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Simple Summary: In Cyprus, approximately 9% of triple-negative (negative in common breast
cancer receptors—estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2)
receptors) breast cancer (TNBC) patients carry inherited mutations in the BRCA1/2 breast cancer (BC)
susceptibility genes. These mutations increase the risk of BC. However, the contribution of other BC
susceptibility genes has not yet been determined. To this end, we aimed to investigate the prevalence
of mutations in BRCA1/2-negative TNBC patients in Cyprus. Ninety-five cancer susceptibility genes
were sequenced for 163 TNBC patients. The frequency of non-BRCA mutations and especially PALB2
in TNBC patients in Cyprus appears to be higher compared to other populations, and half of the
mutation-positive patients were diagnosed over the age of 60 years. Based on these results, we believe
that PALB2 and TP53 along with BRCA1/2 genetic testing could be beneficial for a large proportion of
TNBC patients in Cyprus, irrespective of their age of diagnosis.

Abstract: In Cyprus, approximately 9% of triple-negative (estrogen receptor-negative, progesterone
receptor-negative, and human epidermal growth factor receptor 2-negative) breast cancer (TNBC)
patients are positive for germline pathogenic variants (PVs) in BRCA1/2. However, the contribution
of other genes has not yet been determined. To this end, we aimed to investigate the prevalence of
germline PVs in BRCA1/2-negative TNBC patients in Cyprus, unselected for family history of cancer
or age of diagnosis. A comprehensive 94-cancer-gene panel was implemented for 163 germline DNA
samples, extracted from the peripheral blood of TNBC patients. Identified variants of uncertain
clinical significance were evaluated, using extensive in silico investigation. Eight PVs (4.9%) were
identified in two high-penetrance TNBC susceptibility genes. Of these, seven occurred in PALB2
(87.5%) and one occurred in TP53 (12.5%). Interestingly, 50% of the patients carrying PVs were
diagnosed over the age of 60 years. The frequency of non-BRCA PVs (4.9%) and especially PALB2 PVs
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(4.3%) in TNBC patients in Cyprus appears to be higher compared to other populations. Based on
these results, we believe that PALB2 and TP53 along with BRCA1/2 genetic testing could be beneficial
for a large proportion of TNBC patients in Cyprus, irrespective of their age of diagnosis.

Keywords: triple-negative breast cancer; germline genetic testing; NGS of gene panels; genetic
predisposition to breast cancer

1. Introduction

Breast cancer (BC) is the most common cancer and the leading cause of cancer-related mortality in
women worldwide [1]. Triple-negative breast cancer (TNBC) is a distinct, highly aggressive form of BC,
characterized by lack of expression of the estrogen and progesterone receptors (ER/PR) as well as of
human epidermal growth factor receptor 2 (HER2) in breast tumors [2]. It accounts for approximately
10–20% of all BC cases, and it occurs more frequently in young or premenopausal women and women
of African American, Hispanic, and Ashkenazi Jewish ancestry [2–4]. Although TNBC lacks a specific
therapeutic approach due to the absence of receptors for conventional targeted therapies, systemic
cytotoxic chemotherapy can achieve good pathologic complete response (pCR) rates [5]. Survival rates
are lower compared to other forms of breast cancer, with the majority of patients presenting with early
recurrence and a high frequency of metastasis, especially to the central nervous system (20%) and
viscera (29%) [3,6,7]. Accordingly, the five-year survival rate of patients with TNBC is estimated at 70%
compared with >80% for all other breast cancer subtypes [8].

A high percentage of TNBC patients carry a germline pathogenic variant (PV) in one of the highly
penetrant BC susceptibility genes, BRCA1 and BRCA2 [9]. Additionally, studies have also examined
the contribution of other BC susceptibility genes including ATM, BARD1, CHEK2, PALB2, PTEN,
RAD51D, and TP53 to TNBC susceptibility [9–14]. Other cancer predisposition genes including BRIP1,
CDH1, CDKN2A, MLH1, MRE11A, MSH2, MSH6, NBN, NF1, PMS2, RAD50, RAD51C, FANCM, XRCC2,
and MUTYH—biallelic mutations—have also been investigated in TNBC [9–15]. Recently, it has been
reported that 14.4% of TNBC patients carried PVs in established BC genes as well as other cancer
susceptibility genes [9,14]. Of these, 6% harbored PVs in non-BRCA TNBC high-risk genes (odds
ratio (OR) > 5.0) including BARD1, PALB2, and RAD51D and TNBC moderate-risk genes (OR > 2.0)
including BRIP1, RAD51C, and TP53 [9].

In a recent study from Cyprus, it has been reported that approximately 9% of TNBC patients
were positive for germline PVs in the BRCA1/2 genes [16]. However, the contribution of other BC
susceptibility genes towards TNBC predisposition is not yet determined; thus, there is a great need to
investigate the prevalence and distribution of germline PVs in other susceptibility genes.

In recent years, the expanding panel of BC susceptibility genes has necessitated the use of
Next-Generation Sequencing (NGS). Consequently, NGS panel testing has been integrated into routine
clinical practice. In this manuscript, we present the first NGS gene-panel investigation of TNBC
patients in Cyprus who were negative for BRCA1 and BRCA2 germline PVs.

2. Results

2.1. Pathogenic Variants

Pathogenic variants were identified in two high-penetrance BC and TNBC susceptibility genes,
in 8 out of 163 patients tested (4.9%) (Table 1). Of these, seven were detected in the PALB2 gene
(87.5%) and one was detected in the TP53 gene (12.5%) (Table 1). Two PALB2-positive patients did not
have a family history of breast, ovarian, pancreatic, or colorectal cancer, whereas two other patients
had a strong family history (at least three first- or second-degree relatives diagnosed with breast,
ovarian, or pancreatic cancer) (Table 1). It is noted that two PALB2 PVs (c.487_488del and c.1685-2A>G)
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were present in 3 and 2 unrelated TNBC patients, respectively (Table 1). Besides family history, it is
noteworthy that half of the PV carriers, (4 out of 8) were diagnosed with TNBC over the age of 60 years
(Table 1) (p-value = 0.027, two-tailed t-test) (Figure S1).

Table 1. Summary of the detected pathogenic variants and patient characteristics.

Gene Exon cDNA Change Amino Acid Change FH † Age
‡ Frequency
Per PV (%)

§ Frequency
Per Gene (%)

PALB2 4 c.487_488del p.(Val163Leufs*4) 2 × BC 51 3/8 (37.5%) 7/8 (87.5%)
PALB2 4 c.487_488del p.(Val163Leufs*4) 4 × BC 65
PALB2 4 c.487_488del p.(Val163Leufs*4) - 67
PALB2 5 c.1685-2A>G p.? 7 × BC 54 2/8 (25%)
PALB2 5 c.1685-2A>G p.? - 48
PALB2 12 c.3350+4A>G p.? BC 50 1/8 (12.5%)
PALB2 3 c.172_175del p.(Gln60Argfs*7) BC 67 1/8 (12.5%)
TP53 6 c.584T>C p.(Ile195Thr) OC 68 1/8 (12.5%) 1/8 (12.5%)

FH: Family history of cancer, with first- or second-degree relatives diagnosed with breast, ovarian, pancreatic,
or colorectal cancer. † Age at diagnosis with Triple-Negative Breast Cancer (years). ‡ Patients carrying the
pathogenic variant (PV)/patients tested positive for PVs in established breast cancer (BC) susceptibility genes.
§ Patients carrying PVs per gene/patients tested positive for PVs in established BC susceptibility genes. Mutation
nomenclature according to LRG_308t1 (PALB2) and LRG_321t1 (TP53). BC, breast cancer; OC, ovarian cancer;
PV, pathogenic variant.

2.2. Classification of Variants of Uncertain Clinical Significance (VUS)

In this study, 65 unique VUSs were identified and, of these, 21 were classified as deleterious
by at least 75% of the in silico prediction tools (Table S1 and Figure S2). It is noted that five of
the VUSs predicted as deleterious, are novel and have not been reported before in ClinVar, dbSNP,
and LOVD databases or in any publications (Table S1). The American College of Medical Genetics
and Genomics (ACMG) guidelines (Table S2) were followed for the classification of the 21 VUSs
predicted as deleterious, according to which five out of the 21 variants were classified as likely benign,
and 16 variants as VUS (Table S3).

Comprehensive in silico classification of the structural, functional, stability, and flexibility impact
of the 21 VUSs predicted as deleterious was carried out (Tables S4 and S5). Despite its classification
as a VUS, the missense TP53 p.(Gly154Asp) variant is of particular interest (Figure 1) (ClinGen TP53
Expert Panel Specifications to the ACMG/AMP variant interpretation guidelines) [17], since there
is extensive evidence that supports its pathogenicity (Table S3). At the protein level, the Gly154
residue (Figure 1a) resides in the p53 DNA-binding domain (PF00870, amino acids 102-292), in which a
large proportion of missense variants are classified as pathogenic (29%, 198 out of 674). Additionally,
the Gly154 residue constitutes a mutational hotspot, since 25 somatic occurrences have been reported
in the cancerhotspots.org database [18,19]. This variant is predicted to destabilize the protein structure
and to disrupt the proper function of the TP53 protein, as it probably negatively affects the secondary
structure of the protein and subsequently DNA binding (Table S4). As predicted, the phi (ϕ)/psi (ψ)
angles are in the favored region for the wild-type Gly154 residue but in the outlier region for the mutant
Asp154 residue. Additionally, the substitution causes a predicted decrease in molecule flexibility
(−0.028 kcal.mol−1K−1) (Figure 1b). The wild-type amino acid may participate in intermolecular
interactions (hydrogen bonds) with surrounding amino acids (Figure 1c), which would be probably
hampered and shifted upon mutagenesis (Figure 1d). However, functional studies are needed for the
accurate classification of this variant as well as all the other VUSs predicted as deleterious.
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Gly154 amino acid on the wild-type TP53 protein (Protein Data Bank (PDB) ID: 1GZH); (b) visual 
representation of the differences in vibrational entropy energy upon mutagenesis; (c) atomic 
interactions of the wild-type (Gly154) amino acid; and (d) atomic interactions of the mutant (Asp154) 
amino acid. Analysis was performed using the DynaMut webserver 
(http://biosig.unimelb.edu.au/dynamut/). 
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the BRCA1/2-negative TNBC patients carried PVs in the high-penetrance TNBC susceptibility genes 
BARD1 and RAD51D [20]. A large-scale study evaluated the performance of gene-panel testing in 
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Figure 1. Structural and flexibility analysis of p.(Gly154Asp), a TP53-predicted deleterious Variants
of Uncertain Clinical Significance (VUS): (a) schematic representation of the location of the mutated
Gly154 amino acid on the wild-type TP53 protein (Protein Data Bank (PDB) ID: 1GZH); (b) visual
representation of the differences in vibrational entropy energy upon mutagenesis; (c) atomic interactions
of the wild-type (Gly154) amino acid; and (d) atomic interactions of the mutant (Asp154) amino acid.
Analysis was performed using the DynaMut webserver (http://biosig.unimelb.edu.au/dynamut/).

3. Discussion

This study is the first gene-panel NGS investigation of patients with TNBC in Cyprus who are
negative for PVs in the BRCA1 and BRCA2 genes. The results present for the first time the prevalence of
germline PVs in BC and other cancer predisposition genes in patients diagnosed with TNBC in Cyprus.

Among the 163 BRCA1/2-negative TNBC patients tested, 4.9% were positive for PVs in the TNBC
susceptibility genes PALB2 and TP53. This frequency is higher compared to a large multiethnic
study of 10,901 TNBC patients, which demonstrated that only 3.1% of the BRCA1/2-negative study
participants carried PVs in high-risk (BARD1, PALB2, and RAD51D) and moderate-risk (TP53, BRIP1,
and RAD51C) TNBC susceptibility genes [9]. Similar observations are made when comparing the
frequency of PVs reported here to that reported in the study of González-Rivera et al. in which 3.3% of
the BRCA1/2-negative TNBC patients carried PVs in the high-penetrance TNBC susceptibility genes
BARD1 and RAD51D [20]. A large-scale study evaluated the performance of gene-panel testing in
35,409 women with a single diagnosis of BC. It has been reported that 3.3% of BRCA1/2-negative
TNBC patients carried a PV in high- (BARD1, PALB2, and RAD51D) or moderate-risk (TP53, BRIP1,
and RAD51C) TNBC susceptibility genes [10]. The frequency of PVs in TNBC susceptibility genes
in Cyprus is about three times higher than the reported frequency in Chinese BRCA-negative TNBC
patients, where only 1.36% were positive for PVs in the high-penetrance TNBC susceptibility genes
PALB2, RAD51D, and BARD1 [21]. The frequency of PVs reported here is also different compared to
the frequency of PVs (1%) in TNBC susceptibility genes (BARD1, PALB2, RAD51D, BRIP1, RAD51C,
and TP53) reported in a recently published study of the Georgia and California Cancer Registries [22].

http://biosig.unimelb.edu.au/dynamut/
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In contrast, our results are similar to the frequency of PVs in TNBC susceptibility genes (4.8%) reported
in Greek patients with TNBC [23]. However, the patients included in the Greek study were highly
selected, having a strong family history (at least three breast, ovarian, or pancreatic cancer patients
in the same family) and/or diagnosed earlier than the age of 35 years. This could in part explain the
relatively high frequency of PVs reported in Greek samples. Nevertheless, this was not the case for our
study cohort, where TNBC patients were unselected for age of onset and family history.

It is estimated that VUSs account for around 40% of the total number of variants identified in
extended gene-panel sequencing studies, and their classification remains a major challenge [24]. In this
study, nineteen patients (11.7%) carried VUS predicted as deleterious in established BC and other cancer
susceptibility genes, while they did not carry any PV in a gene with confirmed BC association. In order
to decipher further which VUS may be actionable, a detailed in silico investigation was carried out.
The TP53 VUS p.(Gly154Asp) identified in a patient with a family history of breast cancer is of particular
interest. The variant resides in the p53 DNA binding domain, where 90% of all known TP53 pathogenic
variants are located [25] and is predicted to alter the DNA binding capacity of the p53 protein. Based on
in silico prediction tools, it is likely that this missense variant is pathogenic, but functional studies
and/or co-segregation or case-control studies are needed for the accurate classification of this and other
VUS in TNBC patients.

The average age at initial TNBC diagnosis of our patient cohort is 50.55 ± 10.35, with a range from
27 to 75 years. This is similar to the average age of onset of the 10,901 TNBC patients recruited by the
TNBC Consortium (TNBCC) and the Ambry Genetics clinical testing laboratory (49.9 ± 11.3 years) [9].
Among the 10,901 patients, 17.7% were diagnosed with TNBC over the age of 60 years, which is very
similar to our population (17.8%) [9]. An interesting observation is that, among 29 study participants
diagnosed over the age of 60 years, 13.8% were found positive for PVs in established BC. In contrast,
in the large-scale multiethnic study of TNBC patients, 10.2% of patients diagnosed over the age of
60 years tested positive for germline PVs in established BC and other cancer susceptibility genes [9].
Considering that only half of the TNBC PV carriers fulfilled the NCCN guidelines, our results support
the notion that all TNBC patients in Cyprus should be referred for genetic testing, irrespective of their
age at diagnosis.

According to Cybulski et al., it is estimated that 34% of BC patients with a germline PALB2 PV
have a TNBC subtype [26]. PALB2 PVs were the most prevalent in our cohort of BRCA1/2-negative
TNBC samples (4.3%). Two large multiethnic studies of the TNBCC in collaboration with Ambry
Genetics clinical testing laboratory and Myriad Genetics laboratory reported lower frequencies of
PALB2 PVs amongst TNBC patients (1.3% and 1.4%, respectively) [9,10]. A possible founder effect for
two of the PALB2 PVs identified (c.487_488del and c.1685-2A>G) in our study could partly explain the
higher prevalence of PALB2 PVs in our TNBC population. However, additional studies are required
to draw more definite conclusions. The absence of a CHEK2 PV in our TNBC cohort agrees with the
reported association of CHEK2 PVs with ER-positive BC and the absence of association with TNBC [9].

It is well known that BRCA1/2 carriers with TNBC can benefit from targeted therapeutic strategies.
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) can be used as a targeted treatment for
germline BRCA1/2-positive BC patients with HER2-negative metastatic breast tumors [27]. Tumors
harboring inherited or somatic pathogenic variants in other non-BRCA genes implicated in DNA repair
pathways may also respond with a BRCA-like behavior to this particular class of drugs. An ongoing
phase II clinical trial is investigating the antitumor efficacy of PARPi in patients with advanced
HER2-negative or TNBC and a somatic or germline PV in a non-BRCA1/2 Homologous Recombination
pathway gene [28]. It is anticipated that, in the near future, patients harboring PVs in genes other than
BRCA1/2 may also benefit from these and other targeted therapies.
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4. Materials and Methods

4.1. Study Population

This study involved patients with unilateral TNBC, referred to the Clinical Genetics Department of
the Cyprus Institute of Neurology and Genetics for genetic counseling from 2004 to 2019. According to
NCCN guidelines (version 1.2020), genetic testing should be offered to patients diagnosed with TNBC
at age ≤60 years. The testing criteria were slightly modified from the international guidelines to
reflect the situation in Cyprus. TNBC patients were referred for genetic counseling and subsequently
underwent genetic testing irrespective of their age of disease onset. This study includes 163 TNBC
patients who tested negative for germline PVs (including large genomic rearrangements) in the BRCA1
and BRCA2 genes and were unselected for family history of breast and/or ovarian cancer. Each study
participant signed an informed consent form and agreed to undergo genetic testing.

The characteristics of the TNBC patients included in the study are summarized in Table 2.

Table 2. Study population characteristics.

Characteristics No. of Patients (%) † PV Carriers (%)

Total female patients 163 (100%) 8 (4.9%)
Age at diagnosis, y
Mean ± SD (range) 50.6 ± 10.4 (27–75) 58.8 ± 8.8 (48–68)

<20 0 0
20–29 3 (1.8%) 0
30–39 22 (13.5%) 0
40–49 52 (31.9%) 1 (12.5%)
50–59 48 (29.4%) 3 (37.5%)
≥60 38 (23.3%) 4 (50%)

* Family history of cancer
Breast or ovarian cancer 83 (50.9%) 6 (75%)

Pancreatic or colorectal cancer (No BC or OC) 17 (10.4%) 0
No breast, ovarian, pancreatic or colorectal 63 (38.7%) 2 (25%)

* First- or second-degree relatives † PVs, Pathogenic variants (frameshift; splice site variants, ±3 positions; nonsense;
missense variants reported as pathogenic or likely pathogenic) reported in established breast cancer susceptibility
genes (PALB2 and TP53). BC, breast cancer; OC, ovarian cancer.

4.2. Multigene Panel-Based Mutation Analysis

DNA samples from TNBC patients that tested negative for germline PVs in the BRCA1 and BRCA2
genes were analyzed further by targeted NGS, using a panel of 94 cancer susceptibility genes (Illumina
TruSight Cancer Sequencing panel: #FC-121-0202). The panel contains oligos targeting and enriches
more than 1700 exons, including coding regions and noncoding exon-flanking regions spanning the
94 cancer susceptibility genes (Table S6). The TruSight Rapid Capture kit was used for the preparation
of the NGS library according to the manufacturer’s protocol (Illumina, #FC-140-1106). Sequencing was
performed on the NextSeq 500 or the MiSeq Sequencing Platforms (Illumina, San Diego, CA, USA)
with 75-bp or 150-bp paired-end reads. Screening for large rearrangements was not performed.

4.3. BARD1 Mutation Screening

Since the established high-risk TNBC susceptibility gene BARD1 is not included in the TruSight
Cancer Sequencing panel, BARD1 mutation screening was performed for all samples included in this
study by Sanger sequencing. All the coding exons and proximal splice site regions of the BARD1 gene
(LRG_297) were sequenced as described previously [29].

4.4. Bioinformatics Analysis

Sequence reads (2 × 150 bp or 2 × 75 bp) were aligned to the reference GRCh37 (hg19) human
genome assembly using the Burrows-Wheeler Aligner—Maximal Exact Match (BWA-MEM) algorithm.
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Duplicates were detected by Picard (http://broadinstitute.github.io/picard/), and bases were recalibrated
using the GATK suite and according to the best practice guidelines (https://www.broadinstitute.org/

gatk). Variants were called with the GATK HaplotypeCaller and GenotypeGVCF, filtered following
the GATK guidelines and functionally annotated using ANNOVAR (https://doc-openbio.readthedocs.
io/projects/annovar/en/latest/).

4.5. Variant Selection

Multiple filtering criteria were used to identify PVs and variants of uncertain clinical significance
(VUS). Variants with read depth of less than 30 were excluded from further analysis. Rare variants
with minor allele frequency (MAF)—taken from the Exome Aggregation Consortium (ExAC)
(https://gnomad.broadinstitute.org/)—less than or equal to 1% were selected for further investigation.
Variation databases (ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/; LOVD, http://www.lovd.nl/3.
0/home; and dbSNP, https://www.ncbi.nlm.nih.gov/projects/SNP/) were explored to detect already
published variants and their structural/functional effects. Only variants having a damaging effect
on the protein sequence or structure—frameshift indels, splicing variants (±3 positions), nonsense,
and missense variants reported as pathogenic or likely pathogenic in the literature—were considered as
pathogenic. The regSNP-splicing tool (http://regsnps-splicing.ccbb.iupui.edu/) was used to prioritize
synonymous variants based on their proximity to splice donor or acceptor sites. Alternative splicing
events were tested by MaxEntScan (http://hollywood.mit.edu/burgelab/maxent/), BDGP: Splice Site
Prediction by Neural Network (http://www.fruitfly.org/seq_tools/splice.html), Human Splicing Finder
(HSF3.0) (http://www.umd.be/HSF3/), and NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/).
All PVs were confirmed by Sanger Sequencing as described elsewhere [29].

4.6. Classification of Variants of Uncertain Clinical Significance (VUS)

Further analysis of VUS was performed only for variants reported in established BC susceptibility
genes (BRCA1, BRCA2, PALB2, BARD1, RAD51D, ATM, CHEK2, PTEN, and TP53) and other cancer
susceptibility genes (CDH1, BRIP1, CDKN2A, MLH1, MSH2, MSH6, NBN, NF1, PMS2, RAD51C,
XRCC2, STK11, FANCM, and MUTYH-biallelic). Protein features such as amino acid conservation
among species, wild-type/mutant amino acid biophysical and/or biochemical properties, amino acid
localization within the protein, and potential impact on mRNA were investigated using several in silico
prediction tools [30–39]. Variants considered as deleterious were those classified as such by at least 75%
of the prediction tools. The American College of Medical Genetics and Genomics (ACMG) standards
and guidelines for the interpretation of sequence variants were followed for variant classification [40].
In addition, a comprehensive in silico classification scheme for the interpretation of the stability [41–54],
structural [55–58], functional [55–58], and flexibility [51] impact of VUS predicted as deleterious was
carried out, using experimentally solved or in silico predicted protein structures [59,60]. The detailed
workflow followed for the in silico classification of VUS is described in the Supplementary Methods.
All VUSs predicted as deleterious were confirmed by Sanger Sequencing as described elsewhere [29].

4.7. Statistical Analysis

The R (v3.3.2) (https://www.r-project.org/) statistical computing language was used for statistical
analysis. The Shapiro–Wilk’s test was used to test whether the underlying distribution was normal.
Carriers and non-carriers of PVs were compared for numerical variables with independent samples
two-tailed t-test (for normally distributed values). Two-tailed p-values lower than 0.05 were considered
to be statistically significant.

5. Conclusions

In conclusion, our study identified eight PVs in TNBC susceptibility genes in eight unrelated
BRCA1/2-negative TNBC patients in Cyprus (4.9%), unselected for family history and age at disease
diagnosis. Although our sample size is small, the reported frequency is higher compared to other
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populations and may have important clinical implications. Additionally, the frequency of PALB2 PVs
(4.3%) appears to be higher compared to other populations (1.3–1.4%), while half of the PV-positive
patients were diagnosed over the age of 60 years. We suggest that PALB2 and TP53 along with BRCA1/2
genetic testing could be beneficial for a substantial proportion of TNBC patients in Cyprus, irrespective
of their age at diagnosis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3140/
s1, Supplementary Methods: Classification of variants with uncertain clinical significance, Figure S1: Plots
demonstrating the distribution of age at TNBC diagnosis of BRCA1/2-negative women in Cyprus, Table S1: Summary
of the predicted deleterious VUSs in established BC and other cancer susceptibility genes, Figure S2: Box plot
and histogram demonstrating the distribution of pathogenic variants and in silico predicted deleterious VUSs in
established BC and other cancer susceptibility genes among all study samples, Table S2: Criteria as specified by
the American College of Medical Genetics (ACMG) standards and guidelines for the interpretation of sequence
variants, Table S3: Classification of the in silico predicted deleterious VUS based on the ACMG standards and
guidelines for interpretation of sequence variants, Table S4: In silico assessment of the structural, functional,
stability, and flexibility impact of the predicted deleterious VUSs in BC susceptibility genes, Table S5: In silico
assessment of the structural, functional, stability, and flexibility impact of the predicted deleterious VUSs in other
cancer susceptibility genes, Table S6: TruSight Cancer (Illumina) target genes in alphabetical order.
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