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Simple Summary: Approximately 75–80% of according to the classification of world health
organization (WHO) grade II and III gliomas are characterized by a mutation of the isocitrate
dehydrogenase (IDH) enzymes, which are very important in glioma cell metabolism. Patients with IDH
mutated glioma have a significantly better prognosis than patients with IDH wildtype status, typically
seen in glioblastoma WHO grade IV. Here we used a prospective O-(2-18F-fluoroethyl)-L-tyrosine
(18F-FET) positron emission tomography guided single-voxel 1H-magnetic resonance spectroscopy
approach to predict the IDH status before surgery. Finally, 34 patients were included in this
neuroimaging study, of whom eight had additionally tissue analysis. Using a machine learning
technique, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% and a specificity
of 75.0%. It was newly recognized, that two metabolites (myo-inositol and glycine) have a particularly
important role in the determination of the IDH status.

Abstract: Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential
therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is
invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect
D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods
are technically challenging and not broadly available. Therefore, we explored the use of machine
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learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic
resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected
glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging
with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine
1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were
acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and
molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable
discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested
cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete
spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH
status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2–99.9%) and a specificity of 75.0%
(95% CI, 42.9–94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex
vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of
resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the
major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive,
fast and cost-effective prediction of IDH status in a standard clinical setting.

Keywords: glioma; IDH mutation; 18F-FET; 1H-MRS; D-2-hydroxyglutarate; linear support vector
machine; glycine; myo-inositol

1. Introduction

Gliomas are extremely aggressive brain tumors associated with a poor median overall survival
(between 15 and 26 months in glioblastoma (GBM) patients) [1,2].

These tumors are classified by the use of a multi-layer classification including histopathological
and molecular features andgrading according to the world health organization (WHO). The isocitrate
dehydrogenase (IDH) status has a special meaning in this classification system [3]. Patients with WHO
grade II and III glioma typically harbor IDH mutations in about 75% to 80% of cases [4,5], whereas
patients with primary GBM in general do not [3]. The IDH status improves the discrimination of
prognosis in comparison to the WHO grade alone [4,6,7]. As a result, tumor metabolism in IDH mutated
glioma cells has come to the fore as an important diagnostic and therapeutic target [6]. Following this
concept, the whole metabolism of a respective brain tumor and not only specific substrates, adapts as a
consequence of IDH mutation [8–13]. Consecutively, IDH wildtype astrocytoma of WHO grade II and
III is a provisional entity that is strongly discouraged. Diffuse astrocytic glioma IDH wild-type (IDHwt)
presenting with disadvantageous genetic characteristics (e.g., epidermal growth factor receptor gene
(EGFR) amplification or combined chromosome 7 gain/chromosome 10 loss or telomerase reverse
transcriptase (TERT) promoter mutation) was proposed to be a “diffuse astrocytic glioma, IDHwt,
with molecular features of glioblastoma” [14] and will be termed glioblastoma in the upcoming revised
2021 classification.

Three IDH isoforms have been described so far. IDH-1 is localized in peroxisomes and the
cytoplasm, whereas IDH-2 and IDH-3 are part of the tricarboxylic acid cycle (TCA) in mitochondria.
All three isoforms convert isocitrate to α-ketoglutarate (α-KG) by oxidative decarboxylation [15].
To date, in human gliomas, only heterozygotic mutations in IDH-1 and IDH-2 have been reported,
with a significant preponderance of IDH-1 [6,16]. Around 90% of IDH-1 mutated (IDHmut) gliomas
involve a substitution in the catalytic site of arginine-132, which is replaced by histidine (IDH1 R132H
mutation) [6]. As only one allele is mutated, the wild-type allele will continue to produce α-KG,
while the neomorphic enzyme activity conferred upon IDHmut will catalyze the conversion of α-KG to
the oncometabolite D-2-hydroxyglutarate (2-HG) [17], which is measurable in vitro and in vivo.
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To detect IDH mutations, neuropathological and imaging techniques have been developed.
Immunohistochemistry (IHC) for IDH1-R132H [18] and, if negative, panel sequencing (to detect
the rarer mutational variants, at least in patients below 55 years and cases with negative IHC) are
regarded as gold standard [3,19]. However, both methods depend on the availability of tumor tissue.
Non-invasive proton magnetic resonance spectroscopy (MRS) holds great potential in the routine
analysis of 2-HG [20], especially in eloquent areas of the brain with increased surgical risk as well as in
the monitoring of IDH-associated metabolites during potential IDH-specific therapies [21–23]. So far,
different MRS techniques have been used to predict the IDH mutation status in brain tumors but the
best results were reported for direct determination of 2-HG by MRS [24]. Other studies have attempted
to infer the IDH mutational status indirectly by applying machine learning methods to magnetic
resonance imaging (MRI) patterns [25]. Alternatively, O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) uptake
parameters and textural features in positron emission tomography (PET) have been exploited for the
determination of IDH mutation status [26–28]. So far, 18F-FET uptake has not been used in combination
with 1H-MRS to optimize voxel placement in diffuse glioma.

In view of the technical challenges of earlier studies and with the aim to develop a reliable,
prospective, technically feasible, fast and affordable approach to discriminate IDH wild type and IDH
mutated gliomas in vivo, we aimed here to process 18F-FET PET-guided routine 1H-MRS data from a
standard 3T-MR scanner in a fully automatic manner to reveal IDH mutations with high accuracy.

2. Results

2.1. Patient Characteristics

Thirty-four patients with glioma WHO grade II/III/IV and known IDH mutation status were
prospectively included in this investigator-initiated, cross-sectional, monocentric study. Detailed
patient characteristics are given in Table 1. Twenty-two patients harbored an R132H IDH-1 mutation
verified by IHC (IDHmut group). No IDH-2 mutation was detected. Twelve patients suffered from
IDHwt glioma (IDHwt group) corroborated by genomic sequence analysis in tumor tissue of all IDHwt
patients. Tumor tissue of 7 IDHmut patients harbored a combined loss of heterozygosity (LOH) 1p/19q
and was, therefore, classified as an oligodendroglial tumor (32% of IDHmut patients). In glioma
with IDH mutation, a higher rate of O6-Methylguanine-DNA-Methyltransferase (MGMT) promotor
methylation was detected than in IDHwt glioma.
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Table 1. Study patient characteristics dependent on IDH mutation status.

IDH1-Mutation

IDHwt IDHmut
Mean Median Number in % Mean Median Number in %

Age at first diagnosis 55 54 39 37

Age at begin of trial * 55 55 43 43

Gender
male 6 50% 12 55%

female 6 50% 10 45%

Diagnosis

diffuse astrocytoma 0 0% 3 14%
oligodendroglioma 0 0% 4 18%

anaplastic astrocytoma 2 17% 9 41%
anaplastic

oligodendroglioma 0 0% 4 18%

glioblastoma 10 83% 2 9%

WHO
II 0 0% 7 32%
III 2 17% 13 59%
IV 10 83% 2 9%

MGMT-Status
non-methylated 8 67% 6 27%

methylated 4 33% 15 68%
unknown 0 0% 1 5%

LOH1p19q
no 6 50% 14 64%
yes 0 0% 7 32%

unknown 6 50% 1 5%

Karnofsky
80 5 42% 0 0%
90 3 25% 5 23%

100 4 33% 17 77%

Timepoint of Inclusion
first-line treatment 6 50% 14 64%

first relapse 5 42% 4 18%
>first relapse 1 8% 4 18%

* range 25–73 years * range 21–66 years
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Age at first diagnosis and at study inclusion was considerably lower in the IDHmut in comparison
to the IDHwt group. The proportion of patients included in first line setting versus relapse was
comparable in both groups (first-line setting IDHmut 64% versus IDHwt 50%).

2.2. Standard 1H-MRS at 3T Is Not Sufficient to Reliably Detect 2-HG

1H-MRS in a voxel of 14 × 14 × 14 mm was acquired as described below. Typical 1H-MR
spectra of a patient with anaplastic astrocytoma, IDHmut, WHO grade III are shown in Figure 1
(1a: healthy brain region, 1b: tumor region). Typical tumor metabolites, for example, increased lactic
acid (Lac) and choline (Cho) and decreased N-acetylaspartate (NAA), were detected as expected for
glioma. An unambiguous detection of a 2-HG peak employing standard 1H-MRS was not feasible,
as different components of the 2-HG signal (two Hβs at 1.91 ppm and two Hγs at 2.24 ppm) overlapped
with signals of glutamate (Glu), glutamine (Gln) and γ-aminobutyric acid (GABA), while the signal
of the Hα proton overlapped with numerous compounds such as myo-inositol (M-ins). Figure 1b
demonstrates that the 2-HG peak at 2.24 ppm is hardly distinguishable from the Glu/Gln peaks.
Consequently, predicting IDH mutation in glioma solely based on the 2-HG signal without the use of
sophisticated pulse sequences specific for 2-HG detection might be unreliable.
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Figure 1. Exemplary 1H-magnetic resonance spectra (1H-MRS) of a glioma patient bearing an IDH
mutation. Both spectra were acquired by a 3T MR scanner in a voxel of 14× 14× 14 mm. (a) healthy brain
region (b) tumor region.Abbreviations: 2-HG, D-2-hydroxyglutatrate; CH2-Lipid, CH2 groups of lipids;
CH3-Lipid, CH3 groups of lipids; Cho, choline; Cr, creatine; Gln, glutamine; Glu, glutamate; Lac, lactate;
M-ins, myo-inositol; NAA, N-acetylaspartate; PCr, phosphocreatine.

2.3. IDH Mutation Induces a Specific Pattern of Alterations in 1H-MR Spectra

Based on the published data that IDH mutations induce a whole range of metabolic changes
beyond the increase of 2-HG, we next investigated whether additional spectral information could be
used to predict the IDH mutation status. For this purpose, we generated averaged spectra of IDHmut
and IDHwt tumors to detect relevant spectral differences between the two groups (Figure 2).
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Figure 2. Averaged 1H-MR spectra of IDHwt (n = 9, top) and IDHmut tumors (n = 17, bottom).
The region between 4.1 ppm and 3.5 ppm (colored green) demonstrated distinct spectral differences
between IDHwt and IDHmut 1H-MR spectra.

As can be seen the signal at 2.24 ppm corresponding to 2-HG was also difficult to detect in the
averaged spectra of patients bearing an IDH mutation. In contrast, distinct spectral changes were
visible between IDHwt and IDHmut tumors in the region between 4.1 ppm and 3.5 ppm, indicating
that IDHmut may cause further metabolic changes in addition to the production of 2-HG in 1H-MR
spectra. Therefore, we decided to analyze the complete spectral information for predicting the IDH
mutation status.

2.4. A Linear Support Vector Machine Provides High Sensitivity and Specificity in Detecting IDHmut

Next, a linear support vector machine (SVM) was used for the prediction of IDH mutations based
on 1H-MR spectra. To this end, a nested leave-one-out cross-validation method was applied. In this
approach the set of all patient spectra was iteratively split into a training set and a test set. In each
iteration, the classification algorithm was trained on the training set. Next, the trained algorithm was
employed to predict the mutation status of the test set. By this, it was ensured that the training step was
not influenced by the test set, thus obtaining a practically unbiased assessment of the true classification
error [29]. For a maximal prediction performance, the choice of predictive features was optimized
in an inner cross-validation. This resulted on average in the selection of two predictive features,
which allowed the prediction of an IDH mutation with an average accuracy of 88.2%, a specificity of
75.0% (95% CI, 42.9–94.5%) and a sensitivity of 95.5% (95% CI, 77.2–99.9%). The area under the ROC
curve (AUC) amounted to 0.83 (Figure S2, Supplementary Material). Prediction results of all samples
are provided in Table S1, Supplementary Material.

2.5. In Vivo and Ex Vivo Analysis of Metabolites

Lastly, the classification algorithm enabled us to focus on the discriminating features of high
importance (green box in Figure 3, top). To get a more detailed view of the underlying discriminatory
metabolites, hydrophilic extracts of excised tumor material (eight specimens) were analyzed ex vivo
by high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy. For the assignment of NMR
signals to specific compounds, spectra were superimposed with reference spectra obtained from pure
compounds. As visible from Figure 3, the features selected by the classification algorithm mostly
corresponded to M-ins and glycine (Gly).
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Figure 3. Predictive features. (top) Exemplary in vivo 1H-MR spectra of IDHwt and IDHmut glioma
acquired at 3T. The region of the two features used for predicting IDH mutation status is marked
in green. (bottom) Exemplary ex vivo high-resolution 1D 1H-nuclear magnetic resonance (NMR)
spectra acquired at 14.1 T of methanol extractions of excised IDHwt and IDHmut glioma (green).
For identification of metabolites pure compound spectra of Gly, M-ins, Gln, Glu and 2-HG are overlaid
with these spectra. The two inlays show the region of the expected signal of 2-HG (dark red).

Furthermore, a comparison of two inlays displayed in the lower part of Figure 3 clearly shows the
2-HG signal in the ex vivo high-resolution spectrum of an exemplary patient bearing an IDH mutation,
while—as expected—this signal is absent in a patient without mutation. These details can only be seen
in the high-resolution ex vivo spectra, while these features are invisible due to a substantially increased
linewidth in the in vivo spectra. The complete data acquisition and analysis pipeline is summarized in
Figure 4.
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patients with unknown IDH status may be presented to the algorithm for prediction of IDH status. 

Figure 4. Detailed process description of analysis pipeline as it could be applied in clinical praxis.
First, standard MRI and 18F-FET PET were applied for voxel planning. Second, in selected voxels 1D
1H MRS spectra of patients with known IDH status were acquired. Next, a classification algorithm,
namely a linear support vector machine, was trained on all spectra of the training set implementing a
nested leave-one-out cross-validation approach. Finally, once training is completed new spectra of
patients with unknown IDH status may be presented to the algorithm for prediction of IDH status.

3. Discussion

Here, we performed a prospective, investigator-initiated, cross-sectional, monocentric study to
evaluate the non-invasive prediction of IDH mutation status in glioma patients using standard single
voxel 1H-MRS. Our results demonstrate that reliable non-invasive prediction of the IDH mutation
status is feasible employing a combination of routine 1H-MRS at 3T together with data analysis using
a machine learning approach. In addition, we show that in vivo 1H-MRS corresponds very well
with ex vivo spectra of fresh frozen tumor specimens. Importantly, the signals of Gly and M-ins but
as explained below not the signal of 2-HG, could be identified as discriminating features in in vivo
1H-MRS analyses in tumor tissues associated with IDH mutation.

Numerous clinical trials predicting IDH mutation status using MRI/MRS/radiomics have been
conducted with a summary sensitivity across all techniques of 86% (95% CI, 79–91%) and a summary
specificity of 87% (95% CI, 91–100%), while pooled sensitivity and specificity for 2-HG MRS were 95%
(95% CI, 85–98%) and 91% (95% CI, 83–96%), respectively [24]. Longer echo times (significant increased
sensitivity and specificity in TE 97 ms compared to TE 30–35 ms) [30], ultra-high-field MRI (7T) [31,32],
2D correlation spectroscopy (COSY) at 3T [33] and 2D L-COSY at 7T [34] were used to improve
detection of the 2-HG signal. Different post-processing techniques have also been applied in various
settings, mostly in a limited number of patients (e.g., 38 patients in Reference [35]). Interestingly,
independent of 2-HG, peak alterations of other metabolites were frequently seen (e.g., Cho, Glu, Gly,
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glutathione, cystathionine [36–38]) and sometimes used to improve detection of IDH mutation status,
for example, combination of 2-HG and Glu levels [39]

The described techniques are frequently not suitable for clinical routine as they need extensive
technical and personal capacities [24]. For example, ultra-high-field MRI (7T) [31,32] is only available
at a few quaternary university hospitals but not in daily clinical practice.

In comparison to the cited data, our approach presents a comparable prediction accuracy of 88.2%,
sensitivity of 95.5% (95% CI, 77.2–99.9%) and specificity of 75.0% (95% CI, 42.9–94.5%). Furthermore,
the acquisition of 1H-MR spectra and all subsequent steps are performed in a fully automated fashion.
Therefore, time-consuming complex technologies were not necessary and 1H-MRS caused on average
twenty minutes of additional examination period following standard MRI and was well accepted by
patients. Moreover, 18F-FET PET imaging, which could be performed in 30/34 patients, facilitated
optimal voxel placement in 1H-MRS and, thus, contributed to diagnostic accuracy.

IDHmut glioma cells show alterations in several enzyme activities, resulting in various metabolic
changes, including a distinct intra- and extracellular increase of 2-HG [6] and a decrease in Glu
concentrations [11,40]. Therefore, our first study hypothesis was that the 2-HG peak at 2.24 ppm
of the 1H-MR spectrum in vivo is associated with an IDH mutation. Unfortunately, peaks of 2-HG
and Glu overlapped heavily in 1H-MR spectra at the position 2.24 ppm as seen in Figures 1 and 2.
Furthermore, only minimal changes in global intensity were seen in the presence of mutated IDH.
Consequently, this feature was not applicable to prediction of IDH status in vivo. However, the region
between 4.1 ppm and 3.5 ppm demonstrated distinct differences between IDHwt and IDHmut glioma
1H-MR spectra. For this reason, our next study objective aimed at the unbiased selection of features in
whole single voxel 1H-MR spectra that were capable of discriminating IDHwt from IDHmut gliomas
using a machine learning approach. Starting with 250 features per spectrum, we finally identified two
discriminating features of high importance, corresponding to Gly and M-ins.

In Figure 2, the region of the two predictive features is indicated by a green box. Of note, the peak
on the left, corresponding to Gly, is clearly decreased in IDHmut gliomas, while the opposite is true
for the peak on the right, which corresponds to M-ins (Figure 3, bottom). In line with our results,
Miyata et al. had also shown previously a clear reduction of Gly in IDH-mutated glioma [40]. On the
other hand, increased Gly levels and Gly/2-HG ratios have been associated with a more aggressive
type of glioma with rapid progression and shorter patient survival [37]. Non-essential amino acids
such as Gly are generated from or degraded to intermediates of glycolysis and the TCA cycle. As IDH
mutations affect the production and availability of α-KG and further downstream intermediates of the
TCA cycle, the observed decrease in Gly level is not unexpected.

A high M-ins level in 1H-MRS is relevant to distinguish glioma from other brain tumors,
for example, primary central nervous system lymphomas [41]. Furthermore, IDH mutation seems
to be a relevant factor for M-ins concentration. A positive correlation between 2-HG and M-ins has
been reported recently [32] but the connecting link is missing so far. M-ins is an organic osmolyte in
the brain and its intracellular concentration depends on the osmolality dominant in the surroundings.
Therefore, increased M-ins concentration in IDH mutated gliomas may cause a change in metabolism of
glioma cells following the osmotic alterations in the tumor microenvironment [42]. Moreover, in brain
tumors a link between M-ins levels and the expression of the enzyme inositol 3-phosphate synthase
(ISYNA1) has been reported [41]. ISYNA1 is responsible for biosynthesis of M-ins by metabolizing
glucose-6-phosphate to inositol-1-phosphate. In summary, recapitulating the role of M-ins in IDHmut
glioma is exciting and deserves further investigations.

Despite the small number of patients and a missing coregistration of 18F-FET PET and anatomical
MRI data, a relevant strength of the current study is the high accuracy in detecting IDH mutation
status independent of the heterogenous population showing that our technique works in distinct
settings, including patients with various neuropathological diagnoses and first-line or relapse setting
with different treatment modalities in the past. Furthermore, our method is based on routine 1H-MRS
measurements and a fully automated analysis pipeline making it amenable to routine clinical practice.
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4. Materials and Methods

4.1. Patients Characteristics

Forty-three patients with known or suspected glioma WHO II to IV in a first diagnosis
or relapse situation and planned tumor biopsy or resection were screened for the study in a
single neuro-oncological center (University Hospital Regensburg, Regensburg, Germany) between
December 2015 and September 2019. Nine patients (21%) were excluded from analysis, including
a histology other than glioma (two patients, 5%), no surgery (three patients, 7%), not conducting
1H-MRS (two patients, 5%) and due to technical difficulties in 1H-MRS evaluation in two patients (5%).
Consequently, thirty-four patients (80%) were enrolled (Figure S1, Supplementary Material). Clinical
parameters, such as age, gender and Karnofsky Performance Score, were evaluated for all patients.

This prospective clinical trial was approved by the local ethics committee (Ethikkommission bei
der Universität Regensburg, reference number 15-101-0258, approval date: 21 October 2015) and all
patients gave written informed consent for the use of their clinical, molecular and imaging data.

4.2. Glioma Diagnosis and Molecular Parameters

The patients’ brain tumor diagnosis and WHO grading were determined at the local
neuropathology department. Routine histopathology was accompanied by testing for IDH mutation
(standard immunohistochemistry and Sanger sequencing) and MGMT promoter methylation status
(methyQESD) [43,44]. Promoter methylation was considered as being present starting from a minimum
of 3% methylation. Examination of LOH 1p/19q status was performed in all IDHmut gliomas identified
by microsatellite analysis [45].

4.3. Standard MRI and 18F-FET PET Imaging

Standard MRI was routinely performed at the local department of radiology (University Hospital
Regensburg) using a clinical 3T-MR scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, Germany)
and a 20-channel head-neck array coil. The routine MRI protocol included T1-weighted sequences with
and without contrast agent (T1, T1wCE), T2 and FLAIR sequences and diffusion-weighted imaging
(DWI) including the apparent diffusion coefficient (ADC).

18F-FET PET was carried out in a routine manner at the local department of nuclear medicine
corresponding to the German and Austrian guidelines for brain tumor imaging with the use of labeled
amino acid analogues [46]. In twenty-one patients PET scans were performed on a Biograph 16 PET/CT
scanner, in nine patients a Biograph mCT40 scanner was used (both CTI-Siemens, Erlangen, Germany).
In four patients no PET scans were available. Using 18Fluor from our on-site cyclotron 18F-FET was
produced in-house as described previously [47] and administered according to the German Medicinal
Products Act, AMG §13 2b and in accordance with the local regulatory authority (Regierung von
Unterfranken). The need of a permission according to the radiation protection law was negated in
response to an inquiry at the German Federal Office for Radiation Protection. All patients fasted
for at least 6 h before PET scanning. Prior to the PET scan, a low-dose CT scan was carried out
for attenuation correction. Three-dimensional PET was performed 5–15 min and 20–30 min after
intravenous injection of 229 ± 44 MBq 18F-FET. The emission data set was attenuation-corrected
using low-dose CT and reconstructed applying the OSEM (Ordered Subset Expectation Maximization)
algorithm with parameters recommended by the manufacturer.

4.4. Data Acquisition of 1H-MRS

In vivo single voxel 1H-MRS was performed on the same clinical 3T-MR scanner as used for the
standard MRI scan in the same session. 1H-MRS voxels for acquisition of the tumor metabolism were
placed into the most representative tumor areas identified by standard MRI (e.g., contrast-enhancement
on T1-sequences, glioma-typical T2/FLAIR signal alterations) and 18F-FET PET (identification of the
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metabolic tumor volume and the area of maximal 18F-FET uptake) (Figure 4). In a visual procedure
using anatomical landmarks and applying comparable angulation in 18F-FET PET and MRI/MRS the
area of maximal 18F-FET uptake was integrated in voxel positioning. In 30 of 34 patients, 18F-FET PET
was available for 1H-MRS voxel planning. Furthermore, tumor calcification (MRI and CT scan for
attenuation correction during 18F-FET PET) as well as a close relationship of the tumor to cranial bones
and to the ventricle with cerebrospinal fluid – known interference factors for 1H-MRS were considered.

All spectra were acquired using a PRESS (Point RESolved Spectroscopy) sequence with a voxel
size of 14 × 14 × 14 mm, a TR of 2000 ms and a TE of 30 ms; 100 acquisitions were averaged for each
spectrum. Acquisition time (excluding adjustment procedures) was 3 min 30 s. A spectral width of
1200 Hz centered at the residual water signal was used. Data were Fourier transformed to a final size
of 1024 real data points.

4.5. 1H-MRS Data Pre-Processing

Data files from the 3T-MR scanner in Siemens “.rda” format were transferred to the clinical
and biomedical MRS software package jMRUI [48]. Within jMRUI spectra were phase corrected and
referenced with respect to the choline signal at 3.20 ppm. Next, all data points of each spectrum were
exported for further analysis in “.txt” format. All further analyses were performed employing the
statistical computing environment R v. 3.6.1 (Development Core Team 2009). To achieve comparability
across data sets, all spectra were first automatically aligned with respect to the clearly visible choline
signal. To account for remaining small variations in signal positions an equidistant binning was
performed by combining four consecutive data points into one bin, which resulted in a total of 250 bins
or features. Next, the remaining water signal and regions containing no signals were discarded so
that only the features in the region between 4.5–0.7 ppm were kept for subsequent analyzes. Next for
the reduction of unwanted sample-to-sample variations, all samples were normalized to a total signal
intensity of 1, followed by a log2 transformation for the reduction of heteroscedasticity.

4.6. 1H-MRS Classification

1H-MRS classifications were obtained employing a linear support vector machine (SVM). To this
end, the R-library e1071 (http://cran.r-project.org/web/packages/e1071/) was used. To guarantee an
almost unbiased estimate of the true prognostication error [29], a nested leave-one-out cross-validation
approach was used. In this procedure, iteratively one spectrum was selected for testing while the
remaining spectra were used for training of the classification algorithm. In all cases the samples used
for training and testing were strictly separated from each other, which is of prime importance for a
realistic estimation of the true classification error. The inner loop of the nested cross-validation was
employed to estimate the best number of features using a t-test based ranking of all features in the
region between 4.5–0.7 ppm. The number of selected features was increased in steps of one from a
starting value of one until optimal classification performance was obtained. Note that this feature
selection step was performed on the training data only. The cost parameter was left on its default
value of one. The complete R-script for preprocessing and sample classification is provided in the
Supplementary Material.

4.7. Ex Vivo Evaluation of Tumor Material

In total 8 samples of excised tumor tissue (5 IDHmut and 3 IDHwt) were analyzed. Neurosurgical
biopsy or resection was done immediately after 1H-MRS (range 1–16 days).

Excised tumor material was snap frozen in liquid nitrogen and kept at−80 ◦C prior to measurement.
To this end, tissue specimens of 40 to 170 mg, which were cooled on ice, were put in Precellys lysing
kit tubes (Bertin Technologies, Montigny-le-Bretonneux, France), followed by the addition of 1 mL
of 80% (v/v) aqueous MeOH and homogenization for 2 × 20 s at 6500 rpm. Next, as an extraction
standard, 10 µL of 20 mM nicotinic acid were added. Resulting mixtures were centrifuged at 8960 g for
5 min at a temperature of 4 ◦C. Supernatants were collected and the remaining pellets were washed

http://cran.r-project.org/web/packages/e1071/
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two times with 400 µL 80% (v/v) methanol followed by centrifugation of the first and second wash
with 8960 g and 12,902 g, respectively. Next, the supernatants of each sample were combined and
evaporated. For NMR measurements, dried remains were dissolved in 400 µL pure water, mixed
with 200 µL of 0.1 mol/L phosphate buffer, pH 7.4 and 50 µL deuterium oxide containing 0.75% (w/v)
3-trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP)(Sigma-Aldrich, Taufkirchen, Germany). In this
context TSP is serving as internal standard for referencing and quantification.

NMR measurements were conducted on a 14.1 T (600 MHz) Bruker Avance III NMR spectrometer
(Bruker BioSpin GmbH, Rheinstetten, Germany). It was equipped with a triple-resonance (1H, 13C 15N,
2H lock) cryogenic probe with z-gradients. Furthermore, an automatic cooled sample changer was
used. For each sample, a 1D 1H-NMR spectrum was carried out following established protocols [49].
As described previously, individual NMR signals were assigned to their respective metabolites by
superposition with reference spectra of pure compounds [49].

5. Conclusions

We established a non-invasive, reliable and easy to practice method for prediction of IDH mutation
status in glioma based on 18F-FET PET-guided standard 1H-MRS and machine learning techniques.
Analysis was based on two discriminating features corresponding to Gly and M-ins but not on 2-HG,
as described in the literature. We will initiate a larger in-house validation cohort and propose to perform
an independent study to confirm our findings, using the same technical approach. When validated,
application in clinical routine will be easy to perform.

The R-code for all predictions performed in this study including an easy to use graphical interface
is available upon request from the authors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3406/s1,
Figure S1: CONSORT Flow Diagram, Figure S2: Prognostication by linear SVM, Table S1: Prediction results for all
samples, R-script for preprocessing and sample classification.
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38. Branzoli, F.; Marjańska, M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas:
Current knowledge on the neurochemical profile. Curr. Opin. Neurol. 2020, 33, 413–421. [CrossRef]

39. Nagashima, H.; Tanaka, K.; Sasayama, T.; Irino, Y.; Sato, N.; Takeuchi, Y.; Kyotani, K.; Mukasa, A.;
Mizukawa, K.; Sakata, J.; et al. Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance
spectroscopy for IDH1 mutant glioma. Neuro. Oncol. 2016, 18, 1559–1568. [CrossRef]

40. Miyata, S.; Tominaga, K.; Sakashita, E.; Urabe, M.; Onuki, Y.; Gomi, A.; Yamaguchi, T.; Mieno, M.;
Mizukami, H.; Kume, A.; et al. Comprehensive metabolomic analysis of IDH1(R132H) clinical glioma
samples reveals suppression of β-oxidation due to carnitine deficiency. Sci. Rep. 2019, 9, 9787. [CrossRef]

http://dx.doi.org/10.1038/nature13387
http://dx.doi.org/10.1007/s00330-018-5608-7
http://www.ncbi.nlm.nih.gov/pubmed/30003316
http://dx.doi.org/10.1007/s11060-019-03096-0
http://www.ncbi.nlm.nih.gov/pubmed/30661193
http://dx.doi.org/10.1038/s41598-018-31806-7
http://www.ncbi.nlm.nih.gov/pubmed/30190592
http://dx.doi.org/10.1007/s00259-019-04477-3
http://www.ncbi.nlm.nih.gov/pubmed/31410540
http://dx.doi.org/10.1007/s00259-017-3846-6
http://dx.doi.org/10.1186/1471-2105-7-91
http://dx.doi.org/10.1038/nm.2682
http://dx.doi.org/10.1002/nbm.3886
http://www.ncbi.nlm.nih.gov/pubmed/29315915
http://dx.doi.org/10.3390/metabo9020035
http://dx.doi.org/10.1126/scitranslmed.3002693
http://www.ncbi.nlm.nih.gov/pubmed/22238332
http://dx.doi.org/10.1186/s12967-016-1035-1
http://www.ncbi.nlm.nih.gov/pubmed/27659543
http://dx.doi.org/10.1002/nbm.4027
http://www.ncbi.nlm.nih.gov/pubmed/30457203
http://dx.doi.org/10.1007/s11060-011-0737-8
http://www.ncbi.nlm.nih.gov/pubmed/22015945
http://dx.doi.org/10.1093/neuonc/noaa034
http://dx.doi.org/10.1097/WCO.0000000000000833
http://dx.doi.org/10.1093/neuonc/now090
http://dx.doi.org/10.1038/s41598-019-46217-5


Cancers 2020, 12, 3406 15 of 15

41. Nagashima, H.; Sasayama, T.; Tanaka, K.; Kyotani, K.; Sato, N.; Maeyama, M.; Kohta, M.; Sakata, J.;
Yamamoto, Y.; Hosoda, K.; et al. Myo-inositol concentration in MR spectroscopy for differentiating high
grade glioma from primary central nervous system lymphoma. J. Neurooncol. 2018, 136, 317–326. [CrossRef]

42. Steidl, E.; Pilatus, U.; Hattingen, E.; Steinbach, J.P.; Zanella, F.; Ronellenfitsch, M.W.; Bahr, O. Myoinositol as
a biomarker in recurrent glioblastoma treated with bevacizumab: A 1H-magnetic resonance spectroscopy
study. PLoS ONE 2016, 11, e0168113. [CrossRef]

43. Riemenschneider, M.J.; Fischer, J.; Grassow-Narlik, M.; Mawrin, C.; von Deimling, A.; Pietsch, T.; Reifenberger, G.;
Mueller, W.C.; Sommer, C.J.; Dietel, M.; et al. Quality assurance in neuropathology: Experiences from the round
robin trials on IDH mutation and MGMT promoter methylation testing launched by the quality assurance
initiative pathology (QuIP) in 2018 and 2019. Clin. Neuropathol. 2020, 39, 203–211. [CrossRef]

44. Dietmaier, W.; Lorenz, J.; Riemenschneider, M.J. Molecular diagnostics in neuropathology. Pathologe 2015, 36,
171–180. [CrossRef]

45. Riemenschneider, M.J.; Louis, D.N.; Weller, M.; Hau, P. Refined brain tumor diagnostics and stratified
therapies: The requirement for a multidisciplinary approach. Acta Neuropathol. 2013, 126, 21–37. [CrossRef]

46. Langen, K.J.; Bartenstein, P.; Boecker, H.; Brust, P.; Coenen, H.H.; Drzezga, A.; Grünwald, F.; Krause, B.J.;
Kuwert, T.; Sabri, O.; et al. German guidelines for brain tumour imaging by PET and SPECT using labelled
amino acids. Nuklearmedizin 2011, 50, 167–173. [CrossRef]

47. Wester, H.J.; Herz, M.; Weber, W.; Heiss, P.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Stöcklin, G. Synthesis
and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med. 1999, 40,
205–212.

48. Stefan, D.; Cesare, F.D.; Andrasescu, A.; Popa, E.; Lazariev, A.; Vescovo, E.; Strbak, O.; Williams, S.; Starcuk, Z.;
Cabanas, M.; et al. Quantitation of magnetic resonance spectroscopy signals: The jMRUI software package.
Meas. Sci. Technol. 2009, 20, 104035. [CrossRef]

49. Gronwald, W.; Klein, M.S.; Kaspar, H.; Fagerer, S.R.; Nurnberger, N.; Dettmer, K.; Bertsch, T.; Oefner, P.J. Urinary
metabolite quantification employing 2D NMR spectroscopy. Anal. Chem. 2008, 80, 9288–9297. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11060-017-2655-x
http://dx.doi.org/10.1371/journal.pone.0168113
http://dx.doi.org/10.5414/NP301278
http://dx.doi.org/10.1007/s00292-015-0002-6
http://dx.doi.org/10.1007/s00401-013-1127-4
http://dx.doi.org/10.3413/nuk-2011041
http://dx.doi.org/10.1088/0957-0233/20/10/104035
http://dx.doi.org/10.1021/ac801627c
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Patient Characteristics 
	Standard 1H-MRS at 3T Is Not Sufficient to Reliably Detect 2-HG 
	IDH Mutation Induces a Specific Pattern of Alterations in 1H-MR Spectra 
	A Linear Support Vector Machine Provides High Sensitivity and Specificity in Detecting IDHmut 
	In Vivo and Ex Vivo Analysis of Metabolites 

	Discussion 
	Materials and Methods 
	Patients Characteristics 
	Glioma Diagnosis and Molecular Parameters 
	Standard MRI and 18F-FET PET Imaging 
	Data Acquisition of 1H-MRS 
	1H-MRS Data Pre-Processing 
	1H-MRS Classification 
	Ex Vivo Evaluation of Tumor Material 

	Conclusions 
	References

