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Simple Summary: Reprogramming of cellular metabolism is a major hallmark of cancer cells, and 

play an important role in tumor initiation and progression. The aim of our study is to discover 

circulating early metabolic markers of brain tumors, as discovery and development of reliable 

predictive molecular markers are needed for precision oncology applications. We use a study design 

tailored to minimize confounding factors and a novel machine learning and visualization approach 

(SMART) to identify a panel of 15 interlinked metabolites related to glioma development. The 

presented SMART strategy facilitates early molecular marker discovery and can be used for many 

types of molecular data. 

Abstract: Here, we present a strategy for early molecular marker pattern detection—Subset analysis 

of Matched Repeated Time points (SMART)—used in a mass-spectrometry-based metabolomics 

study of repeated blood samples from future glioma patients and their matched controls. The 

outcome from SMART is a predictive time span when disease-related changes are detectable, 

defined by time to diagnosis and time between longitudinal sampling, and visualization of 

molecular marker patterns related to future disease. For glioma, we detect significant changes in 

metabolite levels as early as eight years before diagnosis, with longitudinal follow up within seven 

years. Elevated blood plasma levels of myo-inositol, cysteine, N-acetylglucosamine, creatinine, 

glycine, proline, erythronic-, 4-hydroxyphenylacetic-, uric-, and aceturic acid were particularly 

evident in glioma cases. We use data simulation to ensure non-random events and a separate data 

set for biomarker validation. The latent biomarker, consisting of 15 interlinked and significantly 

altered metabolites, shows a strong correlation to oxidative metabolism, glutathione biosynthesis 

and monosaccharide metabolism, linked to known early events in tumor development. This study 

highlights the benefits of progression pattern analysis and provide a tool for the discovery of early 

markers of disease. 

Keywords: brain tumor; metabolite; metabolic marker pattern; multivariate analysis; blood-based; 

antioxidant 

 

1. Introduction 

Circulating biomarkers are increasingly utilized in the advance towards molecular medicine. 

Blood-based biomarkers are needed for patient stratification, early detection of disease for 

personalized screening in risk groups, and for the development of new therapies for patients with 
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poor prognosis [1,2]. Biomarker development is a multistep and iterative process, where screening 

blood samples from human population biobanks have received increasing interest. ‘Multi-omics’ 

approaches are commonly applied, which implies looking for disease-related systematic differences 

or trends in high-dimensional data. Identifying these differences can be challenging in the presence 

of other systematic variation sources and random noise, complications that dilute the variation of 

interest. Typically, this dilution is addressed by increasing the power of cross-sectional studies to 

achieve statistical significance. However, this approach requires large sample sizes that are often 

difficult to obtain and technically challenging to analyze, and with lower effect sizes that can have 

limited clinical value. Uncontrolled extraneous variables and confounders may also require post-

correction of the data to establish biomarker significance, a sub-optimal approach in terms of both 

sensitivity and reliability of biomarkers [3]. A valid alternative is the use of tightly controlled smaller 

sample studies that include repeated time points and thoroughly matched case-control sets. Repeated 

or longitudinal sampling of both cases and controls enables between-within subject normalization. 

Subtracting the baseline sample from the repeated sample gives the progression pattern, normalizing 

individual differences and emphasize change over time. By comparing the progression pattern with 

a tightly matched control, one will further reduce extraneous influences associated with the passage 

of time and sample storage, and detect disease-related variation. This approach minimizes 

confounding factors related to individual differences and passage of time, allowing for higher 

sensitivity for detection of disease-related markers. In the subsequent data analysis, sample 

dependency can be used to optimize the information recovery. Until recently, analysis of dependent 

samples has not been straightforward in multivariate statistical analysis. With the effect projection 

approach based on orthogonal projections to latent structures (OPLS-EP) [4], information recovery 

from dependent samples is now possible within the OPLS framework, including cross-validation, 

model statistics, interpretation and predictions. 

Motivated by the need to discover early molecular markers and risk factors for brain tumors, we 

describe here a data acquisition, projection and visualization approach: Subset analysis of Matched 

Repeated Time points (SMART), used for the extraction of variables for molecular marker pattern 

detection in prospective biobank samples. We investigate the value of tightly controlled sample 

studies that include repeated time points and thoroughly matched case-control sets. We exemplify 

our strategy in two independent sets of plasma samples, collected and stored under identical 

conditions, from pre-diagnostic glioma cases and stringently matched controls. We find that the use 

of repeated samples result in significant models, separating future cases from controls. Using 

dependent samples, SMART enable us to define a molecular marker pattern related to the disease 

and a pre-diagnostic period when the pattern starts to appear, without supervised post correction of 

the data. We use a second set of plasma samples to verify the time point for disease detection and the 

identified biomarker pattern. This proof-of-concept study demonstrate the benefits of progression 

pattern analysis combined with multivariate statistical analysis, and indicate that metabolic changes 

for glioma start to emerge many years before diagnosis. 

2. Results 

2.1. Progression Pattern Analysis 

For metabolic marker detection, we used EDTA-plasma samples from a prospective population-

based biobank. The sample set consisted of tightly matched case-control samples collected 

longitudinally with repeated pre-diagnostic time points (Table S1). We performed metabolite 

measurements by use of gas chromatography mass spectrometry (GC–MS) and constrained run 

order, keeping matched samples together in the analysis process and only randomizing between and 

within the matched sample groups [4]. For the generated data, we analyzed case-control differences 

by independent multivariate analysis using OPLS-DA [5] and dependent multivariate analysis using 

OPLS-EP [4]. Calculation of the disease progression pattern for the repeated time point samples, 

normalizing individual differences for both future cases and controls, was done by subtracting 
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baseline data from the repeated time point data closer to diagnosis (Equation 1), followed by 

calculating the differences in progression between matched future cases and controls (Equation 2). 

Xprogress = Xrepeated - Xbaseline (1) 

Xdisease progress = Xprogress (case) - Xprogress (control) (2) 

A summary of the modeling results is presented in Table 1. Our modeling of progression pattern 

shows that a statistically significant model can be obtained using case-control progression pattern 

analyzed by dependent sample analysis, i.e., OPLS-EP (P-value, analysis of variance of cross-

validated residuals (CV-ANOVA) = 0.026). This indicates that a progression pattern related to future 

glioma exists and that there are benefits of retaining sample dependency, and minimizing 

confounding variation related to individual differences and passage of time between sampling. 

Table 1. Summary of OPLS-DA and OPLS-EP models based on metabolite data from longitudinally 

collected plasma samples from future glioma cases and their matched controls. The optimization done 

in each round of cross-validation was based upon multivariate significant variables w and p (a. 

Data Baseline Time Point Only (b Repeated Time Point Only Progression Pattern  

Model OPLS-DA OPLS-EP OPLS-DA OPLS-EP OPLS-DA OPLS-EP 

Observations 128 64 128 64 128 64 

Components - - 1 2 1 1 

R2Y - - 0.12 0.3 0.12 0.34 

Q2 - - −0.28 0.01 −0.12 0.11 

P-value (CV-ANOVA) - - 1 0.96 1 0.026 

(a OPLS loadings w and p. Multivariate significance require a significant OPLS model, and univariate 

significance (w, P-value < 0.05), and significant cosine similarity between the variable and the 

response estimated by the model (p, P-value < 0.05). (b No models were calculated for the baseline 

time point only since no significant variables were found in each cross-validation round. 

2.2. Outline of the SMART Procedure 

We developed SMART to systematically and without bias dig deeper into the data and find out 

what the significant metabolic patterns are and when they start to appear. Using both baseline and 

repeated samples, we investigated two factors: i) time between repeated samples, i.e., the time span 

between collection of the baseline and the repeated sample, and ii) time to diagnosis, i.e., the time 

span between disease diagnosis and the collection of the repeated sample. The obvious hypothesis 

being that metabolic changes related to glioma can be detected in plasma, at some time point before 

diagnosis. A constrain being that baseline and repeated samples collected very far apart might not 

serve as proper references for within-subject normalization, due to altered metabolism in relation to, 

e.g., aging and possible change of lifestyle. In the matrix, or scatter plot defined by time to diagnosis 

and time between repeated samples, the SMART procedure was used to define a region of interest 

where the measured variables show a predictive value. The SMART procedure defines the region of 

interest by calculation of OPLS-EP models for subsets of the data and visualization of the subset 

models and their significance. In Figure 1A, we outline the SMART procedure in a few schematic 

step-by step illustrations so that the readers can better understand how the algorithm works and 

interpret the generated results. More detailed information and parameters used for the SMART 

procedure is described in the materials and methods section and in the Figure 1 legend. The final 

output from the SMART procedure is a SMART-model plot, showing the distribution of significant 

and non-significant OPLS-EP models, and a SMART-observation plot, showing all case-control 

observations and distribution of corresponding subsets with significant OPLS-EP models (Figure 1B). 

Based on this data, we can define a region of interest with variables showing a predictive value for 

molecular marker detection, visually seen as a cluster of significant models and contributing subsets. 

To define this region in an unbiased way, we applied unsupervised hierarchical clustering analysis, 
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showing similarities between significant models. The created dendrogram displays clustering of 

metabolic patterns with the same or very similar underlying features (Figure 1C). 

 

Figure 1. Schematic outline of the Subset analysis of Matched Repeated Time points (SMART) 

procedure. (A) Each case-control observation, containing information for disease progression 

(Equation 2), is plotted in a scatter plot according to time to diagnosis and time between repeated 

sampling. Step 1: The algorithm selects a random time point in the scatter plot. Step 2: Weights are 

used to scan the area surrounding the selected time point, and an OPLS-EP model is calculated for 

every subset of case-control observations closest in time (distance) to the selected time point. For 

simplicity, this illustration shows only three weight used for scanning (ellipses 1/8, 1 and 8), 

generating three subsets and three corresponding OPLS-EP models. Step 3a: Significance of the 

calculated OPLS-EP models is visualized in a new scatter plot, i.e., a SMART-model plot, where a 

yellow square (□) marks a significant, and a black dot (∙) a non-significant OPLS-EP model. In this 

illustration, two out of three subsets generated significant models. The positions of OPLS-EP model 

markers (□  or ∙) in the scatter plot are determined by the mean values for the case-control 

observations included in the analyzed subset. Step 3b: In parallel, a SMART-observation plot is 

generated, which shows included subsets from which significant models were obtained. This is 

visualized by creating a 2D density plot where the color density correlates to the number of overlaid 

subsets generating significant OPLS-EP models only. Step 4: A new time point is selected and 

previous steps are repeated until the whole matrix has been scanned. (B) All model significances are 

summarized in a final SMART-model plot, showing the distribution of significant and non-significant 

OPLS-EP models. In parallel, a SMART-observation plot is summarized, showing all case-control 

observations and the distribution pattern of corresponding subsets with significant OPLS-EP models. 

(C) Unsupervised hierarchical cluster analysis is performed to show the similarity of significant 

OPLS-EP models. In this illustration, only one cluster of significant models is observed in the 

generated dendrogram. This cluster corresponds to a region of interest, with a predictive value for 

molecular marker pattern detection, in the SMART-observation plot (red dashed line square). 

2.3. Detection of Early Metabolic Marker Patterns for Glioma 

When we apply the SMART procedure on our glioma case-control data, consisting of 142 

quantified metabolites for each sample, we see that the majority of the significant models are located 

to the lower left side in the SMART-model plot (Figure 2A). The plot indicates that subsets based on 

samples collected closer to diagnosis and with shorter follow up time between baseline and repeated 

samples more often give significant models. To describe each significant model, we examined their 

similarity by hierarchical cluster analysis (Figure 2B). We used loadings w to describe each model 
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and defined the number of clusters using a 95% confidence limit. We see that all significant models 

group into one single cluster, indicating that all significant models builds on the same or a very 

similar underlying metabolic marker pattern. The vast majority of significant models were based on 

case-control observations collected less than eight years before diagnosis and with less than seven 

years between baseline and repeated samples, as seen in the generated SMART-observation plot 

(Figure 2C, blue shading). This time span defines the region of interest for metabolic marker pattern 

detection (Figure 2C, red dashed line square). 

 

Figure 2. Use of the SMART procedure to find regions of interest for metabolic marker pattern 

detection for glioma. Subsets were selected by scanning time to diagnosis and time between repeated 

samples in steps of 0.25 years. In total, 2170 unique subsets, each consisting of twenty case-control 

observations, were created. (A) SMART-model plot showing mean time to diagnosis and time 

between repeated samples for the 2170 OPLS-EP models, out of which 277 models were statistically 

significant, P < 0.05 (yellow squares). (B) Dendrogram showing similarities between significant OPLS-

EP models. All significant models had a similar underlying metabolic pattern, detected as one cluster. 

(C) SMART-observation plot for all glioma case-control observations showing the distribution pattern 

of subsets with significant OPLS-EP models (blue). Significant subsets were mainly composed of case-

control observations collected less than eight years prior to diagnosis and with less than seven years 

between baseline and repeated samples, which defines the region of interest for detection of a glioma-

related metabolic marker pattern (red dashed line square). (D) Estimated probability plot in 

comparison to simulated random data. The plot shows the probability (P-value) of obtaining the 

distribution pattern shown in (C) as a random event. Areas are color coded according to p-values < 

0.001 to < 0.2, indicating the risk of a false positive result. 

A fear when fitting many models on subsets of the data is that one may overfit the data in search 

of a significant P-value. To determine the validity of the obtained models we conducted simulations 

using random data, instead of glioma case-control progression data. The results of 10,000 simulations 

show that there is a very low probability that the number of significant models obtained for the 

metabolomics data, in the region of interest for molecular marker pattern detection, occurs by chance 

(Figure 2D). The SMART-observations plot with estimated probability, comparing simulated random 

data to the real glioma metabolomics data, shows that the probability of defining this region by 

chance is below alpha 0.05. Our comparison to random data is in this case also a very stringent 
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approach, as clusters of significant OPLS-EP models with similar underlying features are not 

obtained for the random data. 

2.4. Analysis of Progression Patterns for Individual Metabolites 

By breaking the SMART analysis down to individual metabolites, we can study each metabolite 

significance pattern in relation to the region of interest for metabolic marker detection, as defined in 

Figure 2C. Within this region, we find 15 statistically significant metabolites (Table 2). 

Table 2. Summary of significant metabolites. 

Metabolite HMDB ID 
OPLS Loadings w (a OPLS Loadings p (b 

t-Value P-Value t-Value P-Value 

myo-Inositol HMDB0000211 4.37 0.0002 7.73 <0.0001 

scyllo-Inositol HMDB0006088 2.08 0.047 3.08 0.0047 

Cysteine HMDB0000574 2.61 0.014 2.94 0.0067 

Glycine HMDB0000123 3.10 0.0044 2.83 0.0087 

Glyceric acid HMDB0000139 2.35 0.026 2.61 0.015 

Aceturic acid (N-acetylglycine) HMDB0000532 2.84 0.0083 2.36 0.026 

Phosphate (phosphoric acid) HMDB0002142 2.62 0.014 4.26 0.0002 

Proline HMDB0000162 2.43 0.022 4.11 0.0003 

4-Hydroxyphenylacetic acid HMDB0000020 2.25 0.032 3.31 0.0027 

Erythronic acid HMDB0000613 3.11 0.0043 4.12 0.0003 

Erythritol HMDB0002994 2.66 0.013 3.70 0.001 

N-acetylglucosamine (GlcNAc) HMDB0000215 2.57 0.016 4.05 0.0004 

Creatinine HMDB0000562 2.37 0.025 2.37 0.025 

Uric acid (urate) HMDB0000289 2.09 0.046 3.20 0.0035 

Urea HMDB0000294 2.17 0.039 3.12 0.0043 

(a Equivalent to a paired two-tailed Students t-test. P-value calculated using 28 degrees of freedom, (b 

t-value for cosine similarity (cs) between metabolite and model estimated response. P-value 

calculated using 27 degrees of freedom. t-value calculated using the formula: t = (cs*√(n-1)) / √(1-

(cs)^2). 

To determine the ability for these 15 metabolites to separate controls from future cases, one can 

calculate the optimized predictive ability of these metabolites in the region of interest for disease 

detection. These calculations were restricted to a one-component OPLS-EP model to limit overfitting. 

Analyzing all case-control observation in the region resulted in a good model with a predict ability 

Q2-value of 0.59 and a CV-ANOVA P-value of 5.0 × 10−5. The vast majority of all future cases were 

diagnosed with high-grade, WHO III-IV glioma (Table S1). Restricting the analysis to include only 

high-grade glioma, constituting 79 % of all case-control observations, resulted in a slightly improved 

Q2-value of 0.62 and P-value of 4.0 × 10−5. Narrowing down the analysis to include only future 

glioblastoma WHO IV cases, gave a similar predictive Q2-value of 0.61, but with a higher P-value of 

0.0015, as the number of included observations decline (55% of all case-control observations). 

We can also use SMART-model and SMART-observations plots to highlight the distribution of 

each individual metabolite, their statistical significance, and abundance for cases in comparison to 

controls. SMART-model plots, SMART-observations plots and progression patterns for all 

metabolites listed in Table 2 are shown in Figures 3, 4 and 5. We see statistically significant higher 

levels of myo-inositol, cysteine, uric acid, N-acetylglucosamine and creatinine, five compounds 

representing separate groups of interlinked metabolites, closer to diagnosis in the future glioma case 

compared to controls (Figure 3A–O). By evaluating these plots, we observe that significant metabolite 

levels correspond very well with significant OPLS-EP models (Figure 3A–E, yellow squares), when 

using the criteria for multivariate significance (w and p) (Figure 3A–E, blue squares), while univariate 

significant (t-test) metabolite levels highlight models spanning a much wider time span (Figure 3A–

E, red dots) also including non-significant OPLS-EP models (Figure 3A–E, black dots). A very similar 
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multivariate pattern can be observed for glycine and erythronic acid (Figure 4A–B, blue squares). The 

remaining eight metabolites show similar patterns but are multivariate significant in fewer models, 

in a narrower time frame appearing somewhat closer to diagnosis (Figures 4C–E, 5A–E). The 

multivariate model significance criteria (w and p) strongly restrict the region of interest for metabolic 

marker detection, where individual metabolites are found to be significant (right panels in Figures 

3F−J, 4F−J and 5F–J), in comparison to a univariate significance t-test (left panels in Figures 3F−J, 4F−J 

and 5F–J), and coincide in most cases well with a univariate t-test P-value corrected for using the 

Benjamini–Hochberg false discovery rate at 0.2 (middle panels in Figures 3F−J, 4F−J and 5F–J). Out of 

the 15 identified metabolites, seven metabolites including myo-inositol, cysteine, uric acid, N-

acetylglucosamine, creatinine, glycine and erythronic acid (Figures 3F–J, 4F–G) show the strongest 

multivariate significant pattern, appearing early, and consistently already eight years before 

diagnosis. Interestingly, all 15 metabolites were observed to increase in the plasma samples from 

glioma cases. The progression pattern within the defined region of interest for metabolic marker 

detection, shows clearly that the metabolite concentration increases in the plasma samples of glioma 

cases while unaffected in most matched controls (Figures 3K−O, 4K−O and 5K–O). 

 

Figure 3. SMART-model and SMART-observation plots, and progression patterns for individual 

metabolites: myo-inositol (A, F, K), cysteine (B, G, L), uric acid (C, H, M), N-acetylglucosamine (D, I, 
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N) and creatinine (E, J, O). (A–E) SMART-model plot for individual metabolites. The shape and color 

of the symbols relate to the statistical significance. For model: black dot; non-significant model, yellow 

square; significant model. For individual metabolite: black dot; non-significant metabolite, red dot; 

significant metabolite in univariate t-test, blue square; multivariate significant metabolite (w and p). 

(F–J) SMART-observation plots for individual metabolites. The SMART-observations plot is similar 

to the plot in Figure 2C but highlights the distribution pattern for subsets where the individual 

metabolites are significant, instead of models. Distribution pattern for three significance criteria are 

illustrated. Left panel: univariate t-test. Middle panel: univariate t-test with correction for Benjamini–

Hochberg false discovery rate (FDR) < 0.2. Right panel: multivariate significance using loadings w 

and p. Distribution patterns shown in red color indicate significantly increased levels of the individual 

metabolite in cases compared to controls, while patterns shown in blue indicate significantly reduced 

levels of the metabolite in cases compared to controls. (K–O) Progression pattern for individual 

metabolites. Mean progression of metabolite levels for cases and controls in the defined region of 

interest for glioma. Confidence intervals (95%) based on a dependent two-sided t-test. 

 

Figure 4. SMART-model and SMART-observation plots, and progression patterns for individual 

metabolites: glycine (A, F, K), erythronic acid (B, G, L), 4-hydroxyphenylacetic acid (C, H, M), aceturic 

acid (D, I, N) and proline (E, J, O). (A–O) As described in figure legend 3. 
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Figure 5. SMART-model and SMART-observation plots, and progression patterns for individual 

metabolites: glyceric acid (A, F, K), scyllo-inositol (B, G, L), phosphate (C, H, M), urea (D, I, N) and 

erythritol (E, J, O). (A–O) As described in figure legend 3. 

As a validation of the statistical significances for the 15 individual metabolites, we also here 

compared the glioma metabolomics data to random data (Figure S1). SMART-observation plots 

showing estimated probabilities for the individual metabolites after normalization to random data 
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confirm similar distribution patterns for the individual metabolites as previously shown in Figures 

3, 4 and 5. 

2.5. Validation of the Identified Latent Biomarker for Glioma 

A latent biomarker can be described as a systematic pattern of co-varying variables correlated 

to the phenotypic variation of interest. By use of SMART, we identify a latent biomarker for glioma, 

consisting of 15 significantly altered metabolites. Interestingly, almost all of these metabolites can be 

interlinked to each other through known human metabolic pathways (Figure 6). Either by being an 

upstream precursor molecule or a downstream derivative from known biochemical reactions, as 

described in the KEGG database. Detection of cohesive metabolites strengthens in our view the 

validity of the identified metabolic pattern.  

 

Figure 6. Schematic illustration of significantly altered metabolites (red) and their closest derivatives 

and precursors (blue). Glutathione is included in yellow, being a central metabolite in redox 

balancing. The linkage in the illustration is based on the KEGG pathway database, for humans only. 

Cytoscape software was used for visualizing molecular interactions. 

Nevertheless, to validate the identified latent biomarker and the time point when it becomes 

detectable, we analyzed a second set of pre-diagnostic EDTA-plasma samples (Table S2). The 

validation set consisted of tightly matched case-control samples collected at a single pre-diagnostic 

time point and was collected at the same biobank using identical sampling and storage procedures, 

which is a prerequisite for minimizing pre-analytical sample variability, that otherwise can cause 
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unpredictable directional effects. The validation set was comparable to the discovery set regarding 

participants’ age at sampling, mean time to diagnosis, BMI, smoking status, fasting status, and clinical 

glioma diagnosis’s, but had a lower proportion of females. 

For the validation set, we first calculated the differences between matched cases and controls 

(Equation 3), followed by a calculation of the latent biomarker by use of OPLS. The output from the 

OPLS model highlights differences between matched cases and controls according to the latent 

biomarker, i.e., the panel of 15 metabolites, previously defined by SMART. Here, we observe a 

significant difference between matched cases and controls collected less than eight years before 

diagnosis (dependent t-test, P = 0.015, n = 38 pairs). The diagnostic ability for the latent biomarker 

can also be illustrated by use of receiver operating characteristic (ROC) curve analysis. Moreover, 

here, matched samples less than eight years before diagnosis significantly differ from samples 

collected more than eight years from diagnosis (Figure 7A, area under curve (AUC) = 0.70, Wilcoxon, 

P = 0.0044, n = 68 pairs). Although an AUC value of 0.70 does not describe a perfect separation, both 

results are significant and indicate that the identified latent biomarker contains valid information for 

disease detection. For the validation cohort, we also restricted the analysis to include only high-grade 

WHO III-IV glioma, constituting 75% of all case-control observations (Figure 7B). This sub analysis 

gave an improved AUC value of 0.74 and improved P-value of 0.0037. From the SMART plots of 

individual metabolites (Figures 3, 4), we observed seven metabolites, including myo-inositol, 

cysteine, uric acid, N-acetylglucosamine, creatinine, glycine and erythronic acid, with a particularly 

strong and consistent significance pattern. ROC analysis using only these seven metabolites resulted 

in a similar separation of cases and controls when analyzing all glioma diagnoses (Figure 7C, AUC = 

0.70, Wilcoxon, P = 0.005, n = 68 pairs) but resulted in an improved AUC value of 0.76 and an 

improved P-value of 0.0015 when restricting the analysis to include only high-grade WHO III-IV 

glioma. Although our validation set was not optimal, containing only single time point samples, the 

identified metabolites can still separate future glioma cases from age and gender matched controls 

up to eight years before diagnosis. 

Xdifference = Xcase - Xcontrol (3) 

 

Figure 7. ROC curve analysis of the latent biomarker predicting glioma detection eight years before 

diagnosis in the single time point data set. (A) ROC curve for all glioma diagnoses using all 15 

metabolites identified by SMART. (B) ROC curve for high-grade glioma diagnoses only using all 15 

metabolites, as in (A). (C) ROC curve for all glioma diagnoses using a subset of seven metabolites 
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identified with a strong and consistent significance pattern by SMART. (D) ROC curve for high-grade 

glioma diagnoses only using the same seven metabolites, as in (C). 

3. Discussion 

In this study, we introduce a modelling approach (SMART) for the unbiased definition of novel 

molecular marker patterns and boundaries for disease detection, using longitudinal case-control 

samples. Our study points out a metabolic marker pattern, or latent biomarker, detectable many years 

before glioma diagnosis. The latent biomarker consisting of 15 significantly altered metabolites 

includes many molecules with antioxidant properties, compounds related to oxidative metabolism 

or linked to monosaccharide metabolism and glutathione biosynthesis. Using SMART, we see a 

cohesive metabolite pattern with a traceable onset up to eight years before glioma diagnosis. Our 

data also indicate that metabolic marker patterns for glioma should optimally be based on repeated 

samples with a longitudinal follow up less than seven years apart. Our findings correlate well with a 

recent genetic study that investigated the genetic evolution of isocitrate dehydrogenase (IDH) wild-

type glioblastoma using paired primary and recurrent tumor tissue. This study estimates the mutated 

founder cells with common genetic aberrations in the CDKN2A/B, PTEN, and EGFR loci to emerge 

two to seven years before diagnosis [6]. As indicated here, and in previous metabolic and genetic 

studies, glioma seems to have a much longer prodromal phase than previously anticipated. 

Clinically, a blood test for glioma diagnostics could be relevant to discriminate unclear lesions 

at brain imaging or screening of high-risk individuals. In this study, we detect statistically significant 

and elevated levels of metabolites previously linked to tumor metabolic processes, which in our view 

strengthens the validity of the detected metabolic pattern. Our results are not to be interpreted as 

proofs that a diagnostic blood test for glioma is imminent. Affected metabolic and biochemical 

pathways are still to be characterized before clinical applications can be developed. Although these 

results should be interpreted with caution, the findings are still of great value for further studies 

using similar or complementary analysis approaches. The increase in myo-inositol concentrations 

were especially strong close to diagnosis. Inositol is a known antioxidant and several studies support 

myo-inositol as an important marker for glioma. A previous case-control study using single time 

point pre-diagnostic serum samples also found myo-inositol to be strongly associated with future 

glioblastoma development [7]. In incident cases of glioma, higher relative levels of myo-inositol in 

brain tumor tissue correlate with a less aggressive tumor progression, resulting in longer survival [8]. 

Earlier proton magnetic resonance spectroscopy studies showed reduced levels of myo-inositol in 

tumors of patients with more aggressive glioma phenotype, anaplastic astrocytomas and 

glioblastomas, compared to low-grade astrocytoma [9]. Myo-inositol levels have also been shown to 

increase in the extracellular compartment of the tumor during radiotherapy [10], while the 

contralateral normal-appearing white matter of un-treated glioblastoma patients has elevated myo-

inositol levels, relative to age-matched healthy controls [11]. A recent magnetic resonance 

spectroscopy study also pointed out measurements of inositol/total choline ratio as the best 

discriminator between high- and low-grade glioma or brain metastasis [12]. Finally, a study 

comparing metabolites in patient-derived microdialysis fluids from high-grade tumor tissue to  

non-malignant brain tissue adjacent to the tumor pointed out elevated levels of myo-inositol in 

peripheral tissue surrounding the tumor [13]. The study also reported four- to eight-fold higher levels 

of glycine, proline and uric acid, and three-fold lower erythritol levels, in tumor microdialysate in 

comparison to levels in the adjacent non-tumoural brain tissue [13]. Intracellular myo-inositol forms 

phosphatidylinositol or myo-inositol-phosphates of various forms. However, myo-inositol does also 

maintain the osmotic balance between the tissue and its surroundings and protect cells from the 

negative impact of hyperosmolality [14]. The inositol accumulated following hypertonicity is 

transported into the cells rather than synthesized. A plausible explanation to the altered levels of 

myo-inositol in high- and low-grade tumors, the extracellular compartment and in blood is that myo-

inositol levels are altered because of changed cellular monosaccharide metabolism, as high glucose 

uptake is a hallmark of tumor cells. Previous metabolic studies showed that intracellular myo-inositol 
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levels are dependent on glucose concentration and that intracellular myo-inositol is depleted under 

high glucose conditions, in a competitive, dose-dependent manner [15–17]. 

The majority of the altered metabolites found in this study have previously been linked to redox 

balancing and brain tumor development [7,13,18]. Reactive oxygen species (ROS) are constantly 

produced and removed under physiological conditions. Oxidative damage including DNA mutation 

and epigenetic changes can contribute to malignant transformation. Glutathione, a tripeptide 

synthesized intracellularly from cysteine, glycine and glutamic acid, constitutes the core of the non-

enzymatic intracellular antioxidant system. Glutathione redox balancing works in tandem with major 

extracellular antioxidants including uric acid, ascorbate, tocopherols, carotenes, and extrinsic 

bioflavonoids [18]. Our study points out elevated levels of cysteine, glycine, glyceric acid, aceturic 

acid (N-acetylglycine) and phosphate (phosphoric acid), mainly inter-linked through glycine-serine-

threonine metabolism as well as directly linked to glutathione biosynthesis through the methionine 

metabolic pathway. Elevated serum levels of cystine, the oxidized form of cysteine, has previously 

been reported in future glioblastoma cases [7]. Our study points out higher plasma levels of 4-

hydroxyphenylacetic acid, a colonic metabolite with potential cyclooxygenase (COX) inhibitory 

function and free radical scavenging properties, as well as proline, another principal organic 

osmolyte in brain [14]. Proline degradation is catalyzed by proline oxidase (also known as proline 

dehydrogenase) and is widely expressed in brain and other tissues. Proline oxidase is a hotspot for 

mutations and putative tumor suppressor, and decreased proline oxidase activity has been reported 

in glioblastoma tissue compared to normal tissue [19]. Analysis in mouse models has shown that 

pathways involved in glutathione metabolism, and the amino acids involved in glutathione 

biosynthesis, are the most significantly upregulated pathways during tumor initiation, and 

progressively increase to meet the demands of tumorigenesis [20]. 

Erythronic acid, erythritol and N-acetylglucosamine (GlcNAc) belong to another group of 

significantly altered compounds. Erythritol has excellent hydroxyl radical scavenger properties  

[21]. The reaction of erythritol with hydroxyl radicals results in the formation of erythrose that can 

be oxidized to form erythronic acid. Both erythrose, erythronic acid and glyceric acid have been 

identified as products when N-acetylglucosamine is oxidized by NaOCl [22], that relates to ROS 

degradation of connective tissue [23,24]. Creatinine, urea and uric acid belong to the last group of 

interlinked metabolites found in this study. Creatinine, the breakdown product of creatine-

phosphate, originate mainly from muscle metabolism, while urea is the main metabolic end product 

of protein catabolism. Increased blood urea, serum creatinine, and N-acetylglucosaminidase have 

been reported in rats upon oxidative damage [25]. Uric acid is a potent antioxidant and the metabolic 

end-product of purine degradation by xanthine oxidase. Xanthine oxidase catalyzes the 

transformation of hypoxanthine to xanthine and xanthine to uric acid, but also generates oxygen 

radical species (H2O2 and O2−) upon conversion, which can be harmful for tissues with high enzyme 

activity [26,27]. Xantine oxidase activity is shown to increase inflammatory responses [28], and 

significantly higher xanthine oxidase levels have been reported in brain tumor tissues [29]. Uric acid 

is not an inert metabolite, since it acts as a pro- and antioxidant and activator of immune response 

and inflammation through COX-2 activation [27,28,30]. 

Inflammation is a plausible link between ROS and glioma development. Several epidemiological 

studies have investigated the relationship between long-term use of pro-inflammatory COX-1 and/or 

COX-2 inhibitors and glioma risk. The long duration of aspirin use reduces the risk of developing 

glioma by 30–50% in clinic-based cases and controls [31,32]. Mixed effects of aspirin/NSAIDs usage 

have been reported in other meta-studies, indicating large differences in study design [33,34]. 

Epidemiologic studies suggest inverse relations between glioma and long duration of diabetes, 

asthma and allergy, were anti-inflammatory medication is used [35–37]. These studies highlight the 

long-term protective trends and the need to specifically decipher the targeted anti-inflammatory 

mechanisms. 
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4. Materials and Methods 

4.1. Study Subjects and Sample Acquisition 

Plasma samples were obtained from the Northern Sweden Health and Disease Study (NSHDS), 

a prospective, population-based biobank consisting of blood and questionnaire data from primarily 

40, 50 and 60-year-old individuals, collected in connection with health surveys or at time point for 

mammography screening. NSHDS blood samples were collected in the morning from fasting donors. 

Analyzed samples were collected in EDTA plasma vacutainers, frozen within 1 h and stored at −80 

°C at the Biobank North at Umeå University Hospital. We included plasma samples collected from 

October 1986 to February 2010 from incident cases diagnosed with glioma after the sampling. We 

identified 132 individuals diagnosed with glioma. Out of these, 64 individuals had donated two pre-

diagnostic blood samples and 68 had donated one pre-diagnostic sample. We also randomly selected 

132 controls (cancer-free at inclusion) with single or repeated samples, carefully matched on age (± 5 

months, mean 65 days), sample collection date (± 2 months, mean 32 days for both first and second 

collection time) and gender. The control group was also balanced for individual fasting time, BMI 

and sample thawing cycles (Table S1 and S2). Most samples (379 out of 392) had not been thawed 

prior to this analysis. All samples were linked to the Swedish Cancer Register, an ongoing national 

cancer registry started in 1958 with 98 percent coverage of all cancer cases in Sweden. Median cancer-

free follow up for included controls was 19.1 years. The precision that the included control 

individuals are cancer-free is therefore very high. Glioma cases were classified according to the 

International Classification of Diseases for Oncology, with glioblastoma representing the majority of 

all cases. Information on IDH 1/2 mutation status was not available, as all cases were diagnosed with 

glioma prior to implementation of the WHO2016 classification of brain tumors. None of the cases had 

prior history of cancer. The study group was homogeneous with respect to ethnicity resulting in a 

predominantly Caucasian northern Swedish cohort. All donors in the NSHDS cohort have given 

informed broad consent for the use of their samples in cancer research. This study was approved by 

the Regional Ethical Review Board at Umeå University, Umeå Sweden. Ethical approval number 

2017-295-31M and 2018-87-32M. 

4.2. Special Reagents 

All chemicals were of analytical grade. The isotopically labeled internal standards [1,2,3-13C3]-

myristic acid were purchased from Cambridge Isotope Laboratories (Andover, MA, USA), [2H6]-

salicylic acid from Icon (Summit, NJ, USA) and [13C12]-sucrose was from Campro (Veenendaal, 

Netherlands). The stock solutions for internal standards were prepared in 0.5 μg/μL concentrations 

in methanol or water prior to metabolite extraction. Silylation-grade pyridine and N-Methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane were purchased from Restek 

(Bellefonte, PA, USA). 

4.3. Metabolite Extraction and Analysis 

The plasma samples were divided into analytical batches, preserving case-control interrelation 

and longitudinal sample pairs. Frozen aliquots of plasma were thawed on ice at room temperature. 

Metabolite extraction was performed using methanol:water extraction mix (90:10 v/v, including 

internal standards) and derivatized for GC–MS analysis as previously described [7]. The study 

samples were subjected to constrained randomization within the analytical batches [4]. In the 

analytical run, both longitudinal samples from the case and the corresponding control were 

consequently run in the same batch and directly adjacent to each other in random order, thereby 

minimizing variability in platform performance across matched pairs. The trimethylsilylated 

metabolites were analyzed with a Leco Pegasus HT time-of-flight mass spectrometer equipped with 

an Agilent 7890A gas chromatograph. Leco ChromaTOF software was used for instrument control 

and raw data acquisition. The column used for the GC separation was a 30 m, 0.25 mm inner diameter 

DB5-MS UI column with a 0.25 μm thick stationary phase. Splitless injection of 1 μL sample was 
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performed with a PAL auto sampler system at an injection temperature of 270 °C. The purge time 

was 75 s with a rate of 20 mL/min. Helium was used as carrier gas with a flow rate of 1 mL/min. The 

primary GC oven temperature was held constant at 70 °C for 2 min and then ramped at 20 °C/min to 

320 °C, where it was held constant for 8 min. The transfer line temperature between the gas 

chromatograph and mass spectrometer was set to 250 °C. Electron impact ionization at 70 eV was 

employed with an ion source temperature of 200 °C. Mass spectra were collected in the mass range 

of m/z 50 to 800 at 20 Hz and 1670 V detector voltage. A series of n-alkanes (C8–C40) were used as 

external retention index standards. As an additional quality control measure of analytical 

performance across and within samples batches, we analyzed a pooled plasma quality control 

reference sample at the beginning and end of each analytical batch, as well as between every 20 th 

study sample. 

4.4. Metabolite Identification and Quantification 

Acquired raw data were exported to MATLAB (Mathworks, Natick, MA, USA) in NetCDF 

format and processed using a curve resolution script, developed in house [38]. The procedure 

generates chromatographic profiles for each compound in each sample with a corresponding 

common spectral profile. We used the integrated area under the resolved chromatographic profile 

for quantification. The identity of the resolved peaks was determined by comparing mass spectra and 

retention indices with data in the Swedish Metabolomics Centre in-house GC–MS library. NIST MS 

search 2.3 software was used for manual verification of spectral identification. Compounds with a 

“spectral match score” below 700 and RI deviation larger than 25 units from the reference value were 

excluded. For identification with high confidence, all major fragment ions in the library hit should be 

present in the resolved spectra with a correct spectral intensity profile. Only compounds identified 

with high confidence and detected in all cases and control, in baseline and repeated samples, and in 

both study cohorts, in total 142 metabolites, were included in the statistical analysis. We did not detect 

D-2-hydroxyglutarate, a metabolite produced by IDH1/2 mutated cells, in these samples. 

4.5. Multivariate Statistical Modeling 

The data consisted of two independent sets of plasma samples: a baseline and repeated time 

points set consisting of 64 future cases and 64 individually matched controls, in total 256 samples, 

and a single time point set with 68 future cases and 68 individually matched controls, in total 136 

samples (Table S1 and S2). Orthogonal projections to latent structures (OPLS) were used for the 

modeling of differences between future cases and controls. We used both independent analysis 

OPLS-DA (discriminant analysis) and dependent analysis OPLS-EP (effect projections). For the 

OPLS-DA models, data were centered and scaled variable wise by subtraction of the mean intensity 

and division by the pooled standard deviation. For OPLS-EP models, data were not centered but 

variable wise scaled by division by the standard deviation. Both OPLS-DA and OPLS-EP were used 

in three different comparisons (Table 1): i) for the baseline samples in the repeated time points set; ii) 

for the repeated sample in the repeated time point set; iii) for the progression pattern in the repeated 

time point set, where baseline data were subtracted from the repeated time point. The optimal OPLS 

models were achieved by a cross-validation strategy. In each round of cross-validation an OPLS 

model was calculated and only the variables (metabolites) reaching the significance criteria (loadings 

w and p (95%) in each round) were used for predictions of the response values for each sample in 

each separate cross-validation group. Q2 and P-values based on CV-ANOVA [39] were calculated 

based on the predicted responses. 

We developed SMART to search for an optimal predictive area for variable selection—a region 

of interest for molecular marker detection—with respect to the variables’ time to diagnosis, and time 

between repeated samples. We scan the scatter plot using stepwise increments of 0.25 years in each 

direction. At each step, the twenty case-control observations with shortest time span to the selected 

time point were included. For the systematic scanning of the area surrounding the selected time point, 

the distances from the time point were calculated seven times using weights from 1/8 to 8 for the time 

to diagnosis variable, while the weight for time between repeated samples was kept constant at 1. 
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The regions represented by the selected samples were estimated by a hoteling’s T2 ellipse (95%). In 

total, 2170 unique subsets were generated for the glioma data, each containing a combination of 20 

out of the 64 case-control observations. For each subset an OPLS-EP model was calculated based upon 

case-control progression data and the model significance based on CV-ANOVA. A model was 

considered significant with a P-value CV-ANOVA < 0.05. To visualize contributing subsets, ellipses 

from the representative selections from significant models are stacked upon each other. This is 

visualized in images where the color intensity is related to the number of layers covering the different 

positions in the studied region (example in Figure 1A). From all significant models, the OPLS 

loadings (w) were stored. Similarities between the loadings were investigated using hierarchical 

cluster analysis, with 1-cosine similarity as distance measure and average linkage. The number of 

clusters were decided using a simulated 95% confidence interval. For individual metabolites, we 

describe the variable significance in the SMART-model plots by two statistical tests: i) univariate 

significance t-test (P-value < 0.05); ii) multivariate model significance using OPLS loadings w and p, 

which require a significant OPLS model and univariate significance (w) and significant cosine 

similarity (P-value < 0.05) between the variable and the response estimated by the model (p) [40]. 

Similar SMART-observation plots were created for individual metabolites, as for the models 

described above. Here, three different significance criteria were used: i) univariate t-test (P-value < 

0.05); ii) univariate t-test (P-value < 0.05) applying Benjamini–Hochberg false discovery rate (FDR < 

0.2) [41]; and iii) multivariate model significance using the loadings w and p, as described above. 

To estimate the significance for the region of interest, a simulation using random data was 

conducted. The SMART-observation plot, based on the 64 case-control observation, was recalculated 

10,000 times using random number, from a population with mean zero and standard deviation one, 

instead of metabolite data. The probability of getting the same or higher intensities in the SMART-

observation plot, when there are no real differences, was estimated by comparing the simulated data 

with the metabolite data. The probability is presented as six discrete levels: “>0.20”, “<0.20”, “<0.10”, 

“<0.05”, “<0.01” and “<0.001”. 

The single time point cohort was predicted by an OPLS model from the repeated sample cohort, 

and the output form the OPLS model, the estimated latent biomarker, was evaluated using a 

dependent t-test and by ROC curve analysis. The significance of the ROC curve was estimated using 

The Wilcoxon signed-rank test. In the ROC curve analysis, the samples with less than eight years to 

diagnosis were seen as the positive condition. 

4.6. Visualization of Molecular Networks 

The linkage of significant metabolites and their closest derivatives and precursors was done 

based on publicly available information in the KEGG pathway database [42] for humans only. The 

interaction network was assembled by use of Cytoscape, an open source software platform for 

visualizing molecular interactions and biological pathways. 

4.7. Data Accessibility 

The SMART tool and data reproducing the results have been made accessible at Code Ocean 

https://doi.org/10.24433/CO.2960444.v2 

5. Conclusions 

The presented SMART strategy facilitates molecular marker discovery and defines boundaries 

for early disease detection. This strategy consists of an analytical workflow, tailored to increase the 

statistical sensitivity for studies containing matched samples at repeated time points. This proof-of-

concept study focuses on finding pre-diagnostic metabolic marker patterns for glioma. The SMART 

approach is, however, suitable for other types of molecular marker data, comprising sample sets with 

tightly matched and repeat samples. Here, we detect metabolic changes in blood plasma up to eight 

years before glioma diagnosis and discuss how the pattern of significant metabolites relates to redox 

metabolic pathways and to previously described tumor metabolic processes. 

https://doi.org/10.24433/CO.2960444.v1
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