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Simple Summary: Cancer is a major cause of human mortality worldwide. No life on earth can live
without iron. Persistent oxidative stress resulting from continuous use of iron and oxygen may be
a fundamental cause of carcinogenesis. Many animal models demonstrated that excess iron may
lead to carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk
and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes
and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is
established. We predict that fine use of nanomaterials and non-thermal plasma may be able to reverse
this situation.

Abstract: Evolution from the first life on earth to humans took ~3.8 billion years. During the time
there have been countless struggles among the species. Mycobacterium tuberculosis was the last
major uncontrollable species against the human public health worldwide. After the victory with
antibiotics, cancer has become the leading cause of death since 1981 in Japan. Considering that
life inevitably depends on ceaseless electron transfers through iron and oxygen, we believe that
carcinogenesis is intrinsically unavoidable side effects of using iron and oxygen. Many animal models
unequivocally revealed that excess iron is a risk for carcinogenesis. This is supported by a variety of
human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome
with persistently activated oncogenes and inactivated tumor suppressor genes through which iron
addiction with ferroptosis-resistance is maintained. Engineering has made a great advance in the
past 50 years. In particular, nanotechnology is distinct in that the size of the engineered molecules is
similar to that of our biomolecules. While some nano-molecules are found carcinogenic, there are
principles to avoid such carcinogenicity with a smart possibility to use nano-molecules to specifically
kill cancer cells. Non-thermal plasma is another modality to fight against cancer.
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1. Introduction

Space started to expand through the Big Bang 13.8 billion years ago (Gya) [1] and Earth came into
existence 4.6 Gya [2]. Evolution from the first life on Earth to humans took ~3.8 Gy [3]. At present,
there are 1.75 million species on Earth [4]. Symbiosis of all the species on Earth is generally established
in equilibrium currently, except for a fraction of endangered or extinct species, such as dinosaurs [5].
Some species are parasites of the other higher species [6]. There have been countless intense struggles
among the species, which humans may sometimes call infection. The last major fight in the history of
human public health was the one against mycobacterium tuberculosis, which was finally stopped by
the discovery of antibiotics, such as streptomycin and isoniazid in the 1940s and 1950s [7].

Thereafter, in Japan, cancer has been the leading cause of death since 1981 (https://www.mhlw.
go.jp/toukei/saikin/hw/jinkou/geppo/nengai19/dl/gaikyouR1.pdf), and mortality is still increasing.
In the United States, some cancer mortality, such as colorectal cancer, is decreasing [8] presumably
due to the success for early detection (secondary prevention) through screening with endoscopy [9,10].
However, nearly one third of the population dies from cancer in high-income countries worldwide
(https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death). The other major
cause of death is atherosclerosis, leading to ischemic heart disease and stroke over time. However,
we should not forget that the major causes of death in low-income countries are still various infections.
Both cancer incidence and progression of atherosclerosis are proportionally age-dependent. In this
review article, we consider the molecular cause of cancer from the highest global point of view, and then
discuss the biological significance of nanomaterials and finally provide a perspective on the novel
procedures to counteract cancer.

2. What Is the Major Cause of Carcinogenesis in Humans?

2.1. Epidemiology and Hypothesis

After the end of longstanding countless wars against the other species, cancer is now one of the
leading causes of human mortality in high-income countries worldwide. Here, it would be important
to consider major causes of carcinogenesis in humans. We hypothesize that persistent use of iron and
oxygen is the overlooked major cause of carcinogenesis in humans. Cancers may be classified into the
two types: one with unequivocal risk factor(s), including endogenous and exogenous, and the other
with more ambiguous or no identified risk factor(s), which is not necessarily consistent with a tumor
mutation burden [11] (Figure 1). Typical examples of the first category are malignant mesothelioma
(MM) by respiratory exposure to asbestos fibers [12,13] and hereditary breast/ovarian cancer in those
with BRCA1/2 mutations [14], namely occupational cancers and familial cancer syndromes. It is not
surprising that these hereditary cancers share a relatively small fraction (5%~10%) even though there
are hundreds of cancer-prone syndromes reported [15].

It is often difficult to identify the responsible risk(s) for most of the cancers, thus, falling into
the second category. Current literatures discuss the importance of smoking [16] and a Western diet
(high calorie, saturated oil, red meat, etc.) [17] as carcinogenic risks. We are not in a position to oppose
these statements. Systematic reviews clearly reveal that smoking is a risk for various type of cancers
including oral, laryngeal, lung, stomach, renal, and bladder cancers [18]. However, we believe that
there are more fundamental factors to be considered as carcinogenic risks when looking at the steady
global increase in the fraction of cancer as a major cause of human mortality where major infective
diseases have been overcome. Furthermore, laboratory mice and rats suffer from a high incidence of
cancer in old age [19–21] even if they are usually not exposed to apparent carcinogens or cancer-risk
factors. Based on these facts, we started to consider the significance of the origin and evolution of life
in carcinogenesis.

https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/nengai19/dl/gaikyouR1.pdf
https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/nengai19/dl/gaikyouR1.pdf
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
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Figure 1. Etiology and somatic mutation burden in carcinogenesis. Asbestos exposure is a well-established
risk for malignant mesothelioma whereas risks for lung adenocarcinoma with high somatic mutation
burden are various and still vague.

2.2. Iron, Sulfur, and Oxygen

As far as we are aware, no independent life on Earth can live without iron [22]. Geological studies
revealed that the ancient sea contained a high concentration of catalytic ferrous iron [Fe(II)] when
the first life on Earth was born [23,24]. It is true that iron is a fundamental element, existing in space
because we can find many meteors which consist largely of iron [25]. Iron in the ancient ocean reacted
with a subtle amount of oxygen to generate ores at the bottom of the sea [24]. Life might be defined as
a continuous flow of electrons with reproductive activity of the next generation. Iron is a transition
metal [26,27], efficient in electron flow, and, thus, preferentially used as a media for the first life on
Earth [28].

Thereafter, a great oxidation event (GOE) occurred when an evolved life as cyanobacteria could
transform light (solar) energy to electron flow to trigger rapid oxygenation [29]. Reportedly, sulfur was
abundant in the environment at this period, where sulfur was firmly integrated in the life system not
only as a coexistence of iron (Fe and S have a high affinity) but also as a competitor [24,30]. S is present in
the sulfhydryl function of cysteine, which is in major use for reducing activity of polypeptides/proteins
by counteracting as antioxidants. Representative ones are glutathione and thioredoxin, which are
also used as a reducing unit for enzymes [31]. Furthermore, -SH works as an intracellular sensor for
oxidative stress, as in the case of Keap1 and Nrf2 [32]. Recently, persulfides are regarded as a potent
antioxidant mechanism [33].

After the GOE, the concentration of atmospheric oxygen started to rise gradually from ~0.6 Gya
and reached a stable state of ~21% after several fluctuations [24]. Oxygen molecule, albeit a biradical,
is relatively stable at the ground condition on the Earth and works flexibly as a media for electron
flow. The most distinctive characteristic of O2 is its oxidizing ability, accepting a single electron to four
electrons. At the same time, O2 is reduced ultimately to H2O. This process is quite versatile in that
there can be electron flow of one to four, depending on the condition. O2→ O2

− (superoxide)→ H2O2

→
•OH (hydroxyl radical)→H2O. In this case, the first two reactions are mediated by various enzymes

whereas the third reaction is a chemical reaction designated as a Fenton reaction [27,34]. The hydroxyl
radical is the most reactive species in the biological system on the Earth [35]. Therefore, higher animals
hold and employ various enzymes, including catalase, peroxidases, and peroxiredoxins to directly
decompose H2O2 to H2O [36–38]. In this way, the order of major elements used by the fundamental
life is Fe→ S→ O during the evolution [39].
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2.3. Excess Iron and Carcinogenesis

Excess iron is a soil for carcinogenesis [40–42]. Even though iron is essential for every kind of
life on Earth, iron presents a double-edged sword. On the one hand, iron deficiency causes anemia
(decrease in hemoglobin in the blood) and muscle weakness in higher animals [43]. On the other
hand, iron excess causes oxidative damage to various different kinds of cells, which may lead to
carcinogenesis [44–46]. Therefore, we have to consider both sides of the thresholds. Children and
pregnant women definitely require a high amount of iron for the growth of organs. In the low-income
countries, this issue is closely associated with malnutrition with food deficiency, but iron fortification to
foods is recently recognized to alter gut microbiome [47]. Furthermore, we believe that supplementary
iron intake to all the populations, irrespective of the iron status, whether deficient or sufficient, is not
recommended [48,49]. This is partially because some form of iron, such as a nanoparticle form of iron,
is absorbed from the duodenum without regulation via endocytosis but not via Fe(II) transporters [50].

Here, we briefly explain important principles on iron metabolism. More detailed descriptions
are found in other recent publications [51,52]. Humans hold 2.5 to 4 g of iron in the body, which is
the most abundant heavy metal, with zinc (2~3 g) [53] and copper (50~120 mg) [54] being the second
and the third, respectively. In total, 60% of iron is in the heme of hemoglobin for oxygen transport
(affinity of Fe[II] to O2) in red blood cells. Iron as a transition metal (Fe[II]↔ Fe[III]) is important for
DNA replication (ribonucleotide reductase), ATP synthesis (cytochrome oxidases), and antioxidant
activity (catalase) in which either Fe(II) [55], heme [56], or the Fe-S cluster [57] is integrated as a cofactor
of a catalytic subunit. Iron metabolism in humans as well as in other higher species is a semi-closed
system, where only 1 mg of iron is absorbed from the villous surface membrane of duodenal epithelial
cells and 1 mg is lost from the dead or peeled-off cells of skin or gastrointestinal system [41,58].
Therefore, iron from most of the dead cells inside our body is completely recovered by macrophages or
their analogues or deposits in the interstitium.

Iron is essential not only for all the cells of the individual but also for the invading or coexisting lower
species. Thus, every species competes for iron and fight with various smart molecular mechanisms,
such as siderophores [59], for iron. As such, cells undertake to take up, reserve, and accumulate
iron in themselves from dead cells or interstitium in higher species. Excess iron or iron overload
often occurs in such pathologic conditions. Iron excess is classified into the following categories:
(1) excess absorption via dysregulation (e.g., genetic hemochromatosis) or iron supplements, (2) chronic
infection, (3) non-infectious inflammation (e.g., exposure to a large amount of foreign body difficult to be
removed, such as asbestos), (4) increased cell death, including that of red blood cells (e.g., thalassemia,
sickle cell disease), (5) relative decrease or dysfunction in an iron scavenging mechanism (e.g., aging),
and (6) others, including repeated transfusion (Figure 2).

After briefly reviewing the molecular mechanisms associated with iron metabolisms, there are
three independent lines of evidence available for the association of excess iron and carcinogenesis,
(1) human observational data, either in specific diseases or in more broad population, (2) human
interventional data, and (3) animal experiments. Representative human findings in the two categories
are summarized in Table 1.
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Figure 2. Five different etiologies causing excess iron. Iron metabolism in mammals is a semi-closed
system, starting from the absorption at the duodenal epithelia but with no active excreting
pathway. Various pathologies, including hemolysis, inflammation, and aging, lead to excess iron.
HFE, a responsible gene for genetic hemochromatosis. RBC, red blood cells. RES, reticuloendothelial
system, including macrophages, histiocytes, dendritic cells, Kupffer cells, and microglia. Refer to text
for details.

Table 1. Representative human facts on the association of iron and carcinogenesis.

Observational Findings

Specific Diseases Cancer Etiology of Excess Iron References

Genetic
hemochromatosis Hepatocellular carcinoma, etc. iron sensor dysfunction [60]

β-Thalassemia Hepatocellular carcinoma transfusion and
HBV/HCV [61]

Viral hepatitis C Hepatocellular carcinoma low hepcidin [62,63]

Ovarian endometriosis Clear cell carcinoma, etc. monthly hemorrhage [64,65]

Asbestos exposure Malignant mesothelioma foreign body, adsorption [12,13,66]

Biomarkers of Iron Stores

Transferrin saturation Non-skin cancer HR = 1.68, 95% CI = 1.18
to 2.38, p < 0.01 [67]

Interventional Study

Phlebotomy (500 mL× 2
× 4.5 y) Visceral malignancy HR = 0.65, 95% CI = 0.43

to 0.97, p = 0.036 [68]

HBV, hepatitis B virus. HCV, hepatitis C virus. HR, hazard ratio. CI, confidence interval.
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2.4. Iron-Induced Renal Carcinogenesis and Oxygenomics

Animal models are precious in that the comparisons among the experimental groups are the
most precise due to the uniform genetic background (i.e., inbred strains) and living environment
than the humans reported as epidemiological studies. There has been a key question whether
Fe(II)-catalyzed the Fenton reaction of the repeated nature can induce carcinogenesis. The answer
is positive. This came from a finding shed light by serendipity. Though iron is an important metal,
the molecular understanding of iron metabolism required a long time and mostly started in the late 1990s.
In the 1970s, only the transferrin system was recognized [51], but there was no in vivo method known
to load iron to parenchymal cells of rodents. In those days, ferric nitrilotriacetate (Fe-NTA) was used to
load iron to unsaturated transferrin in biochemical experiments [69]. NTA is a metal chelator with a
structure of aminopolycarboxylic acid, solubilizing metals [70]. In the case of iron, both Fe(II)-NTA and
Fe(III)-NTA are catalytic at neutral pH [26,71,72]. Intraperitoneal repeated injection of Fe-NTA to rats,
for the first time, enabled iron loading to parenchymal cells (e.g., hepatocytes and β cells in Langerhans
islets), showing similar signs of genetic hemochromatosis [73]. Unexpectedly, a long observation of
this model revealed a high incidence (~90%) of renal cell carcinoma (RCC) with pulmonary metastasis
in rats in 1982, and, later in mice, in the Department of Pathology, Kyoto University Faculty of
Medicine [74–77].

At first, we could not imagine the responsible molecular mechanisms, but years later we found
necrosis of renal proximal tubules with iron-catalyzed lipid peroxidation as early as 30 min after a single
intraperitoneal injection of Fe-NTA [78–80]. Now, we sort out that this is ferroptosis vide infra [38,39,81],
and this model unequivocally demonstrated that repeated oxidative stress catalyzed by iron leads
to carcinogenesis in situ. This model contributed much to establishing oxidative stress markers,
such as 4-hydroxy-2-nonenal (HNE) [82–84], 8-oxoguanine (8-oxoGua) [85,86], and thymine-tyrosine
crosslinks [37,87].

We later revealed that genetic alterations in this rat renal carcinogenesis are similar to those
in human cancers in that the homozygous deletion of p16Ink4a/p15Ink4b tumor suppressor gene and
amplification of c-Met oncogene are frequently observed [88,89]. Hemiallelic loss of the p16Ink4

tumor suppressor gene is detected as early as three weeks after the start of Fe-NTA injections [90].
Furthermore, there are expressional and epigenetic alterations of substantial genes during carcinogenesis
and tumor progression, such as annexin 2, thioredoxin-binding protein 2 (vitamin D3 up-regulated
protein-1), and fibulin-5 [91–95]. Intriguingly, there is a marked difference between rats and mice
regarding this renal carcinogenesis [96]. Most strains of rats (e.g., Wistar, Fischer-344, Brown-Norway,
and Sprague-Dawley) provides a high incidence of renal cell carcinoma (RCC, 60–90%) whereas mice
reveal a strain-specific susceptibility (e.g., C57BL/6, <10%, A/Jackson, ~60%). Grade of malignancy is
also different. A half of RCCs metastasize to lung albeit wild-type animals in rats whereas a lower
grade RCC is usually generated in mice with a low incidence of chromosomal aberrations [76,97]
(Figure 3). Thus, our results on this RCC model confirm the fact that Rattus norvegicus are much closer
than Mus musculus to Homo sapience in the evolutionary phylogeny.

This RCC model also opened an avenue to understand the site specificity of oxidative genomic DNA
damage in the nucleus [98–101]. We have developed a technique, called DNA immunoprecipitation
for oxidative DNA base modification (e.g., 8-oxoGua), and showed that distribution of oxidative DNA
damage is not random but influenced not only by chemical species involved (e.g., •OH and HNE)
but also transcriptional activity, intranuclear localization (i.e., central or peripheral, near the nuclear
membrane with Lamin B1 association) [102,103] and, thus, the structural fluctuation cycle [103,104].
We named such a research area as “Oxygenomics [98]”. Mutyh (an enzyme to repair 8-oxoGua in the
genome)-deficient mice presented a higher incidence (26.7%) of RCC in comparison to wild-type mice
(7.1%) [97].
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Figure 3. Species differences in ferric nitrilotriacetate (Fe-NTA)-induced renal carcinogenesis in wild-type
rodents. Induction of an advanced renal cell carcinoma (RCC) with extensive pulmonary metastasis is
frequently observed in rats whereas smaller RCC without metastasis is obtained with a much lower
incidence in mice. (A) Macroscopic view of RCC with pulmonary metastasis and invasion in a male
wild-type Sprague-Dawley rat 1 y after 11 weeks of repeated intraperitoneal 5–10 mg iron/kg Fe-NTA
administration (3–5 times a week). Note primary RCC of 75 mm in diameter in the kidney and many
metastatic nodules of 1–2 mm on the surface of lung. K, kidney. Li, liver. Lu, lung. (B) Histology
of the primary RCC in the kidney. Proliferation of atypical glandular cells are observed in irregular
glandular or solid structure (Hematoxylin and eosin staining). (C) Histology of the metastatic RCC in
the lung. Similar adenocarcinoma to the primary site is invading the pulmonary alveolar structure.
(D) Macroscopic view of RCC in a male wild-type A/J mouse 10 months after 12 weeks of repeated
intraperitoneal 5–7 mg iron/kg Fe-NTA administration (6 times a week). Dose difference in the protocol
between rats and mice comes from the difference in sensitivity to Fe-NTA. K, kidney. (E) Histology
of the primary RCC in the kidney. Proliferation of atypical glandular cells are observed in irregular
glandular or solid structure. (F) Ki-67 immunostaining of the RCC with an index of 5% (bar = 100 µm
in B and C, 50 µm in E and F).

2.5. Nanofiber-Induced Mesothelial Carcinogenesis and Excess Iron

Another important rodent carcinogenesis model associated with excess iron is asbestos-induced
malignant mesothelioma (MM) [12]. This model also uses wild-type rats. Intraperitoneal injection of
only 10 mg of asbestos (i.e., chrysotile, crocidolite or amosite, which correspond to white, blue, and
brown asbestos, respectively) causes MM with an incidence of ~100% in two years [105]. Tremolite,
which is a minor asbestos, also induces MM in rats [106]. This is extremely fast in comparison
to human cases where 30~40 years of the latent period is usually after exposure to asbestos [66].
We believe that it is responsible that asbestos is directly exposed to mesothelial cells in our model
whereas asbestos should go through lung parenchyma and pierce the visceral mesothelium to reach
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the parietal mesothelial cells in humans [13]. The essence of this carcinogenesis is local iron excess
due to the affinity of asbestos to hemoglobin and phagocytic character of mesothelial cells [13,107,108].
Asbestos is a foreign material to our body, which is scavenged in situ through brave macrophages with
resultant massive iron accumulation, which may be at least partially responsible for the deletion of the
p16Ink4 tumor suppressor gene [109]. Iron deposition is responsible not only from the adsorbed iron on
the asbestos surface but also from the basic defense mechanism as inflammation to remove as much
iron as possible in the competing extracellular environments to suppress virtual microorganisms [110].
We have shown preclinically that iron removal, either by redox-inactive iron chelators (deferasirox [111]
and desferal [112]) or phlebotomy [113], is beneficial for the prevention of MM even after exposure
to asbestos.

Carcinogenicity of asbestos depends not only on its physical dimension but also bio-durability
as a fibrous mineral to reach pulmonary alveoli and further pleural cavity. Long (>20 µm) and
thin (<250 nm) asbestos fibers can disrupt macrophages, which exacerbates inflammation and iron
deposition [12,114]. Mth1 (an enzyme to sanitize cytosolic nucleotide pool to remove 8-oxoGua)
deficiency provided longer survival in asbestos-induced MM carcinogenesis, which meant that Mth1 is
advantageous in crocidolite-induced mesothelial carcinogenesis in mice [115].

Of note, similar phenomena of the association between iron excess and carcinogenesis were
reported on multiwalled carbon nanotubes (MWCNT) [116], which strictly depend on the diameter
of the MWCNT [117,118]. MWCNT, which is a fibrous synthetic product purely from carbon,
was discovered in 1991 [119], and is abundantly used to lengthen the lifetime of electric battery to
strengthen rubber with thermal/electric conductivity and to compose biomedical sensors as hybrid
composites with graphene [120]. MWCNT with a diameter of ~50 nm can cause MM when injected
intraperitoneally [117,121]. Of note, homozygous deletion of p16Ink4a/p15Ink4b tumor suppressor gene is
observed in almost all the cases of MM induced [117], which is the same for asbestos-induced MM.
All of these results indicate that p16Ink4a/p15Ink4b tumor suppressor gene is a major target in excess
iron-associated carcinogenesis [13,71,114,122]. Since the p16Ink4a/p15Ink4b tumor suppressor gene is the
second major mutated gene in human cancers only after TP53 [123], we believe that persistent use of
iron and oxygen is one of the major causes of human carcinogenesis.

2.6. Resistance to Ferroptosis

Light microscopy can differentiate apoptosis from necrosis morphologically. Apoptosis reveals
nuclear and cytoplasmic fragmentation through caspase activation with little inflammatory
responses [124] whereas necrosis generally shows cytoplasmic swelling with nuclear pyknosis and
inflammatory responses. This is still a golden rule at present [125]. Formerly, necrosis was defined as
an uncontrollable nature of passive cell death due to high levels of injury. Now, the concept of regulated
necrosis is established, where some form of necrosis requires signal activation (i.e., not passive) and
takes some time (i.e., mins to hours) for its execution [39].

Regulated cell death is currently divided into 12 different forms [125], among which ferroptosis
was coined in 2012 [126]. Ferro- indicates Fe(II) whereas -ptosis means falling off. Ferroptosis is
defined as a catalytic Fe(II)-dependent regulated necrosis accompanying lipid peroxidation [81].
Ferroptosis was first reported on the treatment of erastin (i.e., an inhibitor of cystine/glutamate
antiporter, SLC7A11) on N-Ras mutant fibrosarcoma cells during the drug screening for Ras-activated
cancers [126]. We immediately noticed that renal tubular necrosis induced by Fe-NTA [78,80,82]
as described above is ferroptosis [38]. As an intriguing coincidence, ferroptosis of renal proximal
tubules occurs after conditional knockout of glutathione peroxidase 4 (GPX4), which is the only
membrane-specific isozyme of glutathione peroxidase [127]. Currently, we interpret that this is a fight
between Fe and S and that a significantly higher Fe/S ratio than the control leads to ferroptosis [39].
Cancer cells require a high amount of iron to replicate DNA, proliferate, and invade. Therefore, they are
rich in catalytic Fe(II) [128,129]. Carcinogenesis is a process to obtain this resistance to ferroptosis as
shown in rodent RCC and MM models [30] (Figure 4).
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2.7. Cancer Prognosis and Iron Metabolism

We have, thus, far discussed the iron-induced carcinogenic mechanisms. Here, we would mention
the effects of iron deficiency or excess on the prognosis of cancer in humans. Several national surveys
were performed in the 1980s and 1990s in the US and Finland. For example, 3287 men and 5269 women
participated in the first national nutritional survey in which men and women were divided into
five groups, based on baseline transferrin saturation (<30%, 30–40%, 40–50%, 50–60%, 60%<). For men
and women combined, cancer risk for each group relative to the first was 1.0, 0.95, 1.16, 1.38, and 1.18
whereas mortality for each group was 1.0, 0.96, 1.22, 1.29, and 1.73 [130]. Other studies are summarized
in a previous review article [40]. Here, we summarized the recent representative data in Table 2.
Most of the data suggests that iron-rich status provides poorer prognosis in cancer patients.

Table 2. Representative human facts on the association of iron and cancer prognosis.

Biomarker for Poor Survival Cancer Facts Reference

Serum ferritin (≥150 ng/mL) mCRC HR = 1.68, 95% CI = 1.18 to 2.38,
p = 0.007 [131]

ibid. advanced NSCLC HR = 1.81, 95% CI = 1.24 to 2.64,
p = 0.002 [132]

ibid. (≥267 ng/mL) HCC after hepatectomy HR = 1.651, 95% CI = 1.213 to
2.247, p = 0.001 [133]

Transferrin receptor (CD71) Breast cancer independent prognostic marker
in ER+ cohort [134]

mCRC, metastatic colorectal cancer. NSCLC, non-small cell lung cancer. HCC, hepatocellular carcinoma.
ER, estrogen receptor.
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3. Association of Cutting-Edge Engineering and Cancer

3.1. Nanomaterials and Carcinogenesis

Nanomaterials are defined as a material that contains at least 50% of the particles (by number)
in the 1–100 nm range [135]. These materials are novel in that the dimension of the molecules generated
through new developments are as small as the levels of our own biomolecules persistently used in
our daily metabolism. It was socially meaningful to find that some of the fibrous nanomaterials
(i.e., multiwalled carbon nanotube [MWCNT] of 50 nm diameter) are carcinogenic in rodents,
causing MM after intraperitoneal administration (vide supra) [117].International Agency for Research
on Cancer, thereafter, designated MWCNT of 50-nm diameter as Group 2B (possible human carcinogen)
and other MWCNTs as Group 3 [136]. It was later reported that inhalation of MWCNT of a 50-nm
diameter causes lung carcinoma in rats [137].

This kind of information is precious to differentiate management of MWCNT of different
diameters toward safer work environments. MWCNT is already providing us with daily convenience
as a high-power battery for smart phones and highly durable rubber for car tires and excavators [120].
The robotics automation process in the factory and avoidance of carcinogenic MWCNTs are helpful
to decrease the carcinogenic risks for humans. We demonstrated in a 3-year rat study that MWCNT
of 15 nm (tangled form) is not carcinogenic by intraperitoneal injection [121]. Based on these results,
we believe that a subacute study by intraperitoneal injection with a four week observation predicts
the carcinogenicity of the bio-persistent fibrous material, such as asbestos and MWCNT [117,118].
Commercial chlorine bleach can degrade MWCNT to CO2 ex vivo, which would facilitate the disposal
of this nanomaterial [138].

Furthermore, it was recently reported that WS2 and MoS2 nanosheets (two-dimensional transition
metal dicharcogenides [139]) induces ferroptosis through surface vacancies in bronchial epithelial and
macrophage cells [140]. This is also an airborne risk and can be prevented by prior methanol treatment
to passivate active particle surfaces [139].

3.2. Nanomaterials for Cancer Treatment by Designing the Death Code

Conversely, nanomaterials may be able to specifically kill cancer cells if designed optimally
by exploring a structure-activity relationship (Figure 5). In this century, nanomaterials have been
recognized as emerging media for drug delivery and a number of clinical trials are in progress.
Currently, regulated cell death is classified into twelve and each has a fixed death code [125]. There is
a huge possibility that nanomaterials can initiate and modify death codes in which ferroptosis acquired
a high attention [141].

When we understand that carcinogenesis a process to establish “iron addiction with ferroptosis
resistance” [13,30], cancer cells are expectedly rich in catalytic Fe(II) [128,129] in the cytosol to
be easily utilized for enzymes toward unregulated endless proliferation, such as ribonucleotide
reductase (DNA synthesis), cytochrome oxidase (ATP synthesis), and catalase (antioxidant). Fe(II) [55],
Fe-S cluster [57], and heme [56] are important cofactors for these enzymes. Thus, this is the strategy to
induce ferroptosis by using nanomaterials specifically in cancer cells, but not in non-tumorous cells.
Most of the nanomaterials are actively taken up by cancer cells through endocytosis. This is an active
research area in material science, and various forms of iron-based nanomaterials are preclinically
proposed, including iron oxide nanoparticles (IONs) [142], lipid-hydroperoxide-tethered IONs [143],
assembled IONs [144], amorphous iron nanoparticles [145], iron-organic frameworks [146], and FePt
nanoparticles [147] in addition to small molecule chelators [148].
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3.3. Non-Thermal Plasma

Plasma is the fourth condition of a physical state, which presents the highest energy over gas
with ionization [149]. High-temperature plasma has been used from the 1960s for manufacturing
semiconductors. Development of modern electronics produced plasma of a near body temperature
(i.e., non-thermal plasma (NTP) or low-temperature plasma) [150–152]. Inert gas, such as Ar or He,
is used as flow supply with high voltage/electron density to generate various reactive species from
atmospheric O2 and N2, including •OH, H2O2, O2

−, and NO. Fine adjustment of the concentration of
each gas and humidity provides different fractions of each reactive species [150,153].

NTP was established as a novel method to load oxidative stress to the target coordinates [154].
In addition to direct exposure of NTP, plasma activated media and lactate (PAM [155–158] and PAL [159],
respectively) are under intensive investigation even though the responsible chemical species have
not been completely identified at present. NTP as preclinical experiments can be applied to multiple
medical and biological purposes [152], including: (1) disinfection of viruses and bacteria, (2) promotion
of wound healing, (3) specific killing of cancer cells [151,160,161], (4) removal of endometriotic
lesions [162,163], and (5) increasing yield of plants [164] and fish [165]. The final biological effects
depend on the relative strength of the oxidative stress loaded [37] (Figure 6).

Regarding the specific killing of cancer cells, abundance of catalytic Fe(II) in cancer is important for
the effects of NTP to cause the Fenton reaction eventually to ferroptosis [160,166]. Here, NTP-induced
ferritin degradation with a simultaneous reduction to Fe(II) may be important [167]. This strategy is
to attack the Achilles’ heel of cancer cells [39], which they obtained for their fundamental existence
through the evolutionary process as discussed ibid. The drawback of NTP is that it reaches only
a few mm in depth [154]. Thus, it would work for surface tumors in the situations of somatic cavity
(e.g., peritonitis carcinomatosa) or operational margins, where other modalities are not presently
easily applied.
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4. Conclusions

Animal models suggest that carcinogenesis can be a side effect of using iron and oxygen for
decades whereas there is a long list of carcinogenic agents. We may interpret that carcinogenic agents
in the lists are intensifying the side effects of iron and oxygen. Animal models contributed to establish
the concept of carcinogenesis as “iron addiction with ferroptosis-resistance”. Alternatively, there is
a huge possibility to specifically kill cancer cells by attacking this Achilles’ heel of cancer cells with
ultimate bioengineering.
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Abbreviations

Fe-NTA ferric nitrilotriacetate
GOE great oxidation event
GPX4 glutathione peroxidase 4
Gya billion years ago
HNE 4-hydroxy-2-nonenal
ION iron oxide nanoparticle
MM malignant mesothelioma
MWCNT multiwalled carbon nanotube
NTA nitrilotriacetate
NTP non-thermal plasma
8-oxoGua 8-oxoguanine
RCC renal cell carcinoma
SWCNT single walled carbon nanotube
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