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Simple Summary: Papillary thyroid carcinoma (PTC) represents 80–90% of all differentiated 

thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence clinical 

and biological behavior in both children and adults. In this review, we focus on the comparison 

between pediatric and adult PTC, highlighting genetic alterations, telomere-related genomic 

instability and changes in nuclear organization as novel biomarkers for thyroid cancers. 

Abstract: Thyroid cancer is a rare malignancy in the pediatric population that is highly associated 

with disease aggressiveness and advanced disease stages when compared to adult population. The 

biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could 

be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical 

assessment and treatments used in pediatric thyroid cancer are the same as those implemented for 

adults and specific personalized target treatments are not used in clinical practice. In this review, 

we focus on papillary thyroid carcinoma (PTC), which represents 80–90% of all differentiated 

thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the 

histologic subtypes in both children and adults. This review also highlights telomere-related 

genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers. 

Keywords: Papillary thyroid carcinoma; BRAFV600E; pediatric; nuclear architecture; RET/PTC; AGK-

BRAF; genomic instability 

 

1. Introduction 

Thyroid carcinoma is the most common malignancy of the endocrine system in adult and 

pediatric populations. In adults, this type of cancer is increasing dramatically in both men and 

women, with an average annual percentage change of 5.4% and 6.5%, respectively. It is projected to 

take the place of colon cancer and become the fourth leading cancer diagnosis in both sexes (second 

for women) by 2030 [1,2]. Thyroid cancer presents with relatively stable mortality, but it has been 

increasing globally since the 1970s [3–18]. It is estimated that by the end of the year 2020, thyroid 
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cancer will claim the lives of 2180 of the 52,890 new projected cases, corresponding to 0.4% of all 

cancer related deaths and 2.9% of new cancers throughout the world, respectively [19]. 

In the pediatric population (≤18 y.o. at diagnosis), thyroid cancer corresponds to 6% of all 

pediatric cancers (2012–2016 data) [20,21]. Even though there is no indication of ethnic or race 

susceptibility in pediatric thyroid cancer, there has been a prevalence related to increasing age range, 

i.e., ages 5–9, 10–14, and 15–19 showing a prevalence of 10,000, 80,000, and 310,000, respectively [19]. 

Considering gender, the prevalence is observed above age 10, and females are the most affected (more 

precisely between ages 13 and 19) [22–24]. Overall, among adolescents (ages 15–19), thyroid 

carcinoma is the eighth most diagnosed cancer [25,26]. 

Differentiated thyroid carcinoma (DTC) originates in the follicular cells of the thyroid and is the 

most common type (80–90%) of thyroid malignancy [27]. DTC is classified into follicular thyroid 

carcinoma (FTC) and papillary thyroid carcinoma (PTC). This classification relies on histological 

differences and the different metastatic dissemination routes between the two subtypes. FTC 

accounts for 10% of all DTC and is characterized by the presence of small follicles and the absence of 

ground-glass nuclei (characteristic of PTC). PTC encompasses the remaining 80–90% of all DTC and 

is characterized mainly by the presence of cells arranged into papillae, presenting clear or ground-

glass nuclei. PTC is further subdivided based on histological variants, such as the classic (CVPTC), 

follicular (FVPTC), solid (SVPTC), and diffuse sclerosing (DSVPTC) variants. Among these variants, 

children under the age of 10 seem to be unaffected by the most common type, CVPTC, found in adults 

[26]. 

Oddly enough, regardless of studies suggesting that clinical presentation, pathophysiology, and 

long-term outcomes diverge between pediatric and adult populations, clinical assessment and 

treatment recommendations used in pediatric thyroid cancer are the same as those implemented for 

adults [21,28–37]. Looking closely, PTC differences in these populations could be explained by the 

distinct genetic alterations observed in the PTC of adults and children. 

In this review, we will discuss aspects of the PTC histotype in adults and children, with a focus 

on differences in genetic alterations, telomere-related genomic instability, and nuclear architecture. 

2. Epidemiology and Pathogenesis 

According to the Surveillance, Epidemiology, and End Results (SEER) database, the incidence 

of PTC in adults increased between 2000 and 2017, from 7.9 to 16.9 per 100,000, compared to 0.6 to 

1.0 per 100,000 in the pediatric group (Figure 1, bottom lines) [19]. Remarkably, as represented in 

Figure 1, PTC in adults occurs more commonly in women at aged 50–59 (37.3 × 100,000) and to a 

lower rate (17.3 × 100,000) in men, for whom the peak of incidence occurs at ages 65–69. Looking at 

the pediatric population, this difference in gender starts just above age 10, i.e., 0.3 per 100,000 for boys 

and 1.2 per 100,000 for girls (ages 10–14), with increasing distinction above age 15, where the 

incidence increases to 0.9 per 100,000 for boys vs. 5.3 per 100,000 for girls (ages 15–19) (Figure 1) [19]. 

The reasons associated with this progressive trend are controversial. Several authors propose 

that the increase in cases is due to better diagnosis, since this tendency coincides with the increased 

use of high resolution imaging techniques [3,8,38–40]. Others suggest that the reason is multifactorial 

and is related to environmental and lifestyle factors. Diet, obesity, smoking, drinking, sex hormones, 

iodine deficiency, and a history of benign nodules in the family may contribute to the increased PTC 

incidence [41–44]. 

In the pediatric population, the only consolidated risk factor is the exposure to radiation in 

childhood, either environmental or as part of radiotherapy for a prior malignancy or treatment for 

another benign condition [45,46]. In fact, several studies have demonstrated a much greater 

sensitivity to radiation in children compared with adults. In the past 60 years, the incidence of 

pediatric cases peaked twice. The first peak occurred in the 1950s, due to the use of external 

irradiation of the head and neck to treat children with various benign non-thyroid disorders such as 

the enlargement of the thymus, tinea capitis, adenoids or neck lymph nodes, acne, eczema, otitis, and 

others [45–47]. The use of external radiation therapy on the neck essentially ended in the early 1960s, 

when a cause–effect relationship between radiation exposure and PTC was established [45–47]. 
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However, radiation is still used in clinical practice to treat different types of cancers. Radiation-

induced malignancies, such as thyroid cancer, are late complications of radiotherapy treatment, with 

increased frequency among survivors of both pediatric and adult cancers [48]. 

 

Figure 1. Epidemiologic data from the Surveillance, Epidemiology, and End Results (SEER) database 

(2000–2017) [19] comparing the rates of pediatric and adult papillary thyroid carcinoma (PTC) 

according to age, gender, and year. This figure was created using images from Servier Medical Art 

(http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons 

Attribution 3.0 Unported License. 

Although there was a sharp increase in the incidence of childhood thyroid cancer in the Minsk 

and Kiev centers 4–5 years after the explosion of the Chernobyl Nuclear Power Plant reactors in 1986, 

the second peak of incidence occurred just 10 years after the accident in some Eastern European 

countries. The high-risk group comprised children under the age of four at the time of exposure. 

Consequently, in this second peak, the majority of clinically evident tumors were present in children 

~10–14 years old [22,24,26]. Regarding the Fukushima Daiichi nuclear disaster (March 2011), it is still 

unclear whether the radiation released after the nuclear accident could be considered the cause of a 

“third peak” of thyroid cancer incidence in the pediatric group, or if a potential peak is just an 

artefactual result of the intense screening of this population. The adverse effects of the Fukushima 

accident might have been partially mitigated by the measures taken, i.e., evacuation from most of the 

contaminated areas and the recommendation of a low iodine alimentary intake and food restrictions, 

which could have reduced the uptake of iodine-131. With an average radiation dose of < 1 mSv for 

the majority of Fukushima residents and a maximum of 30 mSv in few cases from evacuated sites 

near to the Fukushima Nuclear Power Plant, the first round of thyroid ultrasound screening, 

performed in all affected children under age 18, showed no clear evidence of a thyroid cancer increase 

due to radiation exposure [49]. Other studies have found a significant dose–response relationship 

between the rate of thyroid cancer detection and the external effective dose-rate in both the first and 

second rounds of the thyroid ultrasound screening [50,51]. The third and the fourth rounds of 

examinations are still in progress and further data may bring more light into this issue. Interestingly, 

as discussed in the next section, the pathological findings observed in the Fukushima PTC cases are 

similar to the pediatric cases found in non-exposed areas and to the mutational profile reported in 

adult PTC [52,53]. 
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3. Clinical Features, Prognosis, and Treatment 

The differences in clinical presentation and outcomes between pediatric and adult PTC are 

significant [54–56]. Compared to those of adults, pediatric thyroid cancers usually present with more 

advanced disease. Though the recurrence rates are higher than in adults, pediatric PTC has a better 

long-term outcome, with minimal or no mortality in most cases [54,57,58]. Pediatric PTC typically 

manifests as a palpable thyroid nodule/tumor, with or without cervical lymphadenopathy [59]. 

Although rare in children and adolescents, the presence of nodules in pediatric patients is clinically 

important. Thyroid nodules are associated with increased malignancy compared to adults (26% vs. 

5%) [60,61]. Additionally, the mean tumor size is typically larger in pediatric patients. Hay et al. (2018) 

studied 190 children and 4242 adults consecutively treated during 1936–2015. They described a mean 

tumor size of 2.56 cm (median = 2.15 cm) in children vs. 1.94 cm (median = 1.5 cm) in adult patients 

[56]. Papillary thyroid microcarcinoma (≤1 cm) accounts for ~40% of tumors in adults [62] and 

represents < 10% of pediatric PTC [63]. This difference is probably due to the common practice of 

thyroid cancer screening in adults and the early detection of smaller tumors [64]. 

Furthermore, when compared to adults, childhood thyroid carcinomas are more frequently 

locally invasive. The metastatic involvement of regional lymph nodes at diagnosis was reported in 

~50–75% of pediatric cases (Table 1) [55,56,65,66], compared to ~20–40% in adult PTC [56,66]. With 

respect to distant metastasis, data available from the literature also demonstrate a high frequency in 

pediatric vs. adult PTC patients [56]. The lungs are the most common site of distant metastases in all 

age groups, occurring in ~5–16% of pediatric PTC (Table 1) and in 2–4% of adults [54–56]. Liu et al. 

(2019) investigated the occurrence of factors influencing distant metastasis in pediatric thyroid cancer 

and identified the age at diagnosis as an important factor, with distant metastasis occurring in 1.73% 

of patients aged 15 and above, and in 6.73% of patients under the age of 15 [67]. 

Table 1. Clinical pathological features of pediatric PTC. 

Reference n 
Distant 

Met. (%) 

LN 

Met. 

(%) 

Mean 

Age 

(y.o.) 

Gender 

F:M 

Mean 

size 

(cm) 

Mean Follow-

up (years) 

% 

NED 
Mortality 

Zimmerman et 

al. [29] 
58 6.9 89.7 < 17 2.2: 1 3.1 26.7 52 14%* 

Dottorini et al. 

[68] 
85 18.8 60 14.7 2.86: 1 X 9.25 63.5 0 

Kuo et al. [69] 77 18 6.4 12.9 3.3: 1 6.93 8.2 89.6 0 

Vaisman et al. 

[70] 
65 29.2 61.5 14 3: 1 2.99 12.6 50.8 0 

Fridman et al. 

[71] 
94 20 66 15.1 3: 1 1.2 4.2 97 0 

Pires et al. [72] 118 26.9 67.3 13.3 2.6: 1 2.5 8 63.5 0 

Cordioli et al. 

[73] 
38 26.3 73.7 11.8 3.2: 1 2.6 7.8 54.1 0 

Poyrazoğlu et 

al. [74] 
75 13.3 45.3 12.4 2.1: 1 2.2 4.3 65.3 1 patient 

Hampson et al. 

[75] 
62 19.3 46.7 13.8 2.5: 1 2.3 3.6 59.6 

Not 

reported 

Galuppini et al. 

[76] 
59 20.8 51 14.4 2.7: 1 2.0 5.9 66.7 

Not 

reported 

Mets, metastasis; LN, lymph node; NED, no evidence of disease; * all > 15 y.o. 

Despite the higher rate of disease recurrence when compared to adults, overall survival is higher 

in pediatric PTC [29,77]. Mazzaferri et al. (2001) [78], in a series of 16.6 years’ follow-up, found a 

disease recurrence rate of ~40% in patients under the age of 20 and ~20% in patients above the age of 

20. Additionally, Demidchik et al. (2006) [79], with a cohort of 741 patients, found a survival rate of 

99.3% at age 5 and 98.5% at age 10. Lazar et al. (2009) [80] demonstrated that patients under the age 

of 10, mainly pre-pubertal patients, presented a worse prognosis than older ones or those in more 

advanced puberty stages. It seems that large tumors (>2 cm), extra-thyroidal extension, and younger 

age are factors associated with worse prognosis. However, the ideal cut-off for age and pubertal 
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status awaits future investigation. The same is true for gender, which two studies showed to be an 

important prognostic factor [70,72], whereas another study showed no significance [67]. 

PTC treatment is based on the combination of three therapeutic modalities: surgery, radioiodine 

therapy, and hormone replacement with levothyroxine. Surgery can range from lobectomy to total 

thyroidectomy, accompanied by cervical lymphadenectomy. The extent of thyroid surgery for adult 

PTC patients has shifted in a more conservative direction in most recent guidelines [30]. Since then, 

lobectomy has been an acceptable surgical treatment for low-risk tumors without extrathyroidal 

extension or clinical lymph node metastases. However, the American Thyroid Association (ATA) 

management guidelines for children with PTC recommend total thyroidectomy for the majority of 

children [21,30]. The rationale for this approach is based on an increased incidence of bilateral and 

multi-focal disease in pediatric patients. It consists of the dissection of the central cervical 

compartment, with the removal of lymph nodes and adjacent tissues suspected to present metastasis. 

Modified lateral cervical dissection is indicated in cases of metastasis to lateral lymph nodes. The 

main surgical complications include persistent hypoparathyroidism and injury to the recurrent 

laryngeal nerve, which can cause hoarseness to complete closure of the vocal cords, requiring a 

definitive tracheostomy [81,82]. Fridman et al. (2019) [83] have reported a number of complications 

of thyroid surgery in childhood PTC. However, they concluded that prophylactic neck dissections 

should be recommended in children and adolescents due to the high rates of node metastases. On the 

other hand, to avoid surgical morbidity, Francis et al. (2015) [21] proposed that surgery for pediatric 

patients should take into account the risk stratification variables, in which patients are divided into a 

low, intermediate, and high risk of recurrence. 

After total or almost total thyroidectomy, the volume of the remaining gland must be <2 mL at 

cervical ultrasound, performed up to 1 month after surgery [77,84]. Interestingly, even after total 

thyroid removal, with no thyroid detected by ultrasound, radioiodine (RAI) uptake in the thyroid 

bed occurs [85]. This phenomenon is usually attributed to remaining thyroid cells. However, since 

multifocality and metastasis are more common in the pediatric age group, the possibility that such 

foci still have malignant cells cannot be ruled out. Despite this, most societies recommend the ablation 

of reminiscent tissue in the majority of pediatric patients [21]. The pediatric recommendations 

regarding indications for RAI are still controversial. The National Comprehensive Cancer Network 

for adults suggests clinical features including tumor size >2–4 cm, gross extrathyroidal extension, and 

extensive regional nodal involvement as indicators for adjuvant RAI [86]. The guidelines for children 

recommend an individualized approach using post-operative thyroid-stimulating hormone (TSH)-

stimulated thyroglobulin levels to determine who should receive adjuvant RAI [21]. There is no 

consensus in the calculation of the appropriate dose of iodine-131 (131I) for pediatric patients, since 

both body weight and body surface area methods are used. Whole body 131I dosimetry can also be 

used in patients with extensive metastases [87]. The success rate of ablation is significantly lower in 

patients who have undergone less extensive surgery, whether they are children or adults [22,78,84]. 

Successful ablation is usually defined as the absence of uptake or uptake of less than 0.1–1%, as 

detected by means of a total body scintigraphy performed 6–12 months after the procedure [85,88,89], 

accompanied by markedly decreased or undetectable serum thyroglobulin, and suboptimal TSH 

stimulus, all happening at the same time [77,78,88]. In most cases, one dose of radiodine therapy is 

able to achieve these goals [85], if not, the procedure may be repeated no earlier than 12 months after 

the first attempt [88,89]. The ablation should also be followed by a total body scintigraphy (post-

therapeutic whole-body scan), performed ~5–7 days after the administration of the radioiodine, in 

order to detect or confirm the presence of functional metastases. 

Lastly, thyroid hormone replacement, the third treatment modality, involves the oral use of 

levothyroxine. This modality is called suppressive therapy with thyroid hormone when a 

supraphysiological dose is used in order to keep serum TSH levels below the lower reference limit, 

reducing the risk of TSH-induced tumor growth or proliferation [90]. In children and adolescents, 

there are several studies guaranteeing the effectiveness and safety of this type of replacement, as long 

as it is carefully controlled, particularly regarding the patient’s final height [66,77,91]. The actual 

recommendation is to keep TSH suppressed as needed [21]. Possible side effects of long-term 
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suppressive therapy, documented in adults, include osteoporosis [82] and cardiovascular diseases, 

especially left ventricular hypertrophy [92,93]. Regarding fertility, some studies suggest that 

radioiodine may affect testicular and ovarian function, at least temporarily [94–96]. 

4. Molecular Features 

Different molecular markers of diagnosis, prognosis, treatment, and follow-up have been 

identified in PTC [97,98]. In adults, the most common genetic alterations are BRAFV600E and RAS point 

mutations and RET/PTC fusions (Table 2) [99,100]. Moreover, hTERT promoter mutations were 

observed in adult PTC and are associated with a more aggressive phenotype [101]. 

In 2014, The Cancer Genome Atlas (TCGA) performed an analysis of nearly 500 PTCs from adult 

patients [100]. It not only confirmed the presence of BRAFV600E (59.7%) and RAS (13%) mutations and 

RET (6.3%) fusion in most PTCs, but also revealed new driver genes such as EIF1AX (1.5%), PPM1D 

(1.2%), and CHEK2 (1.2%) [100]. Based on gene expression profiles, PTC was further divided in two 

highly distinct classes that display distinctive differentiation and signaling properties: BRAFV600E-like 

and RAS-like PTCs. BRAFV600E-like tumors are predominantly characterized by BRAFV600E mutations 

and BRAF, RET, and NTRK1/3 fusions and show preeminent activation of the mitogen activated 

protein kinase (MAPK) signaling pathway. RAS-like tumors are predominantly characterized by 

H/N/K-RAS, EIF1AX, and BRAFK601E point mutations and PPARG fusions and are activated by both 

the MAPK and PI3K/AKT signaling pathways. Even though the two groups are highly correlated, 

they were derived independently and have no genes in common [100]. 

Table 2. Most prevalent genetic alterations described in adult and pediatric PTC. 

Genetic 

Alterations 
Adult PTC 

Pediatric PTC 

Sporadic Post-Chernobyl 
Post-

Fukushima 

BRAFV600E 
27–83% 

[100,102–108] 

0–63% 

[109–123] 

0–17% 

[26,117,124,125] 

70% 

[52,126] 

AKAP9-BRAF 

fusion 

1% 

[100,124] 

0–1% 

[115,117,124,125] 

0–11% 

[117,124,125] 

0% 

[52] 

AGK-BRAF fusion 
0–0.2% 

[100,117,127,128] 

0–19% 

[115,117,119,121,129–131] 

0–4% 

[117,125,127] 
ND 

Novel BRAF 

fusions 

2% 

[100] 

0–4% 

[123,131] 

10% 

[125] 
ND 

RET/PTC1–3 

fusions 

5–70% 

[100,105,132,133] 

0–37% 

[26,87,115,134] 

27–77% 

[87,125,133,135–138] 

6.5% 

[126] 

Other RET fusions 
1–7% 

[100,133] 

2–7% 

[115,131] 

0–6% 

[125,139–144] 

3% 

[126] 

ETV6-NTRK3 

fusion 

1–5% 

[100,127,145] 

0–18% 

[115,117,120,127,131,146] 

6–14.5% 

[125,146,147] 

5% 

[126] 

Other NTRK 

fusions 
1% [100] 

2–4% 

[115,131] 

3% 

[125] 

1.4% 

[126] 

STRN-ALK fusion 
0–7% 

[100,127,148] 

0–6.5% 

[123,131,148] 

1.4–7% 

[125,126,139] 

1.4% 

[126] 

PAX8-PPARγ 

fusion 

0–5% 

[100,149–152] 

0–9% 

[113,119,122,123,129] 

4% 

[117] 
ND 

RAS mutations 
1–20% 

[100,105,108,153] 

0–7% 

[111,113,119,120,123,134] 

0–9% 

[26,125] 

0% 

[52] 

TERT promoter 

mutation (C250T, 

C228T) 

2–82% 

[100,108,154–157] 

0–4% 

[115,131,134,158–160] 
ND 

0% 

[52] 

ND, non-determined. 

On the other hand, in pediatric PTC, there is higher incidence of RET/PTC, ETV6-NTRK3 and 

BRAF fusions (AGK-BRAF and AKAP9-BRAF), mainly in patients under the age of 10. BRAFV600E 
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mutation is less common, and RAS and hTERT promoter mutations are rarely found in the pediatric 

population (Table 2) [117,120,121,124,161]. Indeed, studies show that nearly 50% of pediatric tumors 

harbor some type of rearrangement, regardless of the radiation exposure [120,134]. As pediatric PTC 

exhibits a distinct genetic background, it is not usually classified into BRAFV600E-like and RAS-like 

nodules (Table 2). 

It is important to note that most studies performed in both pediatric and adult PTC reported in 

this review investigated the molecular features of thyroid cancer before the nomenclature revision of 

an encapsulated follicular variant of PTC subset in 2016 as non-invasive follicular thyroid neoplasm 

with papillary-like nuclear features (NIFTP) [162]. Therefore, this new entity was considered as a 

PTC. The exclusion of these tumors from the molecular studies of thyroid cancer would certainly 

change the prevalence of genetic events described in thyroid cancer, both adult and pediatric, since 

the mutational profile of NIFTP is still unidentified but resembles that of follicular thyroid adenoma 

(FTA), with RAS mutations and PAX8-PPARγ fusion [152,163]. 

4.1. BRAF Alterations 

The B-Raf (BRAF) gene is a member of the Raf family of serine/threonine protein kinases located 

in 7q34 [103]. In PTC from the adult population, the most prevalent mutation is found within exon 

15 of the BRAF gene. The thymine to adenine transversion at nucleotide position 1799 (T1799A), 

which results in a valine to glutamate substitution at residue 600 (V600E), occurs in about 27–83% of 

PTC cases (Table 2) [100,102–107]. The BRAF K601E point mutation, which display lower oncogenic 

activity than BRAFV600E in vitro, is more frequently associated with FVPTC [164]. In the adult 

population, fusions involving the BRAF gene with different partners were found in nearly 2.3% of 

PTC samples from TCGA study group, being AGK-BRAF found in 1 (0.2%) PTC sample [100]. 

In the pediatric population, BRAFV600E is rarely found in radiation-exposed PTC samples (Table 

2). However, in the post-Fukushima PTC samples, BRAFV600E was detected in ~70% of the tumors 

[52,126]. In sporadic pediatric PTC, BRAFV600E mutations have been found at different frequencies, 

varying from 0% to 63% (Table 2) [26,109–114,116–123]. The difference in allele frequencies might 

reflect the age of patients; geographical, racial, ethnic differences, environmental factors; and 

methodological approaches [114,116,160]. In fact, different studies have demonstrated that the 

number of BRAFV600E-positive tumors increases with age [116,160]. 

A-kinase anchoring protein 9 (AKAP9)-BRAF fusion, which is a result of the paracentric 

inversion inv(7)(q21q34), was first identified in post-Chernobyl pediatric PTC (Table 2) [117,124,125] 

but has been also observed in adult PTC (Table 2) [100,124]. 

Another important BRAF fusion is acylglycerol kinase (AGK)-BRAF fusion, which is also a result 

of a paracentric inversion inv (7)(q34), juxtaposing exons 1–2 of AGK to exons 8–18 of BRAF. This 

rearrangement was first identified in a radiation-exposed patient from Ukraine, and later was 

observed in sporadic pediatric (19%) and adult PTC cases (0–0.2%) (Table 2) [100,115,117,119,121,127–

131,161]. Remarkably, AGK-BRAF fusion in sporadic pediatric patients can differ geographically. We 

have found AGK-BRAF in 19% of the sporadic PTC Brazilian patients [121]; however, the fusion was 

not observed in any pediatric PTC cases from the US or the Czech Republic (Table 2) [129–131,134]. 

In radiation-exposed PTC Ukrainian pediatric cases, AGK-BRAF fusion was described in 2% of PTC 

cases [117,125]. 

These BRAF alterations (mutations and fusions) lead to a constitutive activation of the BRAF 

kinase and MAPK pathways, which are predominantly implicated in the pathogenesis of PTC [99]. 

Neither BRAFV600E nor BRAF fusions have been described in follicular thyroid carcinomas or benign 

nodules, reinforcing its association with the PTC subtype. 

Another study reported a direct association between BRAFV600E and disease aggressiveness in 

adult PTC alone [165], but this association is unclear in pediatric PTC. Moreover, it has been shown 

that BRAFV600E mutation is associated with larger tumor sizes (>2 cm) in both pediatric and adult PTC 

[121,166,167], but findings showing an intratumor genetic heterogeneity involving BRAF mutation 

show contradictory results as to its prognostic value [101,165]. However, BRAFV600E has not been 

described in other follicular carcinomas or benign nodules, which suggests that this mutation is 
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strongly associated with PTC [104,153]. Both AKAP9-BRAF and AGK-BRAF fusion are capable of 

transforming NIH3T3 cells (fibroblast cell line) and continuously activate the MAPK pathway 

[117,124]. Although there is a relationship between AKAP9-BRAF and pediatric PTC clinical-

pathological features, AGK-BRAF has been associated with lung metastasis [121,124]. 

Novel BRAF fusions (OPTN-BRAF, CUL1-BRAF) were described in two sporadic pediatric PTC 

cases from the Czech Republic [131]. Interestingly, several novel fusions involving the BRAF gene 

(SND1-BRAF, MACF-BRAF, MBP-BRAF, POR-BRAF, ZBTB8A-BRAF) have been described in 

Ukrainian-American patients that were under the age of 18 at the time of the Chernobyl accident 

[125] (Table 2). 

4.2.. RET/PTC Rearrangements 

The rearranged during transfection (RET) gene is located in the long arm of chromosome 10 

(10q11.2) and encodes for the tyrosine kinase receptor [168]. RET is normally expressed in the adrenal 

medulla and cerebellum among adult human tissues and in urogenital and neural crest cells during 

development, whereas it is absent in normal thyroid epithelium [169–171]. RET rearrangements lead 

to the activation of RET gene, once the rearrangement juxtaposes the kinase domain under the control 

of the transcriptional promoter of the fusion partners, expressed in normal follicular thyroid cells, 

leading to its constitutional activation. To date, over 20 RET fusions have been described, either as a 

result of 3’ kinase fusion (juxtaposition of the N-terminal partner to the C-terminal portion of the 

RTK) or 5’ kinase fusion (juxtaposition of the N-terminal portion of the RTK to the C-terminal of a 

fusion partner) [133]. 

The most common RET rearrangements are RET/PTC1, RET/PTC2, and RET/PTC3, where RET 

proto-oncogene fuses to the genes H4 (10q21), PRKAR1A (17q23), and NOCA4 (10q11.2), respectively 

[172]. In the general population the incidence of RET/PTC is ~10–25%, but it varies considerably 

among populations and could account for 50–70% of genetic alterations found in PTC samples (Table 

2) [132]. This variability is likely due to different methods of detection; genetic heterogeneity of the 

tumor; or ethnical, racial, and geographical variations [100,173,174]. 

Childhood accidental or therapeutic exposures to ionizing radiation have been associated with 

RET/PTC rearrangements [172,175]. In fact, RET/PTC rearrangements are observed in 33–76% 

(average of 58%) of the radiation-exposed PTC cases and in about 22–65% of sporadic pediatric PTC 

cases (Table 2) [26,87]. RET/PTC1 and RET/PTC3 are the most common rearrangements found in the 

pediatric population. Interestingly, in adults, RET rearrangements usually have a favorable prognosis 

and a good response to radioactive iodine (RAI) therapy. However, in pediatric patients, some 

studies reported RET fusions with extrathyroidal extension, lymph node and lung metastasis, more 

aggressive variants, and poor prognosis [134,174,176–178]. It is still not clear what influences this 

prognostic difference in children and adults. Despite being considered a diagnostic molecular 

biomarker for PTC, RET fusions have also been described in benign thyroid lesions [179,180], in 

which case the rearrangements can be used as initial markers of early tumorigenesis. 

Recently, novel RET fusions were reported in sporadic and radiation-exposed pediatric PTC. 

The AFAP1L2-RET, PPFIBP-RET, KIAA1217-RET, and ΔRFP-RET fusions were reported in nearly 3% 

of pediatric PTC cases from Fukushima [126]. Three novel RET fusions (TPR-RET, IKBKG-RET, 

BBIP1-RET) were described in nearly 3% of sporadic pediatric PTC cases from the Czech Republic 

[131] (Table 2). 

4.3.. ETV6-NTRK3 Rearrangement 

ETV6-NTRK3 gene fusion is a consequence of the t(12;15)(p13;q25) translocation and mainly 

exhibits two isoforms: ETV6-NTRK3_1 (Cosmic ID: COSF1535) and ETV6-NTRK3_2 (Cosmic ID: 

COSF1537), which corresponds to the fusion of exon 4 or exon 5 of ETV6 with exon 14 of NTRK3, 

respectively. This fusion forms a chimeric oncoprotein that activates both the MAPK and PI3K/AKT 

pathways [117]. The ETV6-NTRK3 fusion frequency in PTC is 1.2% according to TCGA (The Cancer 

Genome Atlas) analysis, but other studies reported this fusion in ~5% of adult PTC cases [127,145]. In 

pediatric PTCs, the fusion is common in the form of RET/PTC [115,117,120,131]. ETV6-NTRK3 was 
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first described in radiation-induced tumors and sporadic PTC cases from Ukraine [117] and later was 

found in radiation-exposed (14.5% of post-Chernobyl PTC patients aged 14–32) and sporadic cases 

(2% of patients aged 15–97) PTC cases [146] (Table 2) [120,131]. The prognosis significance and the 

possible association with age remain unclear in PTC. 

NTRK3 fusions are not limited to the aforementioned examples. Different NTRK3 fusions 

(RBPMS-NTRK3, EML4-NTRK3, SQTSM-NTRK3, and TPM3-NTRK3) have been identified in 

sporadic pediatric PTC [115,131] and in radiation-exposed PTC (SQTSM-NTRK3) [139], but their 

significance will be revealed as more research efforts accumulate. 

4.4.. STRN-ALK Rearrangement 

STRN-ALK rearrangement is a result of a complex rearrangement involving the short arm of 

chromosome 2, juxtaposing exon 3 of STRN to exon 20 of ALK. This fusion leads to constitutive 

activation of ALK kinase via dimerization mediated by the coiled-coil domain of the STRN gene, 

resulting in thyroid-stimulating hormone-independent proliferation of thyroid cells [148]. In 

addition, STRN-ALK expression was shown to be able to transform cells in vitro and induce tumor 

formation in mice [148]. Though rarely found in adult PTC (0.4–3% of cases) (Table 2) [100,127,148], 

this rearrangement was present in the advanced stage of the disease and dedifferentiated tumors, but 

with no clear prognostic significance. In pediatric PTC, STRN-ALK fusion is reported in 1.4–7% of 

radiation-exposed and 6.5% of sporadic cases (Table 2) [125,126,139,148]. 

4.5.. PAX8-PPARγ Rearrangement 

PAX8-PPARγ rearrangement results from the t(2;3)(q13;p25) translocation, which fuses exon 10 

of the PAX8 gene to exon 1 of PPARγ, leading to the constitutive activation of the PI3K/AKT pathway 

[181]. PAX8-PPARγ rearrangement is common in the adult PTC population but is rarely reported in 

pediatric PTC (0–9% of the sporadic cases and 4% of the radiation-exposed ones) (Table 2) 

[113,117,119,122,129,182]. This rearrangement is also observed in benign tumors, mainly FTA [183–

185], with no clear role in prognosis. 

4.6.. RAS Mutations 

RAS is a family of GTP-binding proteins that are key regulators of the MAPK and PI3K-AKT 

signaling pathways. Mutations in the GTP domain (codon 12–13) or GTPase (codon 61) produce a 

change in the amino acid sequence, resulting in its constitutive activation. The three genes of the 

family are NRAS (1p13.2), HRAS (11p15.5), and KRAS (12p12.1) [186]. In adult thyroid cancer, NRAS 

codon 61 (NRAS Q61K) and HRAS codon 61 (HRAS Q61R) mutations are the most frequent. They 

are observed in both benign and malignant thyroid nodules, including 10–20% of FVPTC cases (Table 

2) [153]. On the other hand, RAS mutations are very rare in pediatric PTC and are observed in less 

than 5% of the sporadic tumors (Table 2) [111,113,119,120,134,187]. The prognostic significance of 

RAS mutations is also not clear, although some authors showed an association between RAS 

mutations and distant metastases in adult PTC [188]. 

5. Telomere-Related Genomic Instability and Nuclear Architecture 

Telomeres, tandem repeats of the sequence (TTAGGG)n, ensure that the ends of chromosomes 

are not recognized as sites of DNA damage and are processed by DNA repair pathways [189,190]. 

Telomere function in humans depends on a cap of tightly bound proteins to repress DNA damage 

signaling, which includes the t-loop and the association of telomere-associated proteins, i.e., the 

shelterin complex—TRF1 and TRF2, POT1, TIN2, RAP1, and TPP1 [191]. Due to the inefficiency of 

the DNA replication machinery to replicate the chromosome ends, known as the end replication 

problem, telomeres progressively shorten after each cell division [192,193]. During replication, DNA 

synthesis of the discontinued strand at the replication fork occurs with a mechanism that produces 

short DNA fragments. However, this process meets a problem when the replication fork reaches the 

end of a linear chromosome/DNA. The final RNA primer synthesized on the discontinued-strand 
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template cannot be replaced and telomere sequences are lost from the ends of all chromosomes each 

time a cell divides [192,193]. 

It is noteworthy that telomere shortening is an important tumor suppressor mechanism, as it 

leads to replicative cellular senescence and cycle arrest in normal cells, thus preventing genome 

instability. However, cancer cells can elongate their telomeres and regain telomere stability by 

activating one of two known telomere maintenance mechanisms (TMMs)—telomerase, which is 

activated in 85–90% of cancers; or the alternative lengthening of telomeres (ALT) mechanism (10–

15% of cancers), which is often present in cancer cells that do not express telomerase [194]. 

However, some studies have indicated the coexistence of both ALT and telomerase activation, 

as well switching between TMMs in some tumor cells [195]. The co-existence of both TMM or 

telomerase/ALT switching has been observed in Wilms tumors [196], glioblastomas [197], gastric 

carcinomas [198], osteosarcomas [199], adrenocortical carcinomas [200], mesotheliomas [201], breast 

[202], and bladder cancers [203]. Bojovic et al. (2015) [204] demonstrated that ALT and telomerase 

activity coexist within the same cells, with possible competition between these two TMMs for 

telomere elongation. Telomerase activation and ALT switching in cancer was first described when 

tumor cells were treated with telomerase-targeted cancer drugs [195]. Those tumor cells are able to 

escape from cell death by switching from telomerase telomere extension to ALT. To date, the 

mechanisms underlying this switch between the two TMMs to maintain telomere length is not clear. 

Given the key role of telomerase reverse transcriptase (TERT) in cancer, it is essential to 

understand the mechanism underlying telomerase activation and TERT expression. TERT activation 

can be promoted by translocations or amplification of the TERT promoter region, rather than by 

mutations alone or simply by de-repression of the TERT gene. During rearrangements, strong 

enhancers often juxtapose to the TERT coding sequence [205]. This event induces telomerase 

expression much more efficiently than TERT promoter mutations or amplifications. However, most 

of the studies on PTC focus on the identification of TERT promoter mutations. Indeed, overall, only 

3% of all TERT-expressing tumor samples (adult and pediatric) present TERT amplification or 

translocations [206,207]. 

In adult PTC, mutations in the TERT promoter are more evident after malignant transformation, 

where 33% of the PTCs involved in distant metastasis display mutations in the TERT promoter [208]. 

The C228T and C250T mutations are the ones most commonly associated with aggressiveness, 

including advanced stage, larger tumor size, extrathyroidal invasion, metastasis, and disease 

recurrence [208]. Interestingly, C228T and C250T TERT promoter mutations are more prevalent in 

PTCs harboring BRAFV600E mutation. This co-existence of BRAF and TERT is strongly associated with 

shorter progression free survival [108]. 

In pediatric PTC, fewer studies have reported TERT mutations or their association with 

prognosis. Geng et al. (2019) [209], with a cohort of 48 pediatric PTC patients, found a significant 

correlation between C228T mutation and disease aggressiveness. One important aspect of the study 

by Geng et al. (2019) [209] is the claim that TERT C250T mutation was not detected in the pediatric 

cohort. Even in adults, TERT C228T mutations are more prevalent than C250T TERT mutations. It is 

still not clear if the distribution of TERT promoter C250T mutations in pediatric PTC is rare or if due 

to the small sample sizes of the studies, researchers have underestimated the prevalence of C250T 

mutations in the pediatric PTC population. 

However, even though TERT promoter mutation drives telomerase expression, it does not 

always prevent telomere shortening in PTC. This gave rise to the hypothesis that re-activated 

telomerase expression could only allow genetically unstable clones to maintain their telomeres barely 

above a critically short length, resulting in the prevention of cellular senescence and apoptosis [210]. 

Telomere shortening, genomic instability, and TERT activation are associated with features of PTC 

and are the most frequent alterations observed in aggressive stages [211,212]. Therefore, telomere 

studies could provide additional information to predict metastasis and aggressive behavior of PTC 

tumors having poor biological characterization and very limited therapeutic options. 

With advances in 3D imaging analysis, it is now possible to analyze, on a single cell level, 

telomere length, telomere numbers, their spatial organization, and cell cycle dependency within 
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interphase nuclei, rather than using the classical metaphase chromosomes, polymerase chain 

reactions, or DNA blotting techniques, which simply determine telomere length. Caria et al. (2019), 

used a 3D imaging approach to reveal specific 3D telomeric signatures of PTC-derived cell lines. This 

was the first study using 3D telomere quantitative fluorescence in situ hybridization and quantitative 

3D imaging in PTC cells. The authors demonstrated that thyroid cell lines BCPAP, K1, and TPC1 (all 

with C228T mutation) have more telomere signals, more telomere aggregates, and less average 

intensity (proportional to telomere length) than the control cell lines Nthy-ori 3–1 [213]. Telomere 

aggregates are fused telomeric signals or telomeres in close illegitimate proximity that are capable of 

engaging in recombination events. Short and unprotected telomeres are recognized as broken DNA 

ends and are eventually joined by the DNA repair proteins, which may likely generate deletions, 

duplication, non-reciprocal translocation, and most of the overall genetic changes observed during 

tumor progression [211,212]. However, 3D nuclear organization in thyroid tumor sections from adult 

and pediatric patients remain underexplored. 

Another feature of 3D fluorescent imaging is that it enables the ability to analyze the location of 

chromosomes in the 3D nuclear space. In normal cells, higher-order chromatin organization is 

necessary for proper genome function and regulation [181]. However, how the levels of organization 

are formed and the fundamental principles that guide interphase chromatin folding and unfolding 

are poorly described [181,182]. A general model for nuclear architecture can be illustrated as follows: 

first, chromosomes are arranged in a nonrandom organization in the nuclei of normal cells; second, 

chromosomes are placed into distinct territories and positions in the nuclear space; third, individual 

chromosomes can be folded together into open and active compartments (in the center of the nucleus) 

or closed and silent compartments (in the nuclear periphery) to control gene expression; and fourth, 

despite being in distinct neighborhoods, chromosomes can interact with other chromosomes that 

have been placed into a different territory [182]. In cancer cells, it seems that nuclear organization of 

chromosomes, and consequently gene position, can be reordered to modify gene expression [214]. 

The reallocation of chromosomes in different territories can enrich the oncogenic process, since 

chromosomes and genes commonly involved in cancer-associated translocations are thus able share 

the same nuclear localization where transcriptional and recombination factors are available [215–

217]. These movements could also inactivate tumor suppressor genes or activate oncogenes simply 

by moving them to open/active or closed/silent nuclear compartments [215–217]. 

In PTC, the high rates of gene rearrangements are usually attributed to environmental radiation, 

although some genetic fusions are also found in sporadic cases. The spatial proximity of genes and 

chromosomes could explain the high rate of recurrence of rearrangement or inversions in pediatric 

PTC. Nikiforova et al. (2000) [218] visualized interphase distances between RET and H4 genes in 

normal thyroid cells. They were found to be colocalized in at least one chromosome in 35% of adult 

thyroid cells. To classify them as colocalized, the authors reviewed 30 optical sections of each nucleus 

and signals were considered juxtaposed if they were touching each other or overlapping in at least 

one optical section. Gandhi et al. (2005) [219] also visualized colocalized RET to either H4 or NCOA4 

in 25% and 34% of normal thyroid cells, respectively. This colocalization was measured using 

sensitized emission Förster resonance energy transfer (FRET) microscopy [220]. This technique is 

based on the energy transfer from a donor fluorophore to an acceptor. For this to occur, donor and 

acceptor molecules need to be within a distance of less than approximately 10  nm. HRAS and 

RET/PTC rearrangements are also known to affect chromatin structure but the mechanisms behind 

this process are still unknown. Changes in proteins involved in chromatin architecture, such as 

histones modifications, DNA methylation or chromatin remodeling, could also be associated with 

changes in gene-expression patterns observed in thyroid cancer cells [221]. 

To conclude, the new nuclear organization could be used as a biomarker for thyroid cancers. If 

gene proximity and nuclear organization in chromosome territories are truly important for 

recombination and gene expression, it is expected that other rearrangements found in pediatric PTC, 

such as RET, BRAF, NTRK, and ALK fusion, are favored by this proximity or chromosome 

reorganization in thyroid cancer (Figure 2). Indeed, telomere shortening and uncapped chromosome 

ends in PTC could be responsible for randomly joined chromosomes that are in close spatial 
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proximity. It is clear that 3D nuclear organization in thyroid cancer remains underexplored; therefore, 

more studies investigating the spatial nuclear signature that can be translated into biomarkers for the 

development and progression of thyroid cancer are critical. New therapeutic approaches could also 

emerge to revert malignancy-associated nuclear changes, with the potential to treat cancers with the 

involvement of multiple signaling pathways, such as aggressive thyroid cancer. A good example is 

nuclear structure promyelocytic leukemia (PML) bodies. The cancer drugs ATRA or As2O3 are able 

to promote the reformation of PML bodies in leukemia patients, leading to cell differentiation [221]. 

PML and PML bodies are not only affected in myeloid leukemia. PML overexpression (and 

cytoplasmic de-localization) has also been observed in PTC. 

The nuclear architecture of cancer cells can also be analyzed in detail using 3D structured 

illumination microscopy (3D-SIM). The use of 3D-SIM is able to overcome the limits of conventional 

wide field fluorescence microscopy and reveal cellular structures that cannot be visualized directly 

by conventional microscopy [222]. Briefly, 3D-SIM uses illumination patterns to excite the sample 

and the reconstruction software doubles the resolution in all three dimensions [223–225]. The 

application of 3D-SIM has been geared to the study of biological structures, most importantly to 

analyze the chromatin present in cancer cells. Many authors [226–231] have used this technology to 

examine the cancer cell genome, where the presence of DNA structure, along with DNA-poor-spaces 

(spaces without DNA structure) were quantified. The biological significance of these poor spaces still 

needs further investigation, but they have been correlated with disease stage and tumor 

aggressiveness [226–231]. 

 

Figure 2. Model of chromosome reorganization in PTC. Changes in chromosome territories can 

reprogram gene expression. Some chromosomes localize toward the nuclear periphery, often 

touching the nuclear membrane, whereas others are located towards the center of the nucleus. In PTC, 

changes in chromosome territories can decrease the distance between genes, leading to a high rate of 

recurrence of specific chromosome rearrangements or inversions in PTC. 

6. Conclusions and Future Perspectives 

In this review, we summarized the genetic landscape of adult and pediatric PTC, discussing 

post-Chernobyl and post-Fukushima pediatric cases. 
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Although the genetic profile clearly depends on geographical localization, the central role of 

mutations of genes leading to constitutive activations of the mitogen-activated protein kinase 

(MAPK) pathway in the pathogenesis of PTC has to be acknowledged. 

Although the genetic mechanism and the genes involved diverges considerably among 

populations, a strong genotype–phenotype correlation has been observed. BRAFV600E confers a 

growth advantage in adults, but does not seem to confer the same biological capabilities in the 

follicular cells from pediatric PTC. In the same line, RET fusions in adults are associated with less 

aggressive tumor behavior and variants of PTC, but in pediatric cases it seems to be associated with 

distant metastases. BRAF fusions, which are highly prevalent in pediatric tumors, are hardly detected 

in adults. The same is observed for TERT promoter mutations. TERT promoter mutations are highly 

associated with older age and a worse prognosis in adults, but are absent or at lower percentages in 

pediatric PTC. 

Remarkable advances in the field of thyroid cancer research have been achieved in recent years, 

with the development of next generation sequencing (NGS) technologies. NGS is now more 

accessible to many laboratories and works properly in DNA and RNA isolated from formalin-fixed 

paraffin-embedded sections, resulting in an unparalleled resolution of genetic and epigenetic events 

behind cancer initiation and the progression of PTC. The recurrent rearrangements, traditionally 

identified by methods such as fluorescence in situ hybridization (FISH) and PCR, can be effectively 

expanded with the use of NGS by finding novel fusion genes and inversions that were challenging 

to be observed before. We can now not only confirm the relevance of known fusions, but can also 

identify novel fusion genes in both adult and pediatric PTC cases. In fact, numerous inversions 

involving chromosome 10 (RET) and 7 (BRAF) were recently associated with the pathogenesis of PTC. 

Although significant progress has been made in thyroid cancer research, we unfortunately 

cannot extrapolate findings from one cancer to another or even from adult to pediatric PTC. Another 

major barrier is the spatial (intratumoral) and temporal (primary vs. local or distant metastasis) 

genetic heterogeneity. Therefore, we still have a knowledge gap in the existing literature. As an 

example, as the thyroid undergoes important functional changes during aging, it is essential to 

understand aspects such as (1) how the patient’s lifestyle, immune system, race, ethnicity, and 

metabolic state influence the fate of a cell; (2) how the immune system’s responses vary with age and 

gender, thus affecting the range of mutation rates; (3) how many genetic events are required for a 

cancer driver mutation to convert a normal thyroid cell into a cancer cell in adult and pediatric PTC; 

(4) whether the described mutations that have been associated with pathogenesis and/or progression 

of the pediatric and adult PTC could be a direct consequence of genetic instability; (5) whether the 

selective advantage conferred to follicular cells by a specific cancer driver depend on age and gender; 

(6) how cells overcome senescence at different ages; and (7) how thyroid-specific cancer driver genes 

mold the epithelial-to-mesenchymal transition in thyroid-follicular cells and how this changes with 

aging. 

To fill this gap and identify all classes of somatic mutations that confer an advantage on cell 

clones, as well as timing these mutations during tumor evolution in both adult and pediatric sporadic 

cases, additional work is still needed. The next step to be taken will likely involve Whole Genome 

Sequencing (WGS) of different tumor stages. WGS, combined with epidemiologic studies, may also 

help in identifying the underlying changes that drive cancer phenotypes in adult and pediatric 

populations. Additionally, we need to go back to the cellular level to better comprehend all molecular 

findings. It is essential to overcome the limitations of in vitro and in vivo models to truthfully model 

PTC initiation and progression, as well as epithelial-to-mesenchymal transition at different ages. 

Furthermore, investigation of key differences in the nuclear architecture of malignant and non-

transformed cells is needed to better understand the higher-order structure that regulates 

transcription and maintains genomic stability. 
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