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Simple Summary: Clinical responses to the initial treatment of high grade serous ovarian cancer 

(HGSOC) vary greatly. Widespread intra-site and inter-site genomic heterogeneity presents 

significant challenges for the development of predictive biomarkers based on pre-treatment 

sampling of select individual tumors. Non-invasive stratification of patients with HGSOC by risk of 

outcome could facilitate a higher level of intervention for those with the highest risk of a poor 

outcome. We developed and validated a machine learning-based integrated marker of HGSOC 

outcomes to standard chemotherapy that combines a previously developed intra-site and inter-site 

CT radiomics measure called cluster dissimilarity (cluDiss) with clinical and genomic measures 

using two retrospective cohorts of internal and external institution datasets. Our approach was more 

accurate than conventional clinical and average radiomics measures for prognosticating 

progression-free survival and platinum resistance. 
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Abstract: Purpose: Develop an integrated intra-site and inter-site radiomics-clinical-genomic marker 

of high grade serous ovarian cancer (HGSOC) outcomes and explore the biological basis of 

radiomics with respect to molecular signaling pathways and the tumor microenvironment (TME). 

Method: Seventy-five stage III-IV HGSOC patients from internal (N = 40) and external factors via the 

Cancer Imaging Archive (TCGA) (N = 35) with pre-operative contrast enhanced CT, attempted 

primary cytoreduction, at least two disease sites, and molecular analysis performed within TCGA 

were retrospectively analyzed. An intra-site and inter-site radiomics (cluDiss) measure was 

combined with clinical-genomic variables (iRCG) and compared against conventional (volume and 

number of sites) and average radiomics (N = 75) for prognosticating progression-free survival (PFS) 

and platinum resistance. Correlation with molecular signaling and TME derived using a single 

sample gene set enrichment that was measured. Results: The iRCG model had the best platinum 

resistance classification accuracy (AUROC of 0.78 [95% CI 0.77 to 0.80]). CluDiss was associated 

with PFS (HR 1.03 [95% CI: 1.01 to 1.05], p = 0.002), negatively correlated with Wnt signaling, and 

positively to immune TME. Conclusions: CluDiss and the iRCG prognosticated HGSOC outcomes 

better than conventional and average radiomic measures and could better stratify patient outcomes 

if validated on larger multi-center trials.  

Keywords: machine learning; radiomics; high grade serous ovarian cancer; computed tomography; 

chemotherapy response prognostication; intra-site and inter-site radiomic heterogeneity 

 

1. Introduction 

Ovarian cancer accounts for approximately 239,000 new cases and 152,000 deaths worldwide 

annually [1]. High grade serous ovarian carcinoma (HGSOC) is the deadliest gynecologic malignancy 

and is associated with a very poor prognosis [2]. Although HGSOC shows marked sensitivity to 

initial platinum-based chemotherapy [3], most patients recur and become progressively resistant to 

subsequent treatments [4]. Acquisition of resistance may be related to specific mutational processes 

that drive genomic heterogeneity [5,6] and clonal evolution [7,8]. HGSOC exhibits marked intra-site 

and inter-site genomic heterogeneity across metastatic sites in the peritoneal cavity [6–8] with altered 

immunological infiltrates and a tumor micro-environment (TME) [9]. Detection of spatial or temporal 

heterogeneity by multiple sampling in a single patient is expensive, invasive, and often clinically 

impractical. Consequently, analysis of heterogeneity has only been performed as retrospective 

research studies on a limited number of patients with HGSOC [6–8]. There is a pressing need for 

facile and non-invasive measures for intra-site and inter-site radiomic heterogeneity that can be 

integrated into clinical pathways. 

Computed tomography (CT) and serum CA-125 measurement are routinely used for the initial 

staging and treatment monitoring of patients with HGSOC, but standard imaging protocols do not 

provide information on tumor heterogeneity. Texture analysis of CT data is a radiomics method [10,11] 

that can provide detailed quantitative characterization of local variations in intensity levels throughout an 

image. The majority of radiomics methods compute average measures of tumor heterogeneity based on a 

single site of disease per patient even in those with metastatic disease [10,12–19], including a recent study 

of patients with advanced ovarian cancer from preoperative CT images [12]. However, averaged 

radiomics measures do not capture the potential variability within different regions of a tumor and 

between multiple tumors in the same patient. 

Prior studies by our group have demonstrated that radiomic features quantifying the 

heterogeneity between tumor sites are associated with shorter overall survival (OS) and incomplete 

surgical resection in HGSOC patients treated with chemotherapy [20] as well as with shorter 

progression-free survival (PFS) in a different cohort of HGSOC patients with BRCA1/2 mutation [21]. 

More recently, we extended these methods to incorporate both intra-site and inter-site radiomic 

heterogeneity (IISH) and showed that a single measure, known as cluster dissimilarity (cluDiss), was 

associated with an immunotherapy response in patients with recurrent HGSOC [22]. These results 
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show that modeling radiomic heterogeneity between the different sites of disease can help to better 

stratify patients with HGSOC. 

In this retrospective study, we validated the cluDiss marker to stratify outcomes in HGSOC 

patients before chemotherapy treatment. Furthermore, we developed an integrated marker 

combining intra-site and inter-site radiomics-clinical-genomic (iRCG) variables using machine 

learning to distinguish patients’ outcomes. The aims of this study were to (i) validate cluDiss as a 

predictor of outcomes using an internal and external multi-institutional cohort, and (ii) evaluate 

whether an integrated iRCG measure of HGSOC outcomes was more accurate than average 

heterogeneity radiomic (aRCG) and conventional imaging (CCG) measures. Finally, we attempted to 

establish the biological basis of the prognostic radiomics measures by studying their correlation with 

underlying biological processes characterized by a well-defined molecular HALLMARK gene set 

pathways, stromal and immune scores of the tumor microenvironment (TME), and established 18 

cell types of the TME extracted using the consensusTME method [23,24] by using patient-level single 

sample gene set analysis (ssgsea) [25] from RNA-sequencing data. 

2. Results 

2.1. Patient and Tumor Characteristics 

The REMARK diagram flowchart for selecting the patients is described in Figure S1. The patient 

clinical characteristics are shown in Table 1. The median follow-up was 41.9 mos (inter-quartile range 

[IQR] 22.9 months [mos]—56.3 mos) in the internal Memorial Sloan Kettering Cancer Center 

(MSKCC) cohort and 19.3 mos (IQR 6.3 mos—38.6 mos) in the Cancer Imaging Archive (TCIA) cohort. 

All but two patients in MSKCC and 17 patients in TCIA experienced progression during the follow-

up period. The median number of tumor sites was 7 (IQR 6 to 9) for the MSKCC and 4 (IQR of 3 to 5) 

for the TCIA cohort.  

Table 1. Patient characteristics of 75 analyzed patients. 

Patient Characteristics MSKCC (N = 40) TCIA (N = 35) 

Age (median) (IQR) 59 (50.8–66) 61 (52–71) 

Stage at diagnosis (proportion patients)   

III 27 (67.5%) 31 (88.6%) 

IV 13 (32.5%) 4 (11.4%) 

Surgical debulking outcome (number of patients)   

Complete  14 8 

Optimal  20 16 

Suboptimal 6 11 

Recurrence status * (number of patients)   

Recurring 38 18 

Not recurring 2 17 

Disease status (number of patients)   

Alive 17 14 

Dead 23 21 

Follow up * mos (median) (IQR)  41.9 (22.9–56.3) 19.3 (6.3–38.6) 

Survival (median) (IQR)   

PFS + mos 15.4 (10.5–26.2) 13.3 (7.0–21.6) 

OS + mos 59.0 (43.1–76.4) 30.0 (14.5–53.1) 

Platinum status (number of patients)   

Sensitive 31 16 

Resistant 7 7 

Unknown 2 § 12 § 

Tumor volume (cm3) * (median) (IQR)  122.0 (65.5–229.0) 331.0 (158.2–595.0) 
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Tumor sites (median) * (IQR) 7 (6–9) 4 (3–5) 

Copy number alterations (median) (IQR) 0.546 (0.446–0.653) 0.584 (0.443–0.654) 

CT scanners: GE 40 21 

Siemens 

Philips or Toshiba 

0 

0 

12 

2 

* indicates datasets were significantly different (p < 0.05), + indicates datasets were significantly 

different (p < 0.05) computed using Log-rank tests. The reported number of events occurring within 

the time frame of the study. § These cases were removed for platinum resistance classification, and 61 

remaining cases were used. Abbreviations: IQR – Inter quartile range; PFS – progression free survival; 

OS – overall survival 

In total, 460 tumor volumes of interest (VOI) were analyzed to compute the intra-site and inter-

site tumor heterogeneity (IITH) metric cluster dissimilarity (cluDiss) as well as several (N = 75) 

average heterogeneity radiomics measures. The total tumor burden volume (TTV) was 122.0 cc (IQR 

of 65.5 cc to 229.0 cc) in MSKCC and 331.0 cc (IQR of 158.2 cc to 595.0 cc) in the TCIA datasets. After 

excluding 14 patients who had no platinum resistance data, 61 patients were analyzed for platinum 

resistance classification. Forty-four cases had matched imaging and RNA-sequencing data and were 

used for radio-genomic analysis. 

2.2. Association with Survival (PFS) 

The intra-inter site tumor heterogeneity radiomics-clinical-genomics (iRCG) iRCGPFS score was 

computed using the best tuning parameters (α = 1, λ = 0.826), as (1). 

iRCGPFS = 4.44 × cluDiss + 3.72 ×  age + 2.11 ×  CNB  (1) 

The conventional-clinical-genomic (CCG) CCGPFS score was computed with best tuning 

parameters of α = 1, λ = 0.809, as (2) 

𝐶𝐶𝐺𝑃𝐹𝑆 = 2.86 × 𝑎𝑔𝑒 + 1.85 × 𝑠𝑖𝑡𝑒𝑠 + 1.17 × 𝐶𝑁𝐵 + 0.235 × 𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛  (2) 

The average radiomic-clinical-genomic (aRCG) aRCGPFS score was computed with (α = 1, λ = 

0.803), as (3): 

aRCGPFS = 2.08 × age + 1.30 × CNB + 1.22 × resection + 0.10 × SZN

+ 1.26 × coarseness + 1.73 × Sobel. mean

+ 0.30 × Gabor(45°, √2). kurtosis + 1.41 × Gabor(90°, √2). mean

+ 0.30 × Gabor(90°, √2). skewness + 1.91 × Gabor(135°, √2) 

(3) 

Both cluDiss and continuous iRCGPFS scores were associated with PFS in both univariate and 

multivariable analysis (after adjusting for clinical factors and copy number burden [CNB]). Total 

tumor volume (TTV), CCGPFS, and aRCGPFS scores were not associated with progression-free survival 

(PFS) (Table 2). The number of sites was associated with PFS in both univariate and multivariable 

analysis for the TCIA and to PFS in the univariate model in the MSKCC dataset. These results showed 

that the cluDiss measure was able to stratify patients by PFS better than both conventional imaging 

and average heterogeneity radiomics measures.  
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Table 2. Univariate and multivariable associations of computed radiomic measures with progression-free survival (PFS). 

Variable Univariate Analysis Multivariable Analysis 

 MSKCC TCIA MSKCC TCIA 

 p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) 

cluDiss 0.0025 
1.02 

(1.01, 1.03) 
0.002 

1.03  

(1.01, 1.05) 
0.0008 

1.03  

(1.01, 1.04) 
0.004 

1.04  

(1.01, 1.07) 

Number of 

sites 
0.049 

1.13 

(1.00, 1.28) 
0.029 

1.59 

(1.05, 2.40) 
0.242 

1.11 

(0.94, 1.31) 
0.009 

2.00 

(1.19, 3.37) 

TTV 0.705 
1.06 

(0.78, 1.44) 
0.653 

0.914 

(0.62, 1.35) 
0.813 

0.953 

(0.64, 1.42) 
0.513 

0.855 

(0.54, 1.37) 

iRCG 0.0004 
1.36 

(1.15, 1.61) 
0.007 

1.39 

(1.10, 1.76) 
0.001 

1.38 

(1.13, 1.68) 
0.009 

1.46 

(1.10, 1.93) 

CCG 0.058 
1.34 

(0.9, 1.81) 
0.515 

1.13 

(0.77, 1.66) 
0.411 

0.97 

(0.91, 1.04) 
0.825 

1.02 

(0.87, 1.19) 

aRCG 0.478 
0.98 

(0.92, 1.04) 
0.863 

0.99 

(0.86, 1.13) 
0.539 

0.82 

(0.44, 1.53) 
0.68 

1.16 

(0.56, 2.40) 

Abbreviations: CI–confidence interval. HR–hazard ratio. TTV–Total tumor volume. iRCG–intra-inter radiomic, conventional clinical, genomic classifier. CCG–

conventional clinical, genomic classifier. aRCG–average heterogeneity radiomic, conventional clinical, and genomic classifier.
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The cluDiss measure achieved a concordance probability estimate (CPE) for PFS of 0.66 (95% CI 

of 0.61 to 0.70) for MSKCC and 0.67 (95% CI of 0.63 to 0.72) for TCIA cohorts. The CPE for the number 

of sites was (MSKCC CPE of 0.59 [95% CI of 0.55 to 0.64], TCIA CPE of 0.655 [95% CI of 0.54 to 0.77]), 

and TTV was (MSKCC CPE of 0.52 [95% CI of 0.47 to 0.57], TCIA CPE of 0.535 [95% CI of 0.46 to 

0.61]), respectively. 

The iRCGPFS score that combined cluDiss with clinical (age, state, and resection status) and 

genomic CNB measure achieved a CPE of 0.69 (95% CI of 0.65 to 0.74) for MSKCC and 0.695 (95% CI 

of 0.64 to 0.75) for TCIA cohorts, respectively. On the other hand, both CCGPFS (CPE: MSKCC 0.60 

[95% CI 0.55 to 0.65], TCIA 0.54 [95% CI 0.48 to 0.61]), aRCGPFS (CPE: MSKCC 0.53 [95% CI 0.49 to 

0.58], and TCIA 0.51 [95% CI 0.44 to 0.58]) had lower CPEs. The iRCGPFS produced the highest CPE 

of all other integrated models. It was slightly better than the cluDiss measure alone.  

The iRCGPFS and cluDiss cut-off to dichotomize patients into high risk (≥cut-off) and low risk 

(<cut-off) were determined as 642.00 and 68.62, respectively, on the MSKCC dataset. Testing on the 

TCIA dataset with this same cut-off showed significantly longer PFS for the lower values of iRCGPFS 

(p = 0.0006) and lower values of cluDiss (p < 0.001), respectively (Figure 1). 

 

Figure 1. Kaplan-Meier curves computed using (A) dichotomized iRCGPFS cut point (low risk < 642) 

and (B) cluDiss cut point (low risk < 68.82). The cut points were determined on the MSKCC dataset 

and applied to the TCIA dataset. 

2.3. Classification of Platinum Resistance 

The iRCG linear SVM model (AUROC of 0.78, 95% CI 0.77 to 0.79) was significantly more 

accurate than CCG linear SVM (p < 0.001) and aRCG RFE-SVM (p = 0.004) (Table 3). The receiver 

operating characteristic curves for all three classifiers are shown in Figure 2. The iRCG SVM had the 

highest sensitivity of the three methods for classifying patients likely to develop platinum resistance. 
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Figure 2. Receiver operating characteristic (ROC) curves for classifying patients by platinum 

resistance using the iRCG-SVM, CCG-SVM, and aCCG-SVM classifiers. 

Table 3. Machine learning classifier accuracies using intra-inter site radiomic-clinical-genomic 

(iRCG), conventional-clinical-genomic (CCG), and average radiomic-clinical-genomic (aRCG) 

classifiers of platinum resistance. 

Method 
AUROC 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

p-Value 

(Method vs. iRCG) 

iRCG SVM 0.78 (0.76, 0.79)  0.75 (0.72, 0.77) 0.66 (0.65, 0.68)  

CCG SVM 0.72 (0.70, 0.73) 0.66 (0.64, 0.69) 0.65 (0.64, 0.67) <0.001 

aRCG SVM * 0.73 (0.72, 0.75) 0.68 (0.66, 0.71) 0.62 (0.60, 0.63) <0.001 

* Recursive feature elimination support vector machine (SVM) classifier was used due to a large 

number of features to perform implicit feature selection. 

All variables except CNB were relevant (importance > 0) in the iRCG and CCG models. Resection 

status was the most relevant feature for all three models (Importance score = 100), while cluDiss had 

a lower importance score of 34.4, clearly indicating the relevance of the clinical variables for 

predicting platinum resistance. Two radiomic measures, dependence counts non-uniformity (DCN), 

and the gray level non-uniformity (GLN) were found to be relevant in the aRCG model. CNB had a 

low importance score of 2.32 in the aRCG model.  

Improved prognostication of HGSOC outcomes using the iRCG measures could allow for better 

upfront and non-invasirve strafication of patients with HGSOC by risk of outcome than with the 

conventional clinical or genomic measures alone. More accurate risk stratification could faciliate a 

higher level of intervention for those with the highest risk.  

2.4. Robustness to the CT Scanner Manufacturer 

The cluDiss measure did not show statistical difference between scanners (p = 0.06) (Table S1). 

Of the 75 average radiomic measures, 24 were robust to scanner differences and these same radiomic 

featuers were used in constructing the integrated aRCG models of PFS and platinum resistance. Note 

that the iRCG model only used cluDiss as the radiomic measure. Four out of 13 gray level run length 
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matrix (GLRLM) (30.8%), 5 out of 13 gray level size zone matrix (GLSZM) (38.5%), 2 out of 5 

neighborhood gray tone difference matrix (NGTDM) (40%), 4 out of 14 neighborhood gray level 

difference matrix (NGLDM) (28.6%), and 9 out of 20 edge features (45%) did not show statistical 

differences while both first order and gray level correlation matrix (GLCM) measures showed 

significant differences between scanners. Gray level non-uniformity (𝜌 = 0.717) and dependence 

count non-uniformity (DCN) (𝜌 = 0.606) were highly correlated with TTV. The cluDiss feature, which 

is designed to increase with the number of lesions, was highly correlated with the number of sites (𝜌 

= 0.833) (Table S2). 

2.5. Correlation of Cludiss to Biological Processes 

We studied the differences in the molecular signaling pathways between the low-risk and high-

risk patient groups using the 50 hallmark gene sets [26], extracted using single sample gene-set 

enrichment (ssgsea) analysis of the RNA samples [25]. The signaling pathways were categorized into 

immune, oncogenic, stromal, cellular, and other [24]. Patients were dichotimized using the median 

value (cluDiss = 68.6) of cluDiss (low-risk<median and vice versa). Principal component analysis 

(PCA) of the 50 gene sets showed that the MYC, MTORC1 pathways were relevant in the high-risk 

group but not in the low risk group (Figure 3) in the first two PC dimensions (>60% variation 

explained). The 50 gene set expression variations for both groups (Figure S3) showed many gene-sets 

contributing to patient variability for the high-risk (in the first two dimensions) compared to the low-

risk group. 

 

Figure 3. Principal component analysis (PCA) loadings of the Hallmark gene sets on (A) low-(cluDiss 

< 68.6) and (B) high-risk (cluDiss ≥ 68.6) patient groups. Only the top 20 contributing gene set 

pathways are shown. 

The Spearman rank correlation of the features cluDiss, DCN, and GLN that were relevant for 

platinum resistance classification were measured against stromal and immune scores computed using the 

ESTIMATE method [27], the 50 hallmark gene sets [26], and the 18 consenseTME cell types [23,24]. TTV and 

sites were also evaluated for correlation for completeness. Because of the reported widespread TME 

heterogeneity in HGSOC patients both within and between tumor sites [7,24], we computed two 

variations of the cluDiss measure using only the tumor sites in the pelvis and only the tumors in the 

abdominal sites to assess their correlation with the biological processes.  

CluDiss computed from across all visible tumor sites was negatively correlated with the Wnt 

signaling pathway (𝜌 =  −0.35, p = 0.02). CluDiss measure from the pelvic sites showed no significant 

correlation to any of the gene set pathways. CluDiss measure computed from the abdominal 

metastases was negatively correlated with Wnt and NOTCH signaling (Figure 4, Table S3), positively 
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correlated with MTORC1, and allograft rejection (Figure 4), immune cells (𝜌 =  0.33, p = 0.028). This 

same measure was positively correlated to 13 of the 18 TME cell types (Figure 4, Table S4), including 

Tgd (𝜌 =  0.40, p = 0.007), Treg (𝜌 =  0.39, p = 0.009), Bcells (𝜌 =  0.39, p = 0.008), CD4 (𝜌 =  0.41, p = 

0.006), CD8 (𝜌 =  0.40, p = 0.007), cytotoxic (𝜌 =  0.44, p = 0.003), and NK (𝜌 =  0.43, p = 0.004) cell 

types. DCN and GLN both measure the heterogeneity in the distribution of the local signal intensities, 

which are highly correlated (𝜌 =  0.98, p < 0.0001) with each other. DCN was negatively correlated 

with immune gene-sets (Figure 4) (Table S3), immune cells (𝜌 =  −0.32, p = 0.033), and 11 of the TME 

cell types (Figure 4, Table S4), including Tgd (𝜌 =  −0.46, p = 0.002), Treg (𝜌 =  −0.42, p = 0.005), B 

cells (𝜌 =  −0.41, p = 0.006), CD4 (𝜌 =  −0.41, p = 0.005), CD8 (𝜌 =  −0.42, p = 0.004), cytotoxic (𝜌 =

 −0.34, p = 0.02), and NK (𝜌 =  −0.45, p = 0.002) cell types. 

 

Figure 4. Spearman rank correlation coefficient matrix of the relevant radiomic measures and (A) 50 

HALLMARK gene sets and (B) the consensusTME TME cell types. Significant correlations (p < 0.05) are 

indicated with *. 

In short, the gene set expressions were different between the low and high-risk patient groups 

dichotomized using the cluDiss measure. Furthermore, cluDiss, which quantifies the textural 

heterogeneity between multiple tumor sites, was positively correlated with the immune cell type and 

negatively with Wnt signaling pathway, while the average texture heterogeneity measures known as 

DCN and GLN showed a negative correlation with immune gene sets and immune cell types. Prior work 

by our group [24] has shown that enrichment of Wnt and Myc is negatively correlated with immune 

infiltration.  

3. Discussion 

Non-invasive stratification of patients with HGSOC by risk of outcome could facilitate a higher level 

of intervention for those with the highest risk of poor outcome. Possible therapeutic/diagnostic 

interventions could include enrollment in clinical trials, addition of bevacizumab to first line 

chemotherapy, and more frequent follow-up imaging to evaluate progression. Building on prior reports 

[12] that highlight the relevance of radiomic measures for predicting HGSOC outcomes, we validated a 

novel IISH measure, cluDiss, that we previously showed to be associated with HGSOC outcomes in a 

different cohort of patients [22]. Unlike most radiomic studies [10,12,16] that compute an average measure 

of single tumor heterogeneity, cluDiss quantifies the heterogeneity within and between the entire tumor 

burden rather than just the ovarian mass. Its magnitude increases with the number of sites and the textural 

differences between the sub-regions within and between the tumor sites, reflecting larger imaging 

heterogeneity. It adds to the conventional number of sites measured by quantifying the radiomic 

heterogeneity in those lesions. 
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The cluDiss measure did not show significant differences to CT scanners, as did 24 of the 75 average 

heterogeneity measures. However, both first-order histogram and all GLCM measures showed a 

significant difference between scanners. 

Quantifying inter-site and intra-site imaging heterogeneity is important because HGSOC exhibits 

widespread genomic intra-site and inter-site heterogeneity. Multi-site genomic studies have shown 

intratumor genomic heterogeneity to correlate to poor survival [7]. In addition to clonal heterogeneity, the 

malignant cell spread within the peritoneal cavity is distinct and non-random [8,9], as some sites harbor 

genetically diverse clones [8]. These site-specific properties, including immunologic components of the 

TME, may modulate malignant cell invasion and expansion, thereby shaping evolutionary selection [28]. 

However, large scale multi-site genomic heterogeneity studies are difficult to do and are impractical for 

clinical practice. This motivated the development and validation of a non-invasive CT-based measure of 

intra-site and inter-site radiomic heterogeneity.  

More importantly, our results show that the integrated model combining cluDiss, clinical, and 

genomic variables was more accurate than the conventional imaging (total tumor volume and number of 

sites) and average tumor heterogeneity radiomics models for predicting PFS. This finding is in line with 

other works that have shown integrated radio-genomic models to better predict outcomes in other solid 

cancers [29,30]. Although cluDiss was as good as the iRCGPFS measure for predicting PFS, the platinum 

resistance classification benefitted from the clinical measures, indicated by their higher importance over 

cluDiss for that model. On the other hand, CNB, while relevant for the iRCGPFS model, was not relevant 

for classifying platinum resistance. Both cluDiss and the clinical measures can be obtained in a non-

invasive way and their combination could, thus, serve to non-invasively stratify patient outcomes without 

needing genomic measures. On the other hand, genomic measures could be used for obtaining a 

mechanistic drivers of risk in those patients determined to be high risk using the non-invasive measures, 

such as by finding activated or suppressed pathways.  

Understanding the radio-genomic correlations are important for furthering their application as 

biomarkers of treatment response [11]. Multiple studies have reported the association of image-based 

qualitative [31] and quantitative radiomics features with genomic measures [32–36]. We measured the 

correlation of cluDiss and two radiomics measures known as DCN and GLN with the Hallmark gene sets 

and TME cell types extracted from ssgsea analysis of the RNA expressions. Gene sets are candidates for 

genes that may either drive genomic heterogeneity or are required for survival in the context of ongoing 

chromosomal instability. Patients dichotomized into low-risk and high-risk groups using cluDiss showed 

a difference in the gene set pathways. Additionally, cluDiss was negatively correlated with the Wnt 

signaling pathway and positively to 13 immune TME cell types including Tregs, Tgd, Bcells, CD4, CD8, 

and NK. Prior work by our group [24] showed a mutual exclusivity in the expression of Wnt and Myc 

gene pathways with respect to the immune cell types in untreated HGSOC patients. CluDiss has also been 

shown to correlate with CKB protein in a previous study using matched imaging and proteomic samples 

from 20 HGSOC patients by our group [37]. To our knowledge, this is the first report on the radio-genomic 

correlation of intra-site and inter-site radiomic heterogeneity in HGSOC.  

Our study is limited by a small dataset with high class imbalance (e.g., higher prevalence of platinum 

sensitivity than resistance), which was partly mitigated through a synthetic minority oversampling 

technique [17] by using a linear SVM classifier. Additionally, the genomic samples were available from 

only a single primary tumor site. Hence, a study of variability in gene sets and CNB between tumor sites, 

or their impact on classifying outcomes was not possible. Also, a study of repeatability of the radiomic 

measures needs to be assessed with test-retest studies and under different CT acquisition protocols. 

Studying the potential for clinical translation would require larger multi-institutional cohorts. 

4. Materials and Methods 

4.1. Ethics and Consent  

The Institutional Review Board approved this retrospective Health Insurance Portability and 

Accountability Act-compliant study and waived the requirement for written informed consent. The 
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TCIA is a managed, publicly available, open-source repository of de-identified medical images of 

cancer and corresponding patient information that is sourced from 28 participating institutions [38]. 

4.2. Study Design and Patients 

Two cohorts of patients with HGSOC: a single institution dataset from MSKCC (N = 45) and a multi-

institution dataset (N = 38) from the ovarian-TCIA [31], which included patients treated at five different 

institutions (Figure S1) were identified from which 75 patients were selected. The eligibility criteria 

included: (i) federation of international gynecologic oncology (FIGO) stage III-IV HGSOC, (ii) attempted 

primary cytoreductive surgery, (iii) standard of care contrast-enhanced CT of the abdomen and pelvis 

performed prior to surgery, (iv) at least two tumor sites identified on CT for computing cluDiss, and (v) 

molecular analysis performed within The Cancer Genome Atlas (TCGA) Research Network ovarian 

cancer pilot project. Patients who received neoadjuvant chemotherapy prior to surgery, five patients from 

MSKCC, one from TCIA who did not complete molecular analysis, and two from TCIA who did not have 

data regarding surgical resection were excluded. Sixty-seven patient scans (89%) were acquired with 

voltage 120 kVp (median 120, IQR 110 to 120), tube current (median 300 mA, IQR of 89 mA to 393 mA), 

and reconstructed with a standard convolutional kernel with the most common slice thickness of 5 mm 

for 54 (72%) patients (median 5 mm, IQR 2 mm to 5 mm). 

All patients used in this study were previously used for qualitative radiologist CT assessments 

based on association with Classification of Ovarian Cancer transcriptomic profiles and survival 

[31,39]. Thirty-eight patients from the MSKCC dataset were used with inter-site heterogeneity 

measures for predicting OS and surgical resection status [20]. The cluDiss measure, developed in our 

prior work on an entirely different cohort of patients for analyzing response to immunotherapy 

treatment in HGSOC [22], combines both intra-site and inter-site radiomic heterogeneity.  

Our study aims (Figure 5) were to: (a) evaluate association of cluDiss and iRCG with PFS, (b) 

compare iRCG classifier of platinum resistance against models combining clinical and genomic 

variables with conventional imaging (tumor volume, number of sites) (CCG), and average 

heterogeneity radiomic (N = 75) features (aRCG). We evaluated the robustness of cluDiss and average 

heterogeneity radiomic measures against CT scan manufacturers. Finally, we explored the biological 

basis of these measures on a subset of patients (N = 44) with matched CT imaging and molecular 

RNA-sequencing data by measuring correlation with well-defined Hallmark gene set signaling 

pathways, an immune and stromal tumor micro-environment (TME), and 18 TME cell types. 

 

Figure 5. Schema of experimental workflow. The intra-tumor and inter-tumor radiomic heterogeneity 

(IISH) measures that summarize the heterogeneity across the various sites of disease are combined 

with clinical and genomic factors to produce a combined classifier of outcome. 
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Clinical variables such as patient age, FIGO stage, and cytoreductive outcome (complete gross 

resection, optimal (≤1 cm residual disease), or suboptimal resection (>1 cm residual disease)) were 

obtained from patient clinical records for the internal MSKCC dataset and were available through 

cbioportal [40] for the TCIA dataset. 

The copy number burden (CNB) was computed as the fraction of the altered genome and is 

available from the cbioportal [40] for outcome classification. The CNB is a measure of genome 

instability and is computed as the length of segments (in log2 scale) with copy number alterations > 

0.2 and divided by the length of the measured segments [40]. CNB was computed from the genomic 

sample taken from a single primary tumor site using common guidelines in the TCGA ovarian cancer 

study [41]. Specifically, biospecimens were collected from newly diagnosed ovarian cancer serous 

adenocarcinoma patients undergoing surgery. One tumor and matched normal tissue specimen were 

collected for each patient.  

Platinum resistance was defined as a platinum-free interval of less than 6 months after initial 

therapy [42]. PFS was calculated as the time from the date of primary surgery to the date of 

documented first recurrence on the basis of findings on a CT scan, physical examination results, or 

death prior to recurrence.  

4.3. Computation of Intra-Site and Inter-Site Tumor Radiomic Heterogeneity 

The IISH cluster dissimilarity (cluDiss) measure was computed as follows.  

i. All suspected primary and metastatic tumors in the abdomen and pelvis (>1 cm) were manually 

delineated by two oncologic imaging research fellows (4 and 6 years of experience, respectively) 

using 3DSlicer [43], thereby resulting in multiple volumes of interest (VOI). Two conventional 

imaging measures, total tumor volume (TTV), estimated as the total number of voxels within 

each VOI multiplied by the voxel size, and the number of anatomic sites corresponding to the 

number of radiologist-defined sites of disease on preoperative CT scans were computed. 

ii. CT images were rescaled to 0-255 and discretized into 32 bins. Then, Haralick textures, energy, 

entropy, homogeneity, and contrast were computed [20] by sliding a fixed sized patch (11 × 11 

× 1) centered around every voxel within all VOIs using in-house software implemented in C++ 

using the Insight ToolKit (ITK) [44]. 

iii. Sub-regions of homogeneous texture were extracted from within VOIs by grouping voxels with 

similar texture values using kernel K-means clustering [45], which exploits the spatial 

relatedness of voxels to produce a computationally fast clustering. The appropriate number of 

clusters for each patient was determined using Akaike information criterion from an empirically 

chosen maximum of five clusters. The mean values of the four individual Haralick texture 

measures described the sub-regions. 

iv. Sub-region textural differences were quantified using Euclidean distance and summarized into 

a dissimilarity matrix.  

v. The group dissimilarity matrix (GDM), which is a 2D histogram that captures the number of 

sub-region pairs with similar levels of dissimilarity, was computed. The rows of the GDM 

correspond to the number of sub-regions with a similar dissimilarity and the columns 

correspond to the dissimilarity level. Ten bins were used to discretize the dissimilarities and the 

sub-region pairs sizes following min-max normalization. 

vi. The cluDiss measure, which quantifies the peakedness in the distribution of dissimilarities by 

considering the relatedness between groups of subregions by sharing similar levels of 

dissimilarity within the GDM is computed as: 

cludiss =  √
1

K × M
∑ ∑(i + j − μD − μA)4 × G(i, j)

M

j

K

i

, (4) 

where K is the number of dissimilarity levels and M is group size levels, 𝜇𝐷  and 𝜇𝐴  are the 

normalized mean of dissimilarity levels and group sizes, and G is the group dissimilarity matrix. The 
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indicies i and j emphasize larger dissimilarities and larger group sizes. Higher cluDiss values result from 

the presence of many texturally distinct sub-regions (Figure S2b), while fewer large texturally distinct 

groups with distinct dissimilarity will result in lower cluDiss values (Figure S2a). 

4.4. Computation of Average Radiomic Heterogeneity Measures 

Average heterogeneity radiomic texture measures (N = 75) (Table S1) quantifying the textural 

heterogeneity across all disease sites were computed using the computational environment for 

radiological research (CERR) [46] software (https://github.com/cerr/CERR/). Shape metrics were not 

computed because they only quantify characteristics of single tumors. Extracted features included a first 

order histogram (N = 4), a gray level correlation matrix, GLCM (N = 5), a gray level run length matrix, 

GLRLM (N = 13), a gray level size zone matrix, GLSZM (N = 13), a neighborhood gray tone difference 

matrix, NGTDM (N = 5), a neighborhood gray level dependence matrix, NGLDM (N = 15), mean values 

of Sobel (N = 4), and Gabor edges at orientations (0°, 45°, 90°, 135°), and a bandwidth of √2 (16 features). 

All of the radiomic features were compliant with the imaging biomarker standardization initiate (IBSI) 

[47] and default parameter settings available in CERR that were tested for IBSI compliance were used.  

4.5. Single Sample Gene Set Enrichment Analysis 

Single sample gene set enrichment analysis (ssgsea) [25] was performed on the RNA measurements 

of each sample using the GSVA package version 1.28.0 in R version 3.5.0 [25]. Default settings of parameter 

𝜏 = 0.25 as originally used in Reference [48] was employed to place a modest weight on the expression 

of genes in a gene set pathway. This parameter corresponds to the weight associated with the ranking of 

absolute expression of genes in a signature of pathway in relation to the expression of all other genes. 

Normalized enrichment scores were then generated and combined with the gene ontology MSigDB [26] 

to estimate the pathway enrichment for the 50 Hallmark gene sets. The estimation of stromal and immune 

cells in malignant tumor tissues using expression data (ESTIMATE) method [27] was used to quantify the 

immune and stromal signatures from the bulk tumor RNA-sequence data. The results of ssgsea was used 

to estimate the relative expression of 18 different TME cell types by using the ConsensusTME [23,24], which 

integrates seven different methods of gene sets or TME cell type estimation methods. 

4.6. Outcomes Classification Through Machine Learning Classifiers 

4.6.1. Combined Intra-Tumor and Inter-Tumor Site Radiomic, Clinical, and Genomic (iRCG) Score of 

PFS 

A generalized linear model (GLMNet) [49] using elastic net feature selection constraints was fit using 

cluDiss, conventional clinical, and genomic variables to classify patient survival in months using MSKCC 

as training dataset. Best tuning parameters ∝ and 𝜆 (or the L1-norm penalty) were determined from the 

training set (MSKCC). The relative feature importance obtained from this model was used to combine 

cluDiss, clinical, and genomic variables into a single continuous iRCGPFS score. An optimal cut point was 

determined from the iRCG score using receiver operating characteristic curve (ROC) analysis 

(optimalCutpoints in R) on the MSKCC set and applied on the external TCIA dataset to dichotomize 

patients into low-risk and high-risk groups. The same approach was repeated by combining conventional 

imaging and average heterogeneity radiomic measures with clinical and genomic variables to extract 

CCGPFS and aRCGPFS scores, respectively. 

4.6.2. Platinum Resistance Classification 

Sixty-one of the 75 patients had platinum resistance information (Table 1) with 14 patients resistant 

while the remaining 47 are sensitive to platinum resistance chemotherapy. Since the number of patients 

for training a machine learning classifier were relatively small, and due to the large class imbalance, this 

analysis was performed using cross-validation instead of using the TCIA dataset as a hold-out testing set, 

as done for determining PFS association in Subsection 4.6.1. This approach is valid for the purpose of this 
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work where the goal was to assess the utility of the cluDis measure in comparison to conventional clinical 

and radiomics measures. 

iRCG-SVM: A linear support vector machine classifier (SVM) [50] was constructed by combining 

cluDiss with three clinical (age, stage, cytoreductive outcome), and genomic (CNB) variables. A linear 

SVM was used since it treats the individual factors independently and avoids overfitting in small datasets. 

The classifier was trained with three-fold cross validation with 100 repetitions. Class imbalance was 

handled by the synthetic minority oversampling (SMOTE) technique as used in our prior work for 

classifying prostate cancer aggressiveness using radiomics measures [17]. 

Conventional-Clinical-Genomic SVM (CCG-SVM): A conventional-clinical-genomic linear SVM 

classifier of platinum resistance was trained using the clinical, conventional imaging, and CNB variables. 

aRCG-SVM: A recursive feature elimination linear SVM classifier (RFE-SVM) was trained with 

repeated (100 repetitions) and nested (three-fold outer and three-fold inner) cross validation using average 

heterogeneity radiomic features found to be robust to scanner differences (Table 1), clinical, and CNB 

variables. Nested cross-validation was done to select the appropriate number of features (N = 5, 10, 15, 20, 

25). The SMOTE method was used to handle class imbalance. RFE-SVM was used to perform implicit 

feature selection from the relatively large number of features used within the classifier. 

4.7. Feature Robustness to CT Manufacturer 

Statistical differences to CT scanners (GE vs. non-GE) in cluDiss and average heterogeneity radiomic 

features were evaluated. All MSKCC patients and 24 out of 38 TCIA patients were scanned on GE. The 

remaining 12 were scanned on Siemens and one each on Toshiba and Philips scanners. The goal of this 

experiment was to evaluate whether the variability in the features was due to the different CT scanner 

manufacturers. This is because large feature variabilities between scanners can obscure the signal to 

differentiate between the outcomes, thereby reducing the performance of radiomics measures [51]. 

4.8. Statistical Analysis 

Machine learning classifiers were trained with repeated three-fold cross-validation and nested cross-

validation (where applicable) to reduce bias in classification. Accuracy was computed from samples not 

used in training in each fold. Area under the receiver operating characteristic curve (AUROC), sensitivity, 

and specificity with 95th percentile confidence intervals were computed. DeLong’s method [52] was used 

to measure the differences in classifiers’ AUC. Patient characteristics and texture measures were 

summarized using median and interquartile range (IQR). Data with missing variables or outcomes were 

excluded from the analysis. Two-sided Wilcoxon rank-sum test was used to test radiomics differences to 

scanners. Only p > 0.05 were considered significant. 

Cox proportional hazard regression analysis was performed to test association with PFS using the 

iRCG, CCG, and aRCG scores. Hazard ratios (HR) and 95% confidence intervals were estimated. 

Dichotomized groups generated according to the cut points were used to compute Kaplan-Meier curves 

on the TCIA dataset. p Values < 0.05 were considered statistically significant. Concordance probability 

estimates (CPE) were computed for the individual predictors for determining the strength of association 

with survival measures. 

Association between radiomic and gene set pathways were computed using Spearman rank 

correlation coefficients and principal component analysis of the Hallmark gene sets was performed using 

factoMineR software in R after scaling of the gene expressions. 

All statistical analyses were performed in the software packages R, version 3.4 (The R Foundation for 

statistical computing). The code for textures and IISTH computation is available through open source 

software CERR [46].  

5. Conclusions 

We validated a previously developed intra-site and inter-site tumor heterogeneity measure 

(cluDiss) for predicting HGSOC outcomes. We showed that cluDiss, combined with known clinical 

and genomic variables, outperformed conventional clinical-genomic and standard radiomic-clinical-
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genomic models in predicting HGSOC outcomes. This measure was negatively correlated to Wnt 

signaling and positively to immune TME cell types. Validation on larger, multi-institutional cohorts 

is necessary to verify the potential for patient stratification. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/11/3403/s1, 
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loadings of the 50 Hallmark gene sets along the first three dimensions (70% variation explained) in the low-risk 

(cluDiss < median [68.6]) and high-risk (cluDiss ≥ median) groups, Table S1: Robustness of features to scanner 

differences. Wilcoxon rank-sum tests performed between GE vs. non-GE scanners. Robust features are indicated 

in bold font, Table S2: Spearman correlation of identified robust radiomics features with TTV and number of 

sites, Table S3: Correlation of CluDiss and relevant (to platinum resistance classification) average radiomic 

measures to Hallmark gene sets. Correlations > abs (0.30) with significant (p < 0.05) correlations are bolded. 
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