,75th, and 97.5th percentiles on the histogram
Entropy	Entropy = $-\sum_{i=1}^{N_l} P(i) \log_2 P(i)$ where <i>P</i> denotes the first-order histogram with N_l discrete intensity levels.	Measures irregularity of a histogram.
Uniformity	Uniformity = $\sum_{i=1}^{N_l} P(i)^2$ where <i>P</i> denotes the first-order histogram with N_l discrete intensity levels.	Measures uniformity of a histogram.
Mean value of positive pixels (MPP)	MPP = $\frac{1}{N_{+}} \sum_{i}^{N} X(i)$ where N_{+} denotes the total number of positive gray level pixels in $X(i)$	Measures average positive histogram value.
Uniformity value of positive pixels (UPP)	$UPP = \sum_{i=1}^{N_l} P(i) ^2$	Measures uniformity of a positive histogram value.

		where <i>P</i> denotes the first-order	
		histogram with N_l discrete	
		intensity levels.	
	Compactness	Compactness = $\frac{V}{\sqrt{\pi}A^{\frac{3}{2}}}$ where <i>V</i> denotes the volume and <i>A</i> denotes the surface area of the volume of interest (VOI)	Quantifies how close an object is to the smoothest shape, th circle
	Surface area	$SA = \sum_{i=1}^{n} \frac{1}{2} a_i b_i \times a_i c_i $ where <i>N</i> is the total number of triangles (covered surface area), and <i>a</i> , <i>b</i> , <i>c</i> are edge vectors	Surface area of the ROI
	Convexity	Convexity = $\frac{V}{V'}$ where V denotes tumor volume and V' denotes convex hull volume	Measures the ratio of the RO volume contained within the tumor to the calculated conve hull volume
	Sphericity	Sphericity = $\frac{\pi^{\frac{3}{3}} \times (6V)^{\frac{3}{3}}}{A}$ where A denotes area and V denotes tumor volume	Measures the roundness of th ROI
	Spherical disproportion	Spherical disproportion = $\frac{A}{4\pi R^2}$ where <i>R</i> is the radius of a sphere with the same volume as the tumor	Ratio of the surface area of th ROI to the surface area of a sphere with the same volum as the ROI
Shape- and physical-based features [1,2]	Maximum 3D diameter	See description in the next column	Measures the maximum 3D ROI diameter. This was measured as the largest pairwise Euclidean distance between surface voxels of th ROI
	Surface-to- volume ratio (SVR)	SVR = $\frac{A}{V}$ where <i>A</i> is area and <i>V</i> is volume	Surface-to-volume ratio in RO
	Volume	Volume = R * number of voxels where R denotes the 3D image resolution	Volume of the tumor (ROI)
	Mass	where V denotes the tumor volume, and D denotes the tumor density	Mass of the tumor (ROI)
	Density	Density = $\frac{M}{V}$ where <i>V</i> denotes the tumor volume and <i>M</i> denotes the tumor mass	Density of the tumor (ROI)
	Roundness	Roundness factor = $\frac{4\pi \cdot Area}{Parimetar^2}$	Measure of circularity of a R
	Eccentricity (2D)	Eccentricity = c/a where c is the distance from the center to a focus and a is the distance from that focus to a vertex	Measure of how close the tumor shape is to a circle
	Solidity (2D)	Solidity = $\frac{Area}{Convex\ area}$	Measure of convexity of a RG on the 2D image
GLCM-based features [1]	Auto correlation	Autocorrelation = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ij \mathbf{P}(i, j)$	Measure of the magnitude o the fineness and coarseness o texture

ISZ-based features [3]

Cluster tendency	Cluster tendency = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [i + j - \mu_x]$ $- \mu_z]^2 \mathbf{P}(i \ j)$	Measure of the homogeneity of the GLCM			
Maximum probability	Maximum probability = max{ $P(i, j)$ }	Measure of the maximum value of the GLCM matrix			
Contrast	$Contrast = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i-j ^2 \mathbf{P}(i,j)$	Measures of the local intensity variation of the GLCM			
Difference entropy	Difference entropy = $\sum_{i=0}^{N_g-1} \mathbf{P}_{x-y}(i) \log_2[P_{x-y}(i)]$	Measure of the entropy of the processed GLCM matrix Px-y			
Dissimilarity	Dissimilarity = $\sum_{\substack{i=1 \ N_g}}^{N_g} \sum_{\substack{j=1 \ N_g}}^{N_g} i-j \mathbf{P}(i,j)$	Measure of the difference in each element of the gray level			
Energy	Energy = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [\mathbf{P}(i, j)]^2$	Measure of the homogeneity of the GLCM			
Entropy	Entropy = $-\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \mathbf{P}(i,j) \log_2[\mathbf{P}(i,j)]$	Measure of the irregularity of the gray level.			
Homogeneity	Homogeneity = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{\mathbf{P}(i, j)}{1 + i - j }$	Measure of the closeness of the gray level.			
Informational measure of correlation	$IMC = HXY - \frac{HXY1}{\max\{HX, HY\}}$	Secondary measure of homogeneity			
Variance	Variance = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \mu_x)^2 P(i, j)$	Measure of the dispersion of parameter values around the mean of the combinations of reference and neighborhood pixels			
where N	P(i, j) is the gray level co-occurrence m g is the number of discrete intensity va N is the number of voxels in th u is the mean of P(i, i).	hatrix for $(\delta = 1, \alpha = 0)$, lue in the image, he ROI,			
	$p_{\mathbf{x}}(\mathbf{i}) = \sum_{i=1}^{N_g} \mathbf{P}(\mathbf{i}, \mathbf{j})$ is the marginal row	v probabilities,			
	$p_{v}(i) = \sum_{i=1}^{N_g} P(i, i)$ is the marginal colu	mn probability.			
	μ_x is the expected value of marginal re-	ow probability,			
μ_y	μ_y is the expected value of the marginal column probability,				
σ_x is the standard deviation of $p_{x'}$					
$p_{y'}$ is the stational deviation of $p_{y'}$ $p_{z''}(k) = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \mathbf{P}(i,j)$, $j \neq j = k, k = 2,3,,2N_g$					
$\mathbf{p}_{x+y}(\mathbf{k}) = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \mathbf{P}(i, j) i \neq j = k, k = 0, 1,, N_g - 1.$					
$HX = -\sum_{i=1}^{N_g} \mathbf{P}_{i}(i) \log_2[\mathbf{n}_{i}(i)] \text{ is the entropy of } \mathbf{P}_{i}$					
$HY = -\sum_{i=1}^{N_g} \mathbf{P}_v(i) \log_2[\mathbf{p}_v(i)] \text{ is the entropy of } \mathbf{P}_v,$ $HY = -\sum_{i=1}^{N_g} \mathbf{P}_v(i) \log_2[\mathbf{p}_v(i)] \text{ is the entropy of } \mathbf{P}_v,$					
$HXY = -\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \mathbf{P}(i, j) \log_2[\mathbf{P}(i, j)] \text{ is the entropy of } \mathbf{P}(i, j)$					
$HXY1 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \mathbf{P}(i,j) \log(p_x(i)p_y(j))$					
	i=1 $j=1Size zone variability$				
Size-zone variability	$= \frac{1}{\Theta} \sum_{m=1}^{M} \left[\sum_{n=1}^{N} \boldsymbol{P}(m, n) \right]^{2}$	Variability in the size of the ROI			
Intensity variability	Intensity variability = $\frac{1}{\Theta} \sum_{n=1}^{N} \left[\sum_{m=1}^{M} \boldsymbol{P}(m, n) \right]^{2}$	Variability in the intensity of the ROI			

	 where <i>P</i>(<i>m</i>, <i>n</i>) is the intensity size zone matrix Θ represents the number of homogeneous areas in the tumor, <i>M</i> is the number of distinct intensity values, <i>N</i> is the size of homogeneous area in the matrix. <i>B</i>(<i>m</i>, <i>n</i>) 			
	IN		matrix $P(m,n)$	
NGTDM- based features - [4,5]	Busyness	Busyness = $\sum_{i=1}^{L} p_i s(i)$ $/ \sum_{i=1}^{L} \sum_{i=1}^{L} (ip_i - jp_j)$	Measure of the spatial rate of gray-level change	
	Coarseness	Coarseness = $\left[\sum_{i=1}^{L} p_i s(i)\right]^{-1}$	Measure of edge density	
	Complexity	Complexity = $\sum_{i=1}^{L} \sum_{j=1}^{L} \{(i - j) / (n^2(p_i + p_j))) \} \{P_i s(i) + p_j s(j)\}$	Measure of the amount of information in an ROI (gray- level intensities, number of sharp edges)	
	Contrast	Contrast = $\frac{1}{N_g(N_g - 1)} \sum_{i=1}^{L} \sum_{j=1}^{L} p_i p_j (i - j)^2 \cdot \frac{1}{n^2} \sum_{i=1}^{L} s(i)$	Measure of local variations and spread of matrix values	
	Strength	Strength = $\sum_{i=1}^{L} \sum_{j=1}^{L} (p_i + p_j)(i - j)^2$ / $\sum_{i=1}^{L} s(i)$		
	where p_i is the p is the total numb	probability of occurrence of a gray level or of different gray levels in the ROI, an gray levels	value, $s(i)$ is the NGTDM, N_g and L is the number of possible	
Filter-based features [2] (LoG)	Mean	Mean = $\frac{1}{N} \sum_{i}^{N} G(i)$ where G denotes the filtered 3D image matrix with N voxels.	Measurement of the mean of the ROI image processed by the LoG filter	
	Max	Max = Max(G(i))where G denotes the filtered 3D image matrix with <i>N</i> voxels.	Measurement of the maximum intensity value of the ROI image processed by the LoG filter	
	Min	Min = Min(G(i))where G denotes the filtered 3D image matrix with N voxels.	Measurement of the minimum intensity value of the ROI image processed by the LoG filter	
	Median	Median = $\frac{G(i)}{2}$ where G denotes the filtered 3D image matrix	Measurement of the median intensity value of the ROI image processed by the LoG filter	
	Standard deviation (Std)	Std = $\left(\frac{1}{N-1}\sum_{i=1}^{N} (G(i) - \bar{G})^2\right)^{1/2}$ where G denotes the filtered 3D image matrix with N voxels.	Measurement of the standard deviation of the ROI image processed by the LoG filter	
	Skewness	Skewness = $\frac{E(G - \mu)^3}{\sigma^3}$ where μ is the mean of G, σ is the standard deviation of G, and E is the expectation operator.	Measurement of the skewness of the ROI image processed by the LoG filter	

	Kurtosis	Kurtosis = $\frac{E(G - \mu)^4}{\sigma^4}$ where μ is the mean of G, σ is the standard deviation of G, and E is the expectation operator.	Measurement of kurtosis of the ROI image processed by the LoG filter	
	Uniformity	Uniformity = $\sum_{i=1}^{N_l} P(i)^2$ where <i>P</i> denotes the first-order histogram with N_l discrete intensity levels.	Measurement of the uniformity of the ROI image processed by the LoG filter	
	Entropy	Entropy = $-\sum_{i=1}^{N_l} P(i) \log_2 P(i)$ where <i>P</i> denotes the first-order histogram with N_l discrete intensity levels.	Measurement of entropy of the ROI image processed by the LoG filter $-\frac{x^2+y^2+z^2}{2z^2}$	
		$\sigma(x, y, z, \sigma) = I(x, y, z) + \frac{\sigma(\sqrt{2\pi})^3}{\sigma(\sqrt{2\pi})^3}$ E increments where $I(x, y, z)$ is the imp	as and * denotes convolution	
	0 = 0.3 = 3.3, 0 Lacunarity	.5 increments, where $I(x,y,z)$ is the integration of the second	Measure of the texture or	
	(box-counting method)	See description in the next column	distribution of gaps within an image	
Fractal-based features [6,7]	Dimension (box-counting method)	Fractal dimension = $\lim_{r \to 0} \frac{\log(N_r)}{\log(1/r)}$ where N_r is the number of voxels and r is the different side lengths	Fractal dimension that quantifies morphological complexity and provides information on self-similarity properties	
	Fractal signature dissimilarity (blanket method)	See description in the next column	Measure of tumor heterogeneity	
	Amplitude mean		Mean of the amplitude values	
	Amplitude standard deviation		Standard deviation of the amplitude values of all sampling lines	
	Slope mean		Mean of the slope values of all	
Sigmoid function-based features [2]	Slope standard deviation	See description in the next column	Standard deviation of the slope values of all sampling lines	
	Offset mean		Mean of the offset values of all sampling lines	
	Offset standard deviation		Standard deviation of the offset values of all sampling lines	
		Sigmoid(x) = $\frac{A}{e^{B \cdot x} + 1} + 0$	2	
	where <i>A</i> is the amplitude, <i>B</i> is the slope of the curve, and C is the offset of the curve			

ISZ, intensity variance and size zone variance value; GLCM, gray-level co-occurrence matrix; NGTDM, neighborhood gray tone difference matrix; LoG, Laplacian of Gaussian.

References

- 1. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nat. Commun.* **2014**, *5*, 4006.
- 2. Aerts, H.J.; Grossmann, P.; Tan, Y.; Oxnard, G.R.; Rizvi, N.; Schwartz, L.H.; Zhao, B. Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC. *Sci. Rep.* **2016**, *6*, 33860.

- 3. Chong, Y.; Kim, J.H.; Lee, H.Y.; Ahn, Y.C.; Lee, K.S.; Ahn, M.J.; Kim, J.; Shim, Y.M.; Han, J.; Choi, Y.L. Quantitative CT variables enabling response prediction in neoadjuvant therapy with EGFR-TKIs: are they different from those in neoadjuvant concurrent chemoradiotherapy? *PLoS ONE* **2014**, *9*, e88598.
- 4. Niu, L.; Qian, M.; Yang, W.; Meng, L.; Xiao, Y.; Wong, K.K.; Abbott, D.; Liu, X.; Zheng, H. Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis. *PLoS ONE* **2013**, *8*, e76880.
- Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? *Insights Imaging* 2012, 3, 573–589.
- 6. Lennon, F.E.; Cianci, G.C.; Cipriani, N.A.; Hensing, T.A.; Zhang, H.J.; Chen, C.T.; Murgu, S.D.; Vokes, E.E.; Vannier, M.W.; Salgia, R. Lung cancer-a fractal viewpoint. *Nat. Rev. Clin. Oncol.* **2015**, *12*, 664–675.
- 7. Wang, C.; Subashi, E.; Yin, F.F.; Chang, Z. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI. *Med. Phys.* **2016**, *43*, 1335–1347.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).