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Simple Summary: Overexpression of the transmembrane protein, epidermal growth factor receptor
(EGFR), drives tumour progression in several cancers including breast, lung, glioblastoma and head
and neck cancers. In recent years, it has been shown that tumour cells can transfer EGFR to other
tumour cells and non-tumour cells using extracellular vesicles (EVs). EVs are nano-sized vesicles
secreted by cells and contain protein, RNA and DNA. The function of EVs is to send messages
between cells which occurs in both healthy and diseased states. In this review, we will discuss how
the transfer of EGFR and EGFR ligands by EVs in cancer can promote metastases, the formation
of new tumour blood vessels and decrease the anti-tumour activity of immune cells. We will also
discuss how EGFR contained in EVs can be used as a non-invasive diagnostic marker of cancer, and
finally, how EVs can be re-engineered to promote targeting to EGFR expressing tumours.

Abstract: The epidermal growth factor receptor (EGFR) pathway functions through the autocrine
or paracrine activation of cellular EGFR by a number of transmembrane ligands. Amplified or
mutant EGFR can lead to tumour formation due to increased cell proliferation, growth, migration
and survival signals. These oncogenic effects were thought to be confined to aberrant cells hosting
genetic alterations in EGFR. However, in the past decade, numerous studies identified that tumour
cells could harness extracellular vesicles (EVs) to disseminate EGFR, mutant EGFR, phosphorylated
EGFR and EGFR ligands to local and distant cells. This functions to impart a pro-tumourigenic
phenotype in recipient cells. EVs play an essential role in intracellular communication, through
receptor signalling or the release of their intra-vesicular content into recipient cells. This review
will discuss the role of EVs delivering EGFR or EGFR ligands either to or from tumour cells and
how this can promote metastases, pre-metastatic niche formation, osteoclastogenesis, angiogenesis
and immune modulation in cancer. We will examine how circulating EVs positive for EGFR may
be exploited as diagnostic, prognostic or therapeutic markers in cancers including breast, lung,
glioblastoma, ovarian and prostate. Finally, we will explore recent breakthroughs in bio-engineering
EVs with EGFR targeting abilities for targeted drug delivery.
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1. Introduction

Extracellular vesicles (EVs) represent a population of cellular delivery vehicles capable of
delivering complex messages through the cell-to-cell transfer of proteins, lipids and nucleic acids.
This EV population is comprised of different sub-types characterised by the mode of biogenesis,
size and cargo and includes apoptotic bodies, microvesicles and exosomes. The biogenesis, biology
and function of EVs have been reviewed extensively elsewhere [1–3]. However, in brief, EVs are
phospholipid bi-layer enclosed vesicles, ranging in diameter from 50 to 1000 nm that are produced
in the endosomal pathway or through budding from the plasma membrane. Through mechanisms
still not fully understood, whether selective or nonselective, EVs are loaded with cargo in the cell of
origin, are released through budding of the plasma membrane or apposition of the multivesicular
endosome to the plasma membrane. These secreted vesicles can then mediate cell–cell communication
with neighbouring or distant cells through receptor signalling or release of intra-vesicular cargo into
the recipient cell. This can be achieved through fusion between the EV and cellular membrane or
entry of the EV into the endosomal pathway via phagocytosis, macropinocytosis or clathrin-mediated
endocytosis [4].

Depending on the phenotype of the originating cell, this transfer of cargo may induce homeostatic
or pathological states by activation of different pathways in the recipient cell. For example, in cancer,
EVs originating from tumour cells have been shown to promote growth, metastases and drug resistance
in recipient tumour cells, enhance angiogenesis in recipient endothelial cells and alter the tumour
immune response in recipient immune cells [5].

The canonical EGFR pathway is one of the most studied cellular signalling pathways in the context
of tumour progression and targeted drug development. The EGFR pathway relies on activation of
the receptor by a ligand, subsequent dimerization and signal transduction. In the past decade, a new
paradigm has emerged, EV translocation of functionally active EGFR and EGFR ligands between
tumour cells and local and distant cells, imparting a quasi EGFR amplified phenotype upon the
recipient cell [6] (Figure 1). The effects of this new paradigm in EV EGFR signalling in cancer are
now evolving, and it is beginning to provide new insights into tumour microenvironment (TME)
communication and cancer progression.
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Figure 1. Tumour release of EVs containing EGFR monomers, phosphorylated EGFR (pEGFR),
EGFR ligands; epidermal growth factor (EGF), amphiregulin (AREG), epiregulin (EREG) and subsequent
uptake and transfer of cargo in recipient cell.

The proto-oncogene EGFR, also known as ErbB1 or Her1, is a member of the ErbB family of
receptor tyrosine kinases (RTK), which also includes ErbB2/Her2/Neu, ErbB3/Her3 and ErbB4/Her4 [7].
EGFR is a transmembrane protein capable of forming homodimers and heterodimers with other
members of the ErbB family. Several ligands including epidermal growth factor (EGF), transforming
growth factor-α, amphiregulin (AREG), epiregulin (EREG), betacellulin, heparin-binding EGF-like
growth factor, and epigen regulate the EGFR function. Its activation results in signal transduction
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through numerous pathways leading to the stimulation of cell proliferation, differentiation, growth,
migration and apoptosis inhibition [7]. Both EGFR mutations and amplifications are a driving force
behind many cancers including breast, non-small cell lung carcinoma (NSCLC), glioblastoma, head
and neck squamous cell carcinoma (HNSCC), ovarian and melanoma [8]. EGFR serves as a successful
diagnostic and prognostic tool. It is a target for tyrosine kinase inhibitors (TKI) and monoclonal
antibody therapies in cancer [8]. This review will detail the role of EVs as mediators in the EGF
receptor-ligand signalling pathway and its implications in cancer progression. We will examine the
prospects of utilizing EVs positive for EGFR as liquid biopsies in cancer, and finally, we explore recent
developments in bio-engineering EVs with EGFR targeting abilities.

2. EV Transfer of EGFR and EGFR Ligands Promotes Metastases

EVs can promote metastases in many cancers by imparting migratory abilities and promoting
epithelial to mesenchymal transition (EMT) in recipient cells. EVs can also play a role in pre-metastatic
niche formation [9]. A growing body of evidence suggests that metastases may be driven through
EV-mediated activation of the EGF receptor-ligand pathway, accomplished through tumour derived
EV dissemination of EGFR, AREG or EGF to local and distant cells (Figure 2). This EV transfer of EGFR
and EGFR ligands can occur in three different directions, from cancer cell to non-cancerous cell, cancer
cell to cancer cell and non-cancerous cell to cancer cell.
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Figure 2. Schematic representation of the transfer of epidermal growth factor receptor, epidermal
growth factor, amphiregulin or epiregulin from EVs to recipient cells of the immune system, tumour
microenvironment or cells at metastatic sites. This EV-meditated transfer of EGFR or EGFR ligands has
been shown to modulate the immune system, promote angiogenesis, metastasis and osteoclastogenesis
in cancer.

Several independent research groups have reported cancer to non-cancerous cell transfer of EGFR.
In a series of in vitro and in vivo experiments, Zhang et al. identified that tumour-derived EV EGFR
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activated liver hepatocyte growth factor (HGF) expression and release, through inhibition of mir-26 a/b
expression, which promoted liver gastric cancer metastases in mice with increased size and weight
compared to controls [6]. In vitro, EVs from SGC-7901 gastric cancer cells delivered GFP tagged EGFR
to non-cancerous primary mouse liver cells resulting in a 3-fold increase in both EGFR expression
and HGF secretion. This effect was reversed when EGFR was silenced in gastric cancer cell EVs.
Enhanced HGF secretion strongly promoted proliferation, migration and invasion of the gastric cancer
cells. These findings were replicated in vivo where mice livers were treated with HGF overexpressing
lentivirus or HGF short hairpin RNA before orthotropic implant of gastric cells. The authors backed
this research up with clinical data of gastric cancer patients, demonstrating upregulation of EGFR in
the primary tumour, in serum EVs and liver tissue compared to controls [6].

In chronic myelogenous leukaemia (CML), the transfer of AREG between CML cells and
non-cancerous stromal cells via EVs modulated the bone marrow microenvironment through EMT
promotion and increased cellular adhesion of CML cells to a stromal monolayer [10]. In this study,
EVs isolated from CML patients and LAMA84 CML cells were found to be enriched with AREG.
LAMA84 EVs induced the activation of EGFR in HS5 stromal cells, which was significantly reduced
with gefitinib co-treatment. The EMT marker SNAIL increased over 3-fold at the mRNA level,
and interleukin 8 (IL-8) and matrix metalloproteinase 9 (MMP9) increased approximately 2-fold and
3-fold, respectively, at the protein level in HS5 cells after CML EV treatment. This was subsequently
reduced with gefitinib and neutralizing anti-AREG antibody treatment. Similar effects were observed
in primary bone marrow stromal cells treated with CML EVs [10].

Cancer to non-cancerous cell transfer of EGFR was described in oral squamous cancer cells
(OSCC) in a study by Fujiwara et al. [11]. This study found that HSC-3 squamous carcinoma cell EVs
containing EGFR could increase vimentin protein levels and induce a spindle shape morphology while
decreasing E-cadherin levels in recipient RT7 cancer cells [11]. These EMT modulating effects were
further increased with the pre-treatment of OSCC cells with EGF. Cetuximab was reported to restore
vimentin levels and partially inhibit morphological changes [11]. In a subsequent publication, Fujiwara
et al. demonstrated OSCC cell secretion of cetuximab via EVs, in a dose-dependent manner [12].

Higginbotham et al. captured the EV transfer of non-cancerous cell cargo to cancer cells. EVs from
AREG overexpressing Madin-Darby canine kidney cells (MDCK) were found to rapidly enter human
MDA231-LM2-4175 breast cancer cells, mediated in part by EGFR binding. This increased their
invasiveness over 4-fold, in a Boyden cell chamber assay, compared to controls and recombinant
AREG treatment [13]. The invasive potential of the breast cancer cells was reduced by 50% when EVs
were treated with an anti-AREG neutralizing antibody. Similar results were obtained with human
MDA-BoM-1833 triple-negative breast cancer cells [13].

3. Tumour Derived EV AREG Drives Osteoclastogenesis

Osteolytic bone metastasis occurs in the later stages of many cancers, whereby the bone marrow
promotes metastatic growth through the interaction of metastatic cells with osteoclasts and osteoblasts
which promotes bone degradation. In turn, the release of extracellular matrix-bound growth factors in
the bone further supports the growth of the metastatic cells [14]. AREG containing tumour-derived
EVs have been reported to induce osteoclastogenesis in both lung cancer and multiple myeloma [15,16]
(Figure 2).

Taverna et al. found that an enrichment of AREG in CRL-2868 and A459 NSCLC cell-derived EVs
promotes macrophage and monocyte osteoclast differentiation [15]. CRL-2868 EVs were internalized
by micropinocytosis in RAW 264.7 murine macrophages inducing differentiation to mature osteoclasts,
phosphorylation of EGFR, increased receptor activator of nuclear factor kappa-B ligand (RANKL)
and MMP9 protein expression by 2.5-fold and 4-fold, respectively. Increased TRAP expression
was also confirmed by microscopy. A similar response was seen in primary human monocytes.
EVs with decreased AREG, AREG neutralizing antibody, and erlotinib treatment reverted the osteoclast
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differentiating effect of native EVs. These findings were further supported by the ex vivo osteoclast
differentiation of human primary monocytes with patient-derived NSCLC EVs through AREG [15].

The osteoclast differentiating effects of AREG-enriched EVs were further supported by a study by
Raimondo et al. in multiple myeloma [16]. In this study, AREG enriched MM1.S multiple myeloma
cell and multiple myeloma patient-derived bone marrow EVs promoted both RAW 246.7 and primary
human CD14+ cell osteoclast differentiation, through EGFR activation, a 1.5-fold increase in MM9
protein expression and an increase in TRAP staining. Furthermore, MM1.S EVs induced the activation
of EGFR, decreased the gene expression of osteoblast markers ALP, OCN and COL1 A1 by at least
2-fold and increased production and secretion of pro-osteoclastogenic cytokine IL-8 over 3-fold in
mesenchymal stromal cells. This osteoclast differentiating effect subsequently promoted the adhesion
of MM1.S cells to a mesenchymal stromal cell monolayer. These osteoclast differentiating effects were
reversed by AREG neutralizing antibody treatment [16].

4. Endothelial Cell Activation through EV Transfer of EGFR and EREG

EVs may contain many angiogenic factors including angiogenin, vascular endothelial growth
factor (VEGF), annexin A2, transforming growth factor-β (FGF-β) and basic fibroblast growth factor.
Tumour-derived EVs have been shown to promote angiogenesis in cancers such as myeloma, ovarian,
prostate, breast and glioblastoma [17]. Additionally, some evidence suggests that tumour-derived EVs
containing EGFR and EREG may also promote tumour angiogenesis (Figure 2).

Al-Nedawi et al. demonstrated the translocation of EGFR from A431 cells to human umbilical
vein endothelial cells and human microvascular endothelial cells via EVs in a dose-dependent
manner [18]. EV transfer of EGFR activated MAPK and Akt in endothelial cells, which was inhibited
by pre-treatment with annexin V, a pan-ERB kinase inhibitor and an anti-EGFR neutralizing antibody.
EV treatment increased VEGF secretion approximately 2-fold and increased the growth and viability of
the endothelial cells, which was reversed with the pre-treatment with annexin V and pan-ERB kinase
inhibitor. Daily injections of Diannexin, to inhibit EV communication, reduced tumour growth by 57%
and microvascular densities by 37% in A431 xenografts in SCID mice [18].

A study by Yang et al. described endothelial tubule formation in vitro mediated via EREG-enriched
EVs secreted by SACC-83 and SACC-LM salivary adenoid cystic carcinoma cells [19]. Overexpression
of EREG in EVs enhanced tubule formation in endothelial cells, which was reversed with siRNA
knockdown of EREG in EVs. Human pulmonary microvascular endothelial cells treated with SACC-83
EVs increased mRNA levels of VEGF-A, FGF-β and IL-8 approximately 1.5-fold, which was further
increased with overexpression of EREG in EVs. In vitro data was backed up by in vivo studies
demonstrating a 3-fold increase in the size of lung metastases, in NOD SCID mice after intravenous
injection of EREG-enriched EVs. CD146+ sorted endothelial cells from mice treated with EREG
expressing EVs had at least 3-fold higher levels of VEGF-A, FGF-β and IL-8 mRNA compared to mice
treated with native EVs [19].

5. Tumour-Derived EV EGFR Modulation of the Immune Response

Evidence is emerging that tumour-derived EVs can have an immune-modulating effect, mediated
through the EGFR, in both lung and breast cancer. In lung cancer, tumour-derived EVs carrying EGFR
decreased the IFN-β response in monocytes and macrophages and stimulated a dendritic cell-mediated
immunosuppressive tumour microenvironment [20–22]. In breast cancer, tumour-derived EVs
promoted monocyte survival, in a pro-inflammatory environment, through EGFR [23] (Figure 2).

Gao et al. found that EVs containing EGFR are increased in lung cancer patients and are inversely
correlated with circulating INF-β, a type 1 interferon with antiviral activity [20]. Co-culture of A549
EVs with human THP-1 monocytes and murine RAW264.7 macrophages dramatically increased
EGFR levels in these immune cells, suggesting translocation of tumour-derived EV EGFR. Lewis lung
cancer (LLC) xenograft model infected with vesicular stomatitis virus or HSV-1, had an approximately
2-fold reduction in serum IFN-β compared to non-inoculated mice. Doxycycline repression of EGFR
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expression in LLC tumours restored normal levels of circulating INF-β and suppressed viral titres.
This study also demonstrated that the suppression of INF-βproduction was the result of tumour-derived
EV EGFR activation of MEKK2 in the recipient macrophages [20].

A study by Huang et al. in 2013 documented the induction of dendritic cell (DCs) differentiation
to tolerogenic DCs mediated through lung cancer tumour-derived EVs carrying EGFR. EVs isolated
from tumour tissue of lung cancer patients and lung tissue from patients with chronic inflammation
were found to be 80% and 2% positive for EGFR staining, respectively [21]. Treating patient-derived
DCs with EVs from lung cancer patients induced the accumulation of indoleamine 2,3-dioxygenase
(IDO), a marker of tolerogenic DCs, in 80% of cells, compared to 65% of DCs treated with EVs from
lung cancer patients with chronic inflammation. This induction of IDO was mediated through PI3K
and abrogated with an EGFR neutralising antibody. IDO+ DCs converted CD4+ T cells to regulatory T
cells, which suppressed the anti-tumour functions of CD8+ T cells [21]. This study, published in the
early stages of EV research, does not provide any information on the size range or protein content
of isolated EVs and most importantly, no analysis was performed on possible non-EV contaminants
introduced during tissue homogenisation and subsequent EV isolation.

A 2020 study by Yu et al. also reported that EVs from EGFR mutant lung cancer cells could
control DCs to repress anti-tumour immunity development [22]. Firstly, they identified an increase
of CD8+ T cells in EGFR wild-type patient tumours compared to tumours harbouring the EGFR-19
del mutation. Mice with EGFR-19 del LLC cell tumours had lower numbers of CD8+ and CD4+ cells.
These mice also had different DC subtypes in their draining lymph nodes, that partially lost their ability
to stimulate proliferation of naive T cells, compared to mice with EGFR wild-type tumours. Inhibiting
EV release, reversed the effect of EGFR-19 del LLC cells immunosuppressive effect on DCs. In vitro,
EVs from EGFR-19 del LLC cells transferred EGFR-19 del mRNA and protein to DCs. Increased tumour
size, less necrosis and reduced numbers of CD8+ Ki67 + and CD4+ IFN-γ+ cells were observed in
mice injected with EGFR-19 del LLC EVs compared to wild-type EVs. Taken together, this evidence
suggests the EGFR-19 del lung cancer cells can transmit their EGFR phenotype to DCs, resulting in an
immunosuppressive tumour microenvironment [22].

Breast cancer cell EVs have been shown to promote monocyte survival through EGFR transfer and
subsequent activation of the MAPK pathway [23]. In this study, MCF-7 breast cancer cells enriched in
phosphorylated EGFR and HER2, cultured in a pro- (LPS + INF-γ) or conflicting- (LPS + INF-γ + IL-4)
inflammatory environment, released EVs that increased the survival and viability of primary human
monocytes. Knockdown of EGFR or HER2 in MCF-7 cell-derived EVs abrogated this EV-mediated
survival in primary monocytes. This was reported to be propagated through EGFR activation of ERK,
which lead to a decrease in caspase-8 activation in the primary monocytes [23].

6. EV Transfer of EGFRvIII Leads to Transformation of Cellular Phenotype

EGFRvIII is a constitutively activated mutant variant of EGFR that is found in glioblastoma
multiforme (GBM), breast cancer, NSCLC and HNSCC [24]. The EV transfer of EGFRvIII was first
demonstrated by Rak et al. in U373 glioma cells [25]. DNA vector-mediated EGFRvIII expression in
U373 cells (U373 vIII) resulted in the incorporation of EGFRvIII into their EVs. The transfer of GFP
tagged EGFRvIII to U373 cells via EVs was confirmed by fluorescence-activated cell sorting analysis.

This transfer resulted in a nearly 2-fold increase of Erk 1/2 phosphorylation in U373 cells compared
to treatment with native U373 EVs. Pre-treatment of U373 vIII EVs with a pan-ERB kinase inhibitor
and annexin V reversed this phosphorylation. Similar results were seen with Akt, PDK1 and Raf.
Additionally a 2 to 3-fold increase in VEGF production was identified in U373 cells exposed to EGFRvIII
containing EVs, which was subsequently reduced with a pan-ERB inhibitor. Evidence of cellular
phenotypic changes were apparent with an increase in spindle-like morphology and a 2-fold increase
in anchorage-independent colony formation of U373 cells treated with U373 vIII EVs [25].

In a subsequent study, Rak et al. showed that EGFRvIII expression in U373 cells alters the proteome
of U373-derived EVs [26]. Mass spectrometry of U373 and U373 vIII-derived EVs identified 1059
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proteins of which 4.2% were unique to U373 EVs and 9.2% to U373 vIII EVs. Gene ontology analysis
of significantly upregulated proteins in U373 vIII EVs revealed enrichment of proteins involved in
cellular adhesion, actin cytoskeleton regulation and extracellular-matrix-related proteins [26].

7. Activation of EGFR Through Exomeres Carrying AREG

Exomeres are a recently discovered subpopulation of EVs, they are non-membranous vesicles
approximately 35 nm in diameter and have a distinct proteomic cargo compared to exosomes [27].
Zhang et al. discovered that exomeres contain AREG that can activate the EGFR pathway in recipient
cells [28]. Exomeres isolated from MDCK cells by differential centrifugation were between 39–71
nm in size when measured by nanoparticle tracking analysis and <50 nm by transmission electron
microscopy. Exomeres from MDCK cells and AREG overexpressing MDCK cells both contained AREG
and transferred AREG to DiFi rectal carcinoma cells, resulting in phosphorylation of EGFR in the
recipient cells. AREG overexpressing MDCK exomeres were also found to increase the size and number
of colonic tumour organoids [28].

8. EV EGFR as a Potential Biomarker in Cancer

Circulating EVs have shown great promise as a non-invasive surrogate source of genetic and
phenotypic tumour information. Their use as diagnostic, prognostic and therapeutic marker has been
explored in many different cancers [29,30]. EGFR DNA, RNA and protein contained in tumour-derived
EVs are now being investigated as potential biomarkers for cancers including breast, glioblastoma,
lung, ovarian and prostate (Table 1).

Table 1. Liquid biopsies and EV EGFR.

Cancer EV Type Biomolecule EGFR Biomarker EV Source Isolation/Detection
Method Ref.

Breast Small EVs Protein WT Plasma DC; Immunosensor [31]

Glioblastoma EVs * RNA WT, EGFRvIII CSF DC; PCR [32]

Glioblastoma Small EVs RNA WT, EGFRvIII Plasma Total Exosome
Isolation Kit; PCR [33]

Glioblastoma Small EVs Protein WT Serum DC; Flow cytometry [34]

Glioblastoma Small EVs Protein WT, EGFRvIII Serum DC; Electrochemical
biosensor [35]

Lung Small EVs Protein WT Plasma Dielectrophoretic chip;
Immunofluorescence [36]

Lung EVs RNA T790 M Plasma NanoVilli Chip; PCR [37]

Lung EVs * DNA/RNA Ex19 del, T790 M Plasma ExoQuick; PCR [38]

Lung EVs * DNA WT, EGFR
mutation panel

Pleural
Effusions ExoQuick; PCR [39]

Lung EVs * DNA/RNA WT, EGFR
mutation panel Plasma Exolution; PCR [40]

Lung Medium EVs DNA WT, EGFR
mutation panel BALF DC; PCR [41]

Lung Medium EVs DNA WT, EGFR
mutation panel

Pleural
Effusions DC; PCR [42]

Ovarian Small EVs Protein WT Plasma DC; Microfluidic
device [43]

Prostate Small EVs Protein WT Plasma DC; ELISA [44]

Abbreviations: Small EVs = EVs <200 nm, Medium EVs = EVs <500 nm, EVs = EVs <1000 nm, WT = wild-type,
CSF = Cerebrospinal fluid, BALF = Bronchoalveolar lavage fluid, DC = Differential centrifugation, T790M =
threonine to methionine missense substitution at position 790 in exon 20 of EGFR, Ex19 del = in-frame deletion in
exon 19 of EGFR. * EV characterisation not performed to MISEV2018 guidelines; no information on EV size range.
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The use of a microfluidic electrochemical immunosensor successfully facilitated the detection
of EGFR protein in EVs [31]. EV proteins isolated from the plasma of 30 pre-operative breast cancer
patients and 20 healthy patients were introduced into the immunosensor followed by HRP-conjugated
anti-EGFR antibody. 4-tert-Butylcatechol mediated an enzymatic reaction, and the resulting current
was measured to give an indirect measurement of EGFR levels in the sample. EV EGFR levels were on
average over eight times higher in breast cancer patients compared to healthy patients. This assay
was 80% sensitive and 90% specific in the diagnosis of breast cancer. EV EGFR levels significantly
correlated with tumour EGFR levels, tumour size and Ki67 tumour expression, suggesting that this
microfluidic electrochemical immunosensor for EV EGFR may be useful in early diagnosis of breast
cancer patients [31].

Another approach to identify and quantify EGFR positive EVs utilises aldehyde beads and an
anti-EGFR antibody coupled with flow cytometry. Using this method, significantly higher levels of EV
EGFR were identified in 23 glioma patients compared to 12 healthy patients [34]. The evaluation of EV
EGFR levels in glioma patients was 86.96% sensitive and 83.7% specific in identifying patients with
glioma. EV EGFR levels positively correlated with tumour grade and with Ki67 tumour expression.
Surgical resection of the glioma dramatically decreased EV EGFR levels [34].

EV cargo presents an alternative source for EGFR genotyping. This is typically performed on cells
or cell blocks from pleural effusions in pulmonary adenocarcinoma with pleural effusion. Lee et al.
carried out a comparative study to determine if pleural effusion EVs would be a better source for EGFR
genotyping of a panel of 29 EGFR mutations [42]. Out of 32 EGFR TKI-naive patients, with known
EGFR tissue genotype, EV EGFR genotyping in pleural effusions correctly identified 19 EGFR mutant
cases. EV EGFR genotyping identified 3 additional EGFR mutants in the remaining 13 cases previously
identified as EGFR wild-type by tissue genotyping. T790 M genotyping of pleural effusion EVs in
18 patients, with acquired TKI resistance, was 100% in accordance with tissue T790 M status and
outperformed cell block genotyping which only identified three T790 M positive cases [42].

The listed studies were performed on a limited sample size ranging from 9 to 161 patients
(mean = 58). Before this research progresses to more extensive analytical and clinical validation studies,
a number of issues need to be addressed. Currently, there is little consensus on the appropriate EV
population to isolate, which EV isolation method to use and how pure this isolation needs to be.
In the 14 studies outlined in Table 1, 6 different methods of EV isolation were performed, isolating
differing EV populations with varying degrees of purity. Adequate EV characterisation also needs to be
performed, following the Minimal information for studies of extracellular vesicles 2018 (MISEV2018)
guidelines [45], to identify the population of EV and to identify potential non-EV contaminants
introduced during isolation. EV characterisation was not fully performed in 4 of the 16 studies outlined
in Table 1.

9. Bio-Engineering EVs to Enhance EGFR Targeting

EV based drug delivery systems have numerous benefits due to their physical properties, low
immunogenicity, biocompatibility and stability in circulation [46]. An ability to target tumours
specifically would add great value to this system. The EGFR is a driver behind some solid tumours
including lung, breast and glioblastoma and serves as a highly attractive target for bio-engineering
EVs with EGFR targeting abilities [47]. In this section, we will discuss the most exciting directions in
this field.

Kooijmans et al. engineered EVs with single-domain antibodies, or nanobodies, to target
EGFR expressing tumour cells [48] (Figure 3). These anti-EGFR nanobodies anchored to
glycosylphosphatidylinositol on the EV membrane were expressed by a vector transfected into
Neuro2 A mouse neuroblastoma cells. The bio-engineered EVs facilitated EGFR cell binding in
an EGFR-dependent manner that was replicated under flow conditions with a live-cell perfusion
experiment. Using this bio-engineering method, EVs loaded with therapeutic agents would have
enhanced tumour targeting abilities.
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Figure 3. Bio-engineering strategies to enhance EV targeting to EGFR expressed on tumour cells
include: (A) transfection of a donor cell with a plasmid containing anti-EGFR nanobody and
glycosylphosphatidylinositol (GPI) elements and (B) a plasmid containing GE11 peptide and platelet
derived growth factor receptor (PDGF) elements which would subsequently be packaged into the
donor cell derived EVs. (C) Native EVs bind to the C1C2 domain of a recombinant protein containing
an anti-EGFR nanobody through phospholipid phosphatidylserine (PS).

Furthermore, Kooijmans et al. improved EV targeting through EGFR by exploiting the properties
of phospholipid phosphatidylserine (PS) expressed on the external leaf of the EV membrane to plug
and play EVs with EGFR targeting abilities post isolation [49] (Figure 3). An anti-EGFR nanobody with
a C1C2 lactadherin domain was expressed and isolated from HEK293, human embryonic kidney cells,
and then incubated with red blood cell and Neuro2 A cell-derived EVs. These nanobodies exclusively
bound to PS on the EVs membrane and did not affect EV size or morphology. The uptake of the
bio-engineered EVs was measured in EGFR negative Neuro2 A cells and EGFR overexpressing A431
cells. Compared to native EVs, no uptake was seen in Neuro2 A cells, whereas significant uptake was
seen in A431 cells [49].

Ohno et al. engineered HEK293 EVs to express the transmembrane domain of platelet-derived
growth factor receptor with the EGFR targeting peptide ligand GE11 [50] (Figure 3). The degree of
GE11 EV binding reflected EGFR expression in a panel of cells and did not alter their proliferation.
These bio-engineered EVs were loaded with tumour suppressor miRNA, let-7a, by lipofection and
injected into mice bearing luciferase-expressing HCC70 cell tumours. Three times more GE11 EVs
containing let-7a were detected in the cell tumour, suggesting EV targeting to tumour expressed EGFR,
which significantly suppressed tumour growth compared to control EVs [50].

In EV-derived therapeutics, bio-engineering EVs with enhanced tumour targeting abilities to
deliver EV bound therapeutic agents, has been the main focus. Xie et al. have inverted this paradigm
by proposing and developing a method to target, bind to and remove tumour-derived EVs expressing
EGFR from circulation through hepatobiliary and intestinal excretion [51]. This could, in theory, reduce
or minimize the oncogenic role of EVs in cancer. In this study, mesoporous silica nanoparticles (MSN)
were functionalised with EGFR targeting aptamers (MSN-AP) to recognise and bind to A549 lung
cancer cell-derived EVs in both static and rocking flow conditions. A549 EVs with high EGFR levels
and control EVs with low EGFR levels were injected into the portal vein of mice followed by local
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injection of MSN-AP. These nanoparticles significantly enhanced A549 EV levels in the duodenum
compared to controls, suggesting that MSN-AP could bind to EGFR EVs and tow them across the
intestinal wall into the duodenum for excretion. MSN-AP with EV EGFR targeting ability inhibited
lung-specific metastases and eliminated oncogenic EVs from mice bearing A549 cell tumours [51].

10. Conclusions

Over the last decade, it has become clear that tumour cells can appropriate EV communication to
bombard cells of the TME, distant cells and other tumour cells with complex heterogenic messages
to promote cancer progression. Decoding these complex messages has identified EGFR and EGFR
ligands as essential mediators in this process.

It appears that tumour cells use EVs as a mechanism to transfer EGFR across a gradient, from
cells with high EGFR to cells with lower EGFR expression. This was demonstrated in a number of
studies, whereby we see the transfer of EGFR from lung cancer cells to endothelial cells, dendritic cells,
macrophages and monocytes, activating pro-tumourigenic pathways in these low EGFR expressing
recipient cells.

EGFR ligands normally function as autocrine or paracrine activators of EGFR; however, by
packaging EVs with EGFR ligands, tumours have found a mechanism to extend the functional distance
these ligands can act upon and possibly to target specific cells with larger concentrations of EGFR
ligands. This was partly demonstrated by Yang et al., where EREG overexpressing EVs intravenously
introduced into mice significantly increased the number of lung metastases of SACC cells [19].

An important question that remains unanswered, is do tumour cells know what cargo they are
loading into EVs? If the answer is yes, then there is likely to be a molecular mechanism that actively
sorts specific cargo like EGFR, AREG and EGF into EVs and a mechanism that actively prevents loading
of other cargo. If we can answer this question, then developing a therapy to prevent tumours from
loading EVs with pro-oncogenic cargo will become a distinct possibility.

EVs offer a proverbial treasure chest of tumour information that is non-invasive and easily
accessible from many biological sources including serum, plasma, CSF, BALF and pleural effusions.
EV EGFR is now being explored as an alternative diagnostic and prognostic marker to tissue EGFR
in cancers including breast, lung, glioblastoma, ovarian and prostate (Table 1). This has numerous
advantages; it is non-invasive; it may allow for real-time monitoring of response to treatment and EVs
may contain other biomarkers to assist in prognosis, and treatment stratification.

This mechanism of cancer cell signalling represents a new opportunity in cancer research to
understand better how tumours communicate with the tumour microenvironment and distant cells.
It provides an opportunity to develop better diagnostic and prognostic tools, to create new treatments
to circumvent the growing problem of treatment resistance and to create a new method of more
effectively delivering cancer therapies to the tumour site.
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