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Simple Summary: Monoclonal antibody (mAb) therapy has been an important addition to the 

therapeutic arsenal in B-cell malignancies. MAbs can induce cytotoxicity against B-cell malignancies 

by antibody effector functions mediated via their fragment crystallizable (Fc) region. In order to 

enhance the anti-tumor potential of antibodies, various Fc-engineering strategies have been 

developed. In this review we summarize the well-established as well as recently developed Fc-

engineering strategies which are aimed to increase Fc-effector function and to enhance the anti-

tumor potency of mAbs. In addition, the increased number of Fc-engineered mAbs in (pre-)clinical 

development asks for a clear overview describing the specific type of Fc-engineering, their antigen 

and disease target, and the current developmental stage, which we aimed to provide in this review. 

Abstract: Monoclonal antibody (mAb) therapy has rapidly changed the field of cancer therapy. In 

1997, the CD20-targeting mAb rituximab was the first mAb to be approved by the U.S. Food and 

Drug Administration (FDA) for treatment of cancer. Within two decades, dozens of mAbs entered 

the clinic for treatment of several hematological cancers and solid tumors, and numerous more are 

under clinical investigation. The success of mAbs as cancer therapeutics lies in their ability to induce 

various cytotoxic machineries against specific targets. These cytotoxic machineries include 

antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis 

(ADCP), and complement-dependent cytotoxicity (CDC), which are all mediated via the fragment 

crystallizable (Fc) domain of mAbs. In this review article, we will outline the novel approaches of 

engineering these Fc domains of mAbs to enhance their Fc-effector function and thereby their anti-

tumor potency, with specific focus to summarize their (pre-) clinical status for the treatment of B-

cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma 

(B-NHL), and multiple myeloma (MM). 

Keywords: antibody therapy; Fc engineering; immunotherapy; B-cell malignancies; B-cell 

lymphoma; B-CLL; multiple myeloma 

 

1. Introduction 

Naturally, antibodies (Abs) are produced by B-cells as a polyclonal population, with high 

specificity for their distinct target antigen and epitope. Antibodies thereby play various important 

roles in our immune system. The field of therapeutic Abs commenced in 1975, when the development 

of the mouse hybridoma technology enabled the production of large amounts of murine monoclonal 

(m) Abs [1]. However, murine mAbs elicited an immunogenic response in human patients. To reduce 

this immunogenicity, chimeric mAbs, consisting of a constant human domain fused to a variable 

mouse domain, were developed [2]. The chimeric mAb rituximab targeting cluster of differentiation 
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(CD) 20 was the first FDA-approved mAb for cancer therapy in 1997. The development of advanced 

design technologies such as human antibody gene expression libraries and transgenic animals 

allowed the engineering of humanized (the hypervariable region of a murine antibody grafted in a 

human antibody) and fully human mAbs [3]. To be successfully applied in the clinic, mAbs generally 

require additional engineering to improve their affinity, limit any biophysical liabilities, and to 

increase their half-life. Currently, 30 mAbs are clinically approved for treatment of cancer, and this 

number is rapidly increasing: in the last decade, the number of mAbs that have entered late-stage 

clinical studies has been tripled [4]. The therapeutic potential of mAbs has been exploited by the 

development of antibody fusion products, such as bispecific antibodies or antibody drug conjugates, 

which take advantage of specific antigen binding properties of antibodies to precisely target cytotoxic 

cells or toxic agents to cancerous cells. A novel development in antibody engineering is the 

modification of the antibody fragment crystallizable (Fc) region in order to increase the Fc tail-

mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), antibody-

dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), to induce 

tumor cytotoxicity more effectively. Numerous Fc-engineered antibodies have demonstrated clinical 

activity or are under preclinical investigation. 

In this review, we will outline the novel approaches of engineering Fc domains of mAbs to 

enhance their Fc-effector function and anti-tumor potency, with specific focus to their (pre-) clinical 

status for the treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell 

non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM). Not described in this review is the 

application of Fc engineering in order to improve antibody half-life, to silence mAb effector functions 

in case of antibodies used as receptor agonists or antagonists or as drug delivery vehicles, and to 

increase the direct, not Fc-effector function-mediated, anti-tumor potency of mAbs. 

2. Antibody Structure 

Antibodies are mono- or polymers of immunoglobulins (Ig) consisting of two identical pairs of 

heavy (H) and light (L) chains, which are linked through non-covalent interactions and disulfide 

bonds to form a Y-shaped structure [5]. All H and L light chains contain a single variable domain 

(VL), which also consists of hypervariable regions. The combination of the (hyper) variable regions of 

the H and L chains determines the antigen specificity and affinity of an antibody. The L chains contain 

a single constant (CL) domain to make a stable link with the H chain. The number of constant domains 

of the H chain (CH) is dependent on the isotype of the antibody: IgA, IgD, and IgG contain three (CH1–

3), and IgE and IgM contain four constant domains (CH1–4). The first CH is linked with CL to the 

variable regions, which together form the fragment antigen binding (Fab) region. The heavily 

glycosylated CH2–3 or CH2–4 domains are linked to CH1 via a flexible hinge region and constitute the 

Fc region (Figure 1A). The engineering of this region, which is responsible for the isotype- and 

subclass-dependent Fc-mediated effector functions of antibodies, will be the main focus of this 

review. 
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Figure 1. mAb structure and mechanisms of action. (A) Schematic representation of an IgG antibody 

consisting of variable (V) and constant (C) domains of the light (L; light grey) and heavy (H; dark 

grey) chains. The fragment antigen binding (Fab) domain is made up of VL and CL together with VH 

and CH1, and the fragment crystallizable (Fc) region consists of CH2 and CH3, with an N-glycan 

attached to CH2. (B) Mechanisms of action of IgG1 mAbs consist of direct effects, including cell death 

and receptor blockade, and indirect effects, including antibody-dependent cellular cytotoxicity 

(ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity 

(CDC). ADCC and ADCP are mediated via binding to FcγR and cell death occurs via release of 

cytotoxic granules and via internalization and degradation of the target, respectively. CDC is 

mediated via binding to complement protein C1q and cell death occurs via formation of the 

membrane attack complex (MAC), which consists of complement proteins C5b, C6, C7, and C8 and 

various copies of C9, and generates pores in the membrane. 

3. Fc-Effector Functions 

Upon antigen engagement, IgG antibodies can induce direct anti-tumor effects via triggering the 

cell death signaling pathways and via blockade of essential receptor systems, as well as indirect anti-

tumor effects via their Fc-mediated effector functions, by engaging other immune cells or killer 

mechanisms. The Fc-mediated effector functions of antibodies include antibody-dependent cellular 

cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-

dependent cytotoxicity (CDC), and have been shown to be crucial for the therapeutic efficacy of most 

clinically approved antibodies (Figure 1B). Among the four IgG subclasses, IgG1 and IgG3 induce the 

strongest Fc-effector functions [6]. However, since IgG1 has the longest half-life and is more stable 

than IgG3 [7], most therapeutic antibodies with Fc-mediated functions are of IgG1 isotype. 

3.1. ADCC/ADCP 

The IgG1-induced ADCC and ADCP response is mediated via binding to Fc gamma receptors 

(FcγR), which are expressed on innate effector cells, including monocytes, monocyte-derived cells, 

basophils, mast cells, and natural killer (NK) cells. The FcγR family consists of the activating FcγRI 

(CD64), FcγRIIa (CD32a), FcγRIIIa (CD16a), and FcγRIIIb (CD16b), and the inhibitory FcγRIIb 

(CD32b). Of all FcγRs, only FcγRI, which plays a major role in myeloid cell activation, is classified as 

a high-affinity Fc receptor [8]. All other FcγRs require binding of multivalent IgG-antigen immune 

complexes in order to provide sufficient avidity to activate downstream signaling and induce 

antibody-mediated ADCC or ADCP [9]. 

Natural killer (NK) cells are considered the most potent inducers of ADCC. NK cells as well as 

monocytes and macrophages express FcγRIIIa, however, only NK cells exclusively express FcγRIIIa 
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[10]. Triggering of FcγRIIIa induces phosphorylation of immunoreceptor tyrosine-based activation 

motifs (ITAMs), which activates a downstream signaling cascade resulting in the release of cytotoxic 

granules containing perforin and granzyme in the immune synapse formed between the NK cell and 

the target cell, leading to target cell death [11]. 

In contrast to NK cells, the phagocytic monocytes, neutrophils, and macrophages co-express 

activating and inhibitory FcγRs. ADCP can be induced by various activating FcγRs including 

FcγRIIIa (CD16a), FcγRIIa (CD32A), and FcγRIIIb (CD16b), which all signal via ITAMs, and may be 

inhibited by FcγRIIb (CD32b), which signals via immunoreceptor tyrosine-based inhibitory motifs 

(ITIMs). The balance of activating and inhibitory signaling dictates ADCP induction, which occurs 

via internalization and degradation of the antibody-opsonized target by the phagocyte [12]. 

FcγRs are highly polymorphic, their genes are known to have several single-nucleotide 

polymorphisms (SNPs). Such polymorphisms can affect the affinity of the FcγR for Ig molecules [13]. 

Both FcγRIIa and FcγRIIIa are known to exist as two allotypic variants, which are associated with 

clinical response for therapeutic mAbs. In the extracellular domain of FcγRIIa, a C > T substitution at 

amino acid position 131 results in a histidine (131R) to arginine (131R) replacement [14]. FcγRIIa 

binds with high affinity to IgG1 and IgG3. The amino acid position 131 is polymorphic for IgG2 

binding: the 131H variant can bind to IgG2 with high affinity, while 131R barely binds to IgG2 [13]. 

For FcγRIIa, a T > G substitution can occur at amino acid position 158 resulting in valine (158V) to 

phenylalanine (158F) replacement. The FcγRIIIa-158V variant was shown to bind to IgG1 and IgG3 

with a higher affinity compared to FcγRIIIa-158F [15]. 

The FcyRIIa (131H/R) and FcyRIIIa (158F/V) polymorphisms are associated with clinical 

response for several clinical-approved mAbs including rituximab, trastuzumab, and cetuximab [16–

18]. 

3.2. CDC 

Therapeutic IgG1 antibodies can activate the classical pathway of the complement system by 

binding of the Fc region to the complement protein C1q, which initiates a cascade of proteolytic 

cleavage steps. This results in formation of the membrane attack complex (MAC), consisting of the 

complement products C5b to C9. The MAC generates pores in the cell membrane which initiates 

target cell lysis, termed complement-dependent cytotoxicity (CDC) [19]. Similar to FcγR, the affinity 

of C1q for IgG-Fc is low and binding is dependent on multivalent IgG-antigen immune complexes to 

provide sufficient avidity [20–22]. The ability of IgG1 antibodies to activate the complement pathway 

is highly dependent on antigen density, size, and fluidity [23–25]. High-resolution crystallography 

studies have recently revealed that, dependent on such factors, specific non-covalent interactions 

between IgG Fc domains induce ordered hexamer formation (mAb hexamerization) on the cell 

surface that provides a docking platform for the six-globular-headed C1q molecule and thereby 

efficiently activates the complement pathway [26]. 

4. Fc Engineering to Enhance Fc-Effector Functions 

The hinge and the proximal CH2 regions of the Fc tail are considered critical for Fc interaction 

with FcγRs and C1q. The interface of these regions contains the binding sites, while the structural 

conformation of the CH2 domain allows engagement of C1q or FcγR. In addition, the CH2 domains 

are post-translationally modified by asparagine(N)297-linked glycosylation, and glycosylation and 

the specific glycan composition contribute to the stability and the dynamics of the CH2 domains [27–

29]. Glycan components include core units of N-acetylglucosamine (GlcNAc) and mannose, with 

additional variations in galactose, bisecting GlcNAc, fucose, and sialic acid. 

Detailed understanding of Fc interactions with C1q and FcγR opened up opportunities to 

modulate C1q and FcγR binding by Fc engineering. In order to enhance ADCC, ADCP, and CDC, 

studies have employed site-directed mutagenesis (sequence variations), Fc glycosylation 

modification (glycoengineering), and avidity modulation, which will be outlined below. 
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4.1. Enhancing ADCC 

4.1.1. Glycoengineering to Enhance FcγR Affinity 

Fc glycosylation is required for binding the low-affinity FcγR [30,31]. Generally, aglycosylation 

is thought to completely abrogate FcγR effector functions [32,33], but several aglycosylated Fc 

variants with intact FcγR effector function have been reported [34–36]. Altering the specific 

composition of the Fc glycan can increase the affinity for FcγR. The removal of core fucose 

(afucosylation) has been shown to highly increase FcγRIIIa binding affinity and consequently 

increase ADCC [37,38] (Figure 2A). This effect has been attributed to an interaction between the Fc-

glycan and the N-glycan attached to Asn 162 of the FcγRIIIa [39], however, the exact nature of the 

interaction is still debated. It has been suggested that core fucose restricts the number of 

conformations recognized by the FcγRIIIa N-glycan [40], while others suggest that core fucose 

inhibits direct carbohydrate–carbohydrate interactions with the receptor glycan [41,42]. Nevertheless, 

afucosylation is widely accepted as an effective approach to increase the potency of IgG1 antibodies 

to induce ADCC. 

To a lesser extent, Fc galactosylation is also suggested to modulate FcγRIIIa binding. The 

reported effects of hypergalactosylation on ADCC, however, range from completely absent to 

positive without addition of afucosylation [38,43,44] and positive with addition of afucosylation 

[45,46]. These large variations in study results might be explained by differential interactions of the 

galactose on the different N-glycan arms with FcγR [47]. The effects of Fc sialylation on ADCC have 

been described to be minimal, and completely absent in addition to afucosylation [43,46,48]. 

 

Figure 2. Fc engineering strategies to enhance Fc-effector functions. (A) The biantennary complex 

glycan structure of the most frequent variants for the N-glycan of therapeutic IgG (G0F, G1F, G2F, 

and fully processed). Glycoengineering strategies focus on galactosylation for enhanced CDC and 

afucosylation for enhanced ADCC. (B) ADCC/ADCP (left) and CDC (right) enhancing point 

mutations depicted in the crystal structure of the Fc region (PDB:3DO3). The ADCC-enhancing 

mutations S298A/E333A/K334A, S239D/I3332E, and P247I/A339Q are depicted in magenta; the 

ADCP-enhancing mutations F234L/R292P/Y300L/V305I/P396L, A330L, and G236A are shown in blue. 

A330L and G236A were added to the ADCC-enhancing mutations S239D/I332E to decrease the 

mutation-related increase in affinity to the inhibitory receptor FcγRIIb. The CDC-enhancing 
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mutations E345G and E430G, which induce Fc/Fc interactions and subsequent mAb hexamerization 

(see E), are shown in orange and K326W/E333S and S267E/H268E/S324T, which enhance C1q binding 

affinity, are shown in pink. (C) Schematic representation of three Fc multimerization strategies which 

are aimed to enhance ADCC and ADCP. (D) Cross-isotype antibody generated by replacing the CH2 

and part of the CH3 domains of an IgG1 antibody with the corresponding regions of an IgG3 antibody, 

to increase the CDC response. (E) Schematic representation of mAb hexamerization which facilitates 

C1q binding and enhances CDC, and can occur upon antigen binding by IgG1 antibodies naturally or 

when harboring the E345G or E430g mutations. 

4.1.2. Site-Directed Mutagenesis to Enhance FcγR Affinity 

High-resolution structural Fc analysis revealed the specific FcγR-binding sites, which has laid 

the foundation for structure-guided identification of affinity-enhancing mutations. FcγRs interact 

with residues Leu234–Ser239 on the lower hinge and residues Asp265–Glu269, and Asn297–Thr299 

on the CH2 domain [49,50]. Since then, it has become clear that numerous positions within or in close 

proximity to this region can be mutated to improve FcγR binding affinity. Alanine screening in the 

CH2 and CH3 domains revealed that several mutations could enhance binding to FcγRIIIa, with the 

most potent mutations combined in S298A/E333A/K334A for enhanced ADCC [51]. A study using 

computational design algorithms and high-throughput screening demonstrated that S239D/I332E 

mutations could also enhance FcγRIIIa binding and ADCC [52]. Both S298A/E333A/K334A and 

S239D/I332E highly enhanced binding for the lower-affinity polymorphic variant (F158) of FcγRIIIa 

[51,52]. The P247I/A339Q mutations, which were applied in the anti-CD20 mAb ocaratuzumab, have 

also been shown to enhance binding to the lower-affinity FcγRIIIa [53] (Figure 2B). 

Structural analyses of the Fc-FcγR interaction have revealed that the Fc binding to FcγR is 

asymmetrical: the receptor binds to different residues on each Fc domain. Hence, it seemed likely 

that applying mutations to Fc regions asymmetrically could maximize the FcγR binding affinity. 

Indeed, Fc heterodimeric antibodies improved CH2 domain stability and the consequent FcγRIIIa 

binding as compared to a symmetrically mutated Fc variant [54,55]. In addition, afucosylation of the 

heterodimeric antibodies further improved the FcγRIIIa binding [55]. 

4.1.3. Fc Multimerization 

In comparison to affinity modulation, avidity modulation is a less established but more 

straightforward approach. Fc duplication (or tandem-Fc) or multiplication, whereby multiple Fcs are 

linked within one IgG1 molecule, has been shown to augment FcγR binding avidity and increase 

ADCC and ADCP [56–59] (Figure 2C). A theoretical safety concern for Fc multiplication strategies is 

the fact that natural antibody oligomerization may result in unwanted immune activation [60]. 

However, studies have reported minimal in vitro aggregation and no in vivo adverse events so far 

[57,59]. 

4.2. Enhancing ADCP 

4.2.1. Glycoengineering to Enhance FcγR Affinity 

Strategies enhancing ADCC via increased affinity for FcγRIIIa on NK cells can also enhance 

ADCP via increased antibody binding to monocytes and macrophages, since these cells also express 

FcγRIIIa. ADCP induced by neutrophils can be improved as well since neutrophils express FcγRIIIb, 

which shares 97% sequence homology with FcγRIIIa. It has indeed been demonstrated that 

afucosylated mAbs can induce higher levels of ADCP [61,62]. 

4.2.2. Site-Directed Mutagenesis to Enhance FcγR Affinity 

Different than ADCC, ADCP induction is highly dependent on the balance of binding to the 

activating receptors versus the inhibitory receptor FcγRIIb. The activating FcγRIIa shares 90% 

similarities with the inhibitory FcγRIIb [63]. Hence, selectively increasing FcγRIIa binding without 

influencing or while even decreasing the inhibitory FcγRIIb binding remains a great challenge in 
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enhancing ADCP and requires more careful engineering. Increasing FcγRIIa binding while 

simultaneously decreasing FcγRIIb was achieved by mutations F243L/R292P/Y300L/V305I/P396L 

[64]. In another study, in which ADCC could be enhanced by S239D/I332E mutations, a third 

mutation (A330L) was necessary to improve ADCP because the sole S239D/I332E mutation also 

resulted in increased binding to FcγRIIb [52]. Another study identified the G236A mutation to 

selectively enhance FcγRIIa binding. This study demonstrated that the addition of G236A to 

S239D/I332E and S239D/A330L/I332E resulted in enhanced ADCP, in addition to the improvement 

of ADCC [65,66] (Figure 2B). 

4.2.3. Fc Multimerization 

Fc multimerization strategies are not FcγR-specific. Therefore, such strategies will enhance the 

binding of mAbs to other low-affinity FcγRs, including to the inhibitory FcγRIIb. Nonetheless, it 

appeared possible to increase FcγRIIa binding and ADCP by Fc multimers [57,67]. However, since 

binding to the inhibitory FcγRIIb was also increased [57], Fc multimerization strategies might require 

further Fc engineering to optimally enhance the ADCP. 

4.3. Enhancing CDC 

4.3.1. Glycoengineering to Enhance C1q Binding Affinity 

While afucosylation significantly enhances ADCC and ADCP by facilitating the interaction with 

the FcγRIIIa glycan, it minimally affects CDC [46]. Sialyation seems to have moderate effects on C1q 

binding. Some studies reported increased and some others reported decreased C1q binding by 

sialyation [46,68,69]. Instead, galactose is the key glycan for C1q binding. Numerous studies 

demonstrated enhanced C1q binding and CDC by Fc galactosylation [46,69–71] (Figure 2A). 

Molecular interactions between galactose and amino acid residues on the CH2 domains possibly 

increase C1q binding affinity [72]. It has also been suggested that Fc glycosylation modulates Fc/Fc 

interactions and thereby affects not the affinity but the avidity of C1q binding [73]. 

4.3.2. Site-Directed Mutagenesis to Enhance C1q Binding Affinity 

The first structural analysis studies revealed that the residues D270, K322, P329, and P331 of the 

CH2 domain were critical for the interaction with C1q [74,75]. More recently, it has been shown that 

there are two main interaction sites: residues 266–272 and 294–300 on one CH2 domain and residues 

325–331 on the other [76]. Mutations in residues located on or in proximity to these binding sites 

significantly affected C1q binding: the double mutant K326W/E333S and triple mutant 

S267E/H268E/S324T enhanced C1q binding and CDC [77,78] (Figure 2B). The hinge region also plays 

a role in complement activation, because this region affects the flexibility of the Fc tail, thereby 

determining the ability to fix C1q. Indeed, certain mutations in the upper hinge region could enhance 

C1q binding and CDC [79]. 

4.3.3. Antibody Hexamerization to Facilitate C1q Binding 

In addition to affinity modulation, site mutagenesis can also be performed in order to modulate 

avidity. Proceeding from the finding that antibody hexamers facilitate C1q binding, the essential first 

step in CDC, a novel strategy was developed in order to improve the hexamer forming of antibodies 

upon target antigen binding. Introducing the specific point mutations E345R and E430G at the Fc and 

CH2-CH3 interface could indeed stimulate the Fc/Fc interactions between antibodies and facilitate the 

natural concept of antibody hexamerization, leading to superior C1q binding and enhanced CDC 

[26,80] (Figure 2B,E). Since Fc hexamerization by these specific point mutations only occurs upon 

antigen binding on the cell surface, antibodies generated by this so called “HexaBody” technology 

retain the pharmacokinetics of conventional IgG1 antibodies. 
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4.3.4. Cross-Isotype Antibodies 

Although both IgG1 and IgG3 can effectively activate complement, IgG3 antibodies can bind 

C1q more effectively [81]. Therefore, cross-isotype antibodies have been generated by replacing the 

CH2 and CH3 domains of an IgG1 antibody with the corresponding regions of an IgG3 antibody, 

which increases the CDC response [82] (Figure 2D). 

5. Generation of Fc-Engineered mAbs 

Although the hybridoma technology revolutionized the field of therapeutic antibodies, most 

mAbs that are currently approved for therapeutic use are generated by mammalian expression 

systems, which allow higher antibody yields and preserve post-translational modifications, 

generating a higher-quality mAb product. Mammalian expression systems often use the variable 

regions derived from the hybridoma or phage display technologies. The sequence of the desired 

region is cloned into the appropriate expression vector and subsequently transfected into the 

expression system. Currently available mammalian expression systems include various Chinese 

hamster ovary (CHO) cell lines, mouse myeloma (NS0), and mouse hybridoma (Sp2/0) cell lines. In 

addition, several human expression systems are available, including embryonic kidney (HEK293), 

amniotic (CAP), a hybrid of HEK293 and lymphoma (HKB-11), and embryonic retina (PER.C6). The 

human expression systems, however, provide transient expression and are therefore only suitable for 

preclinical purposes. 

The current approaches of antibody sequence engineering at the Fc site apply site-directed 

mutagenesis either directly once heavy and light chain sequences are available (for structure-based 

sequence engineering) or to generate large phage or yeast display libraries to screen for the most 

optimal Fc variant (empirical-based sequence engineering). Glycoengineered antibodies require 

more complex adaptations in the manufacturing protocol, which will be outlined below. 

Glycoengineered mAbs 

Mammalian expression systems allow conventional post-translational modifications and can 

also be modified to alter specific post-translational modifications, such as Fc glycosylation. However, 

glycosylation is a complex process and cannot be controlled completely as cell culture conditions can 

alter the glycosylation pattern [83,84]. To create glycoengineered antibodies in order to develop 

antibodies with improved ADCC activity, several modified mammalian expression systems were 

developed. Double knockout of the enzyme α1,6-fucosyltransferase 8 (FUT8), which catalyzes the 

transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc), in CHO cell lines resulted in 

the production of afucosylated antibodies [85]. Alternatively, CHO cells were engineered to express 

β(1,4)–N–acetylglucosaminyltransferase III (GnTIII). IgGs produced by mammalian cells have very 

low or no bisecting GlcNAc, in contrast to IgGs present in human serum, and increasing the number 

of bisecting GlcNAc improved ADCC levels [86,87]). 

6. Clinical Experience with Fc-Engineered mAbs for B-Cell Malignancies 

Although various strategies can enhance ADCC, ADCP, or CDC effector function, they do not 

uniformly increase these effector functions when applied to different antigens, since antigen binding 

also affects the C1q and FcγR binding via structural allostery [88,89]. In addition, there is a partial 

overlap in the Fc-binding sites for C1q and FcγR [6]. Therefore, modulating the Fc tail to enhance 

ADCC/ADCP can negatively influence CDC, and vice versa. It is thus recommended to evaluate Fc-

effector function-enhancing strategies for each target individually. 

In B-cell malignancies, a wide variety of disease-associated targets are available, including 

various lineage-specific surface molecules. The Fc-engineered mAbs for these target antigens are 

discussed below for each relevant disease subtype (Table 1). 
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Table 1. Fc-engineered monoclonal antibodies (mAbs) with enhanced mAb effector function in (pre-) clinical development for chronic lymphocytic leukemia 

(CLL), B-cell non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM). 

Fc-Engineered 

mAb 
Target 

Iso-

Type 
Chimeric/Human(ized) Fc Engineering Strategy 

Enhanced 

Effector 

Function 

Additional 

mAb 

Engineering 

Clinical Stage; 

NCT of 

Recruiting 

Clinical Trials 

Major 

Indication(s) 

Obinutuzumab 

(GA101;Gazyva) 

CD20, 

type II 
IgG2 Humanized Afucosylation ADCC 

Modified 

elbow hinge 
FDA-approved FL and CLL 

Ublituximab 

(LFB-R603, 

EMAB-6) 

CD20, 

type I 
IgG1 Chimeric Low fucose ADCC  Phase 2/3 1  

CLL and B-

NHL 

Ocaratuzumab 

(AME-133v, 

LY2469298) 

CD20, 

type I 
IgG1 Humanized Mutations P247I/A339Q ADCC 

Antigen 

binding 

affinity 

optimized 

Discontinued  

PRO131921 

(RhuMAb; v114) 

CD20, 

type I 
IgG1 Humanized Mutations (na) 

ADCC and 

CDC 
 Discontinued  

Ocrelizumab CD20 IgG1 Humanized Mutations (na) ADCC  
Discontinued in 

hematology, 

approved for MS 

MS 

CD20 double 

engineered  

CD20 IgG1  Afucosylation+ mutations 

S267E/H268F/S324T/G236A/I332E 

ADCC and 

CDC 
 Preclinical  

CD20 
IgG1/ 

IgG3 
 Afucosylation + mixed IgG1/IgG3 

isotype 

ADCC and 

CDC 
 Preclinical  

BI 836826 CD37 IgG1 Chimeric Mutations S239D/I332E ADCC  Discontinued  

DuoHexaBody-

CD37 (GEN3009) 
CD37 IgG1 Human Mutation E430G (HexaBody) CDC 

Dual-epitope 

targeting 
Phase 1 2 B-NHL  

Ianalumab 

(VAY736; B-1239) 
BAFF-R IgG1 Human Afucosylation ADCC  Phase 1 3 CLL 

Inebilizumab 

(MEDI-551) 
CD19 IgG1κ Humanized Afucosylation ADCC  Phase 1/2 

B-cell 

malignancies 

MDX-1342 CD19  Human Afucosylation 
ADCC and 

ADCP 
 Phase 1 halted  

Tafasitamab 

(MOR208, 

XmAb5574) 

CD19 IgG1 Humanized Mutations S239D/I332E 
ADCC and 

ADCP 

Antigen 

binding 

affinity 

optimized 

Priority review 

granted by FDA 

CLL and 

DLBCL 
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HexaBody-CD38 

(GEN3014) 
CD38 IgG1 Human Mutation E430G (HexaBody) CDC  Preclinical 

B-NHL and 

MM 

anti-CD38 

SIFbody 
CD38   Fc multimerization 

ADCC and 

CDC 
 Preclinical MM 

XmAb5592 HM1.24 IgG1 Humanized Mutations S239D/I332E    MM 

 ICAM-1 IgG1 Human Mutations S239D/I332E 
ADCC and 

ADCP 
 Preclinical MM 

SEA-BCMA  BCMA IgG1 Humanized Afucosylation 
ADCC and 

ADCP 
 Phase 1 4 MM 

1 ClinicalTrials.gov Identifier: NCT03828448; NCT04149821; NCT03801525; NCT02535286; NCT03379051; NCT04016805; NCT02793583. 2 ClinicalTrials.gov 

Identifier: NCT04358458. 3 ClinicalTrials.gov Identifier: NCT03400176. 4 ClinicalTrials.gov Identifier: NCT03582033. 



Cancers 2020, 12, 3041 11 of 24 

 

6.1. B-CLL and B-NHL 

6.1.1. CD20 

CD20 is expressed on almost all healthy and malignant B-cells, but is not expressed by precursor 

B-cells and plasma cells, making it the ideal therapeutic target for B-cell malignancies [90]. The CD20-

targeting chimeric mAb rituximab was the first mAb to be approved by the FDA for cancer therapy 

in 1997 and is currently still part of the first line of immune-chemotherapy regimens for patients with 

B-NHL and CLL. Although rituximab is capable of both ADCC/ADCP and CDC induction, multiple 

Fc engineering strategies have been explored to enhance the effector functions of CD20-targeting 

mAbs, either type I or type II. The CD20 mAbs are classified as type I and II based on their ability to 

reorganize the CD20 molecules into lipid rafts. Type I CD20 mAbs, such as rituximab, can induce 

CD20 reorganization and efficiently activate the complement pathway, whereas type II CD20 mAbs 

are poor complement activators but instead induce direct cell death. Both type I and II mAbs can 

induce ADCC [91,92]. 

Glycoengineered CD20-targeting mAbs include obinutuzumab (GA101) and ublituximab (TG-

1101). Obinutuzumab is a type II glycoengineered (non-fucosylated) humanized anti-CD20 IgG2 

mAb which targets a different but overlapping epitope on CD20 compared to rituximab [93]. In 

comparison to rituximab, a significant clinical benefit of obinutuzumab was observed for FL and CLL 

in combination with chemotherapy [94–96], and obinutuzumab has received FDA approval for FL 

and CLL. Obinutuzumab in combination with CHOP (G-CHOP) did not show a PFS benefit 

compared to R-CHOP for treatment-naïve DLBCL [97,98]. Ublituximab is a type I glycoengineered 

(low-fucose content) chimeric anti-CD20 IgG1 which targets a unique epitope on CD20 and is 

currently under clinical investigation. Ublituximab increased the ADCC of CLL cells in vitro and ex 

vivo compared to rituximab [99,100], and induced ADCC in rituximab-resistant B-NHL in in vitro 

and in vivo models [101]. Ublituximab has shown promising phase 2 and 3 clinical efficacy either as 

a single agent or in combination with ibrutinib and umbralisib, the first BTK inhibitor and a next-

generation PI3K inhibitor, in high-risk CLL and B-NHL patients [102–104]. In addition, several 

clinical trials are ongoing, including trials investigating the efficacy in treatment-naïve FL and in 

progressive CLL (ClinicalTrials.gov Identifier: NCT03828448 and NCT04149821, respectively) and a 

trial investigating the combination of ublituximab with an anti-PDL1 mAb (TG-1501) 

(ClinicalTrials.gov Identifier: NCT02535286). 

The relevance of FcγRIIIa polymorphisms for antibodies targeting CD20 has been demonstrated 

by the higher response rates of rituximab in patients with the 158V variant [16,105,106]. Fc-mutated 

CD20-targeting mAbs that were clinically evaluated and designed to enhance affinity for the low-

affinity variant FcγRIIIa-158F include the humanized mAbs ocaratuzumab (AME-133v; LY2469298), 

PRO131921 (RhuMAb v114), and ocrelizumab. Ocaratuzumab was generated by screening for Fc 

modifications that enhance ADCC, which led to the identification of the P247I/A339Q mutations that 

enhanced binding to both allelic variants of FcγRIIIa, in addition to Fab modifications that enhance 

antigen binding [107]. In vitro, ocaratuzumab induced ADCC in CLL cells at higher levels than 

rituximab, and similar levels to obinutuzumab [53]. A phase 1/2 clinical trial demonstrated the 

activity and tolerability of ocaratuzumab in previously treated FL patients with low-affinity FcγRIIIa 

[108,109]. PRO131921 is Fc-modified (unspecified) to enhance C1q binding in addition to enhanced 

FcγRIIIa binding, and was demonstrated to enhance ADCC and CDC in vitro compared to rituximab. 

A phase 1 trial of PRO131921 in relapsed and/or refractory follicular lymphoma patients who 

previously received rituximab showed tolerability [110]. However, the clinical development of both 

ocaratuzumab and PRO131921 has been discontinued [111], no information regarding the reason has 

been disclosed. Ocrelizumab demonstrated activity in a phase 1–2 trial in patients with 

relapsed/refractory follicular lymphoma [112], but is, at the moment, only registered for the treatment 

of patients with multiple sclerosis. 

Several other Fc-engineered CD20-targeting antibodies have been explored in preclinical 

studies. The strong CDC induction of IgG3 antibodies targeting CD20 [113,114] favors the 

development of IgG1/IgG3 isotype variants, and a CD20-targeting afucosylated IgG1/IgG3 isotype 
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variant, with increased CDC and ADCC levels in vitro [115]. Applying multiple Fc-enhancing 

strategies simultaneously also proved beneficial for a nonfucosylated rituximab variant containing 

the S267E/H268F/S324T/G236A/I332E mutations, which enhanced both ADCC and CDC in vitro 

[116]. 

6.1.2. CD37 

Similar to CD20, CD37 is expressed on all mature B-cells, but absent or expressed at very low 

levels on stem cells, precursor B-cells, and plasma cells [117,118]. Several CD37-targeting therapeutics 

have been clinically evaluated, including several immunoconjugates but also two Fc-engineered 

antibodies. BI 836,826 (MAb 37.1) is an Fc-mutated (S239D/I332E) chimeric IgG1 with enhanced 

ADCC in addition to pro-apoptotic activity. BI 836,826 demonstrated potent cytotoxicity in CLL cells 

ex vivo, especially in combination with the PI3K inhibitor idelalisib in relapsed CLL [119,120]. In 

phase 1 clinical trials in relapsed/refractory CLL and relapsed/refractory B-NHL, acceptable 

tolerability and preliminary efficacy was observed [121,122]. However, a phase 1b/2 trial of BI 836,826 

in combination with gemcitabine and oxaliplatin in DLBCL was halted prematurely due to dose-

limiting toxicities (DLTs) (ClinicalTrials.gov Identifier: NCT02624492). BI 836,826 has been 

discontinued from further clinical development. The Fc-engineered DuoHexaBody-CD37 is a 

biparatopic (dual-epitope-targeting) CD37-targeting IgG1 antibody with the E430G hexamerization-

enhancing mutation that induces potent CDC, in contrast to native CD37-targeting antibodies [123]. 

DuoHexaBody-CD37 showed ex vivo efficacy in B-CLL and various B-NHL (van der Horst, H.J.; 

Oostindie, S.C.; et al. Potent preclinical efficacy of DuoHexaBody-CD37 in B-cell malignancies. 

Hemasphere 2020, under revision), and a first-in-human clinical trial has recently been initiated 

(ClinicalTrials.gov Identifier: NCT04358458). 

6.1.3. BAFF-R 

B cell–activating factor (BAFF) is an immunomodulatory cytokine which regulates B-cell 

survival and activation. BAFF can bind to three receptors although only one of them binds BAFF with 

high specificity: the BAFF receptor (BAFF-R) [124]. BAFF-R is expressed on almost all normal and 

malignant B-cells, but not on pre-B-cells, and is therefore considered an appropriate target for B-CLL 

and B-NHL. Ianalumab (VAY736; B-1239) is a fully human BAFF-R-targeting glycoengineered 

(afucosylated) IgG1 antibody. Although ianalumab also blocks receptor signaling and proliferation, 

ADCC induction mediated by the afucosylated Fc domain was demonstrated to be crucial for potent 

cytotoxicity. Furthermore, ianalumab induced higher levels of ADCC in CLL cells than rituximab 

and the Fc-engineered obinutuzumab, and combining ianalumab with ibrutinib could further 

enhance efficacy in vivo [125,126]. A phase 1 clinical trial is currently active to evaluate ianalumab in 

combination with ibrutinib for CLL patients (ClinicalTrials.gov Identifier: NCT03400176). 

6.1.4. CD19 

CD19 expression is restricted to the B-cell lineage but is in contrast to CD20 also expressed on 

precursor B-cells. CD19 is highly expressed in B-NHL and several leukemias, including CLL and 

ALL. In addition, although CD19 is generally considered to be absent on plasma cells, it has been 

shown that some multiple myeloma (MM) cells express CD19 at extremely low density which might 

suffice for targeted therapy [127]. Unmodified CD19-targeting antibodies induce limited 

ADCC/ADCP and CDC, partly because they are rapidly internalized [128]. CD19 is therefore mostly 

used as a target for T-cell engagers, such as bispecific antibodies or chimeric antigen receptors 

(CARs), but some Fc-engineered CD19-targeting antibodies are also clinically evaluated. The CD19-

targeting afucosylated mAbs inebilizumab (MEDI-551) and MDX-1342 and the Fc-mutated 

(S239D/I332E) mAb tafasitamab (MOR208; XmAb5575) all enhance ADCC levels in vitro relative to 

native CD19 mAbs [129–131]. Inebilizumab was tested in phase 1 trials and showed tolerability and 

preliminary efficacy in CLL, FL, DLBCL, and MM [132]. However, phase 2 trials of inebilizumab in 

combination with chemotherapy in CLL and DLBCL did not show any significant differences in 
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outcome compared to rituximab in combination with chemotherapy (ClinicalTrials.gov Identifier: 

NCT01466153; ClinicalTrials.gov Identifier: NCT01453205). A phase 1 study of inebilizumab in 

relapsed or refractory advanced B-cell malignancies has recently been completed (ClinicalTrials.gov 

Identifier: NCT00983619). MDX-1342 has been tested in a phase 1 study in in CLL patients 

(ClinicalTrials.gov Identifier: NCT00593944), but the study was halted prematurely and the program 

has been discontinued without further disclosure. Tafasitamab was demonstrated safe and 

efficacious in a phase 1 trial in relapsed CLL and a phase 2 trial in relapsed and refractory B-NHL 

[133,134]. Moreover, in vitro studies suggested that lenalidomide can further enhance the ADCC 

effects of tafasitamab, and the combination with lenalidomide resulted in a high response rate of 

relapsed and refractory DLBCL patients. [135]. Tafasitamab has been granted accelerated FDA 

approval in combination with lenalidomide for patients with relapsed DLBCL. 

6.2. Multiple Myeloma (MM) 

6.2.1. CD38 

CD38 is an attractive target for multiple myeloma due to its high and uniform expression on 

MM cells, while its expression on myeloid and lymphoid cells and in non-hematopoietic tissue is 

relatively low. The unmodified CD38-targeting antibody daratumumab received FDA approval in 

2019 and induces MM cell cytotoxicity via ADCC, ADCP, and CDC in addition to direct cell death 

[136]. To further increase the CDC potential of CD38-targeting antibodies, the Fc-engineered 

antibody HexaBody-CD38 (GEN3014) carrying the E430G hexamerization-enhancing mutation has 

been developed. HexaBody-CD38 demonstrated superior CDC activity in vitro compared to 

daratumumab and showed promising anti-tumor activity in vivo [137]. In addition, the Fc 

multimerization technology has been employed to generate the anti-CD38 selective 

immunomodulator of the Fc receptor antibody (SIFbody), with enhanced binding to the Fcγ receptors 

and C1q resulting in CDC activity and NK- and macrophage-mediated killing in vitro. The anti-CD38 

SIFbody also demonstrated increased efficacy ex vivo compared to daratumumab [138]. 

6.2.2. HM1.24 

HM1.24 was first described to be preferentially overexpressed on normal and malignant plasma 

cells [139,140], although more recent studies also demonstrated HM1.24 expression on B-CLL and 

lymphoma and several solid tumors [141–145]. Antibodies targeting HM1.24 for MM exhibited in 

vitro and in vivo anti-tumor activity. However, a phase 1 study of the humanized anti-HM1.24 

unmodified antibody AHM in relapsed/refractory MM could not demonstrate significant efficacy. 

Glycoengineered (afucosylated) variants of AHM and the Fc-mutated (S239D/I332E) anti-HM1.24 

antibody XmAb5592 could enhance ADCC as well as ADCP compared to AHM in preclinical studies, 

and warrant further clinical testing [146–148]. 

6.2.3. ICAM-1 

The intercellular adhesion molecule-1 (ICAM-1/CD54) mediates adhesion of MM cells to bone 

marrow stromal cells (BMSCs). CD54 is highly expressed on MM cells and associated with advanced 

disease stage and resistance to chemotherapy, which makes ICAM-1 an interesting target for MM 

[149,150]. The unmodified ICAM-1-targeting antibody BI-505 induced potent anti-myeloma activity 

in vitro and in vivo, which was predominantly macrophage-mediated [151]. BI-505 progressed to 

clinical trials, and although a phase I trial demonstrated good tolerability, BI-505 lacked significant 

efficacy in a phase II trial in MM [152,153]. To potentially enhance efficacy in vivo, Fc engineering 

(S239D/I332E) has been applied to the anti-ICAM-1 fully human IgG1 antibody MSH-TP15, which 

binds to a distinct but overlapping epitope compared to BI-505, with enhanced ADCC and ADCP 

activity in vitro and improved tumor control in vivo compared to its unmodified counterpart 

[154,155]. 
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6.2.4. BCMA 

B-cell maturation antigen (BCMA; CD269; TNFRSF17) plays a significant role in the 

differentiation of B-cells to plasma cells and is required for plasma cell longevity [156]. BCMA 

expression is specific for plasma cells and MM cells even overexpress BCMA [157]. Multiple T-cell 

engagers targeting BCMA are currently being clinically evaluated and expected to receive approval 

for clinical application soon. SEA-BCMA is a glycoengineered (afucosylated) humanized BCMA-

targeting IgG1 antibody and showed promising preclinical activity via induction of ADCC and 

ADCP as well as a block in proliferation [158]. SEA-BCMA is currently evaluated in a phase 1 safety 

study in relapsed/refractory MM patients (ClinicalTrials.gov Identifier: NCT03582033). 

7. Conclusions and Future Perspective 

In this review, we have illustrated various strategies to enhance Fc-mediated effector functions 

and we have summarized their clinical application in chronic lymphocytic leukemia (CLL), B-cell 

non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM). Fc-mediated effector functions are 

being enhanced to increase their anti-tumor potency or when a specific effector function is beneficial, 

i.e., improving ADCC induction for combination therapy with lenalidomide or in patients with low-

affinity FcγR polymorphisms. In addition, Fc engineering can be applied to antibodies which depend 

on antibody clustering or FcγR-mediated antibody crosslinking for agonism of receptors, such as 

antibodies targeting the costimulatory protein CD40 or antibodies targeting death receptors 4 or 5, 

and thus benefit from similar strategies as discussed here [159–161]. 

Generally, mAbs that are Fc-engineered to improve their effector functions are capable of 

enhancing in vitro and in vivo anti-tumor potency compared to their parental unmodified mAb. 

Various Fc-engineered mAbs also demonstrated clinical efficacy, and are already approved for 

clinical use. However, other Fc-engineered mAbs demonstrated toxicity in clinical trials or failed to 

induce significant clinical efficacy, and were discontinued for development. Increasing the clinical 

success of Fc-engineered mAbs requires more empirical in vitro/in vivo screening to determine the 

most favorable Fc engineering strategy or combination of strategies. In addition, understanding (i) 

the specific contribution of ADCC, ADCP, and CDC to the clinical efficacy of mAbs in hematological 

malignancies and (ii) the exact clinical effect of the different Fc engineering strategies could allow for 

developing Fc engineering strategies customized to a specific target and disease. A step forward in 

understanding the specific contribution of mAb effector functions is the recent development of Fc 

engineering strategies that enhance CDC specifically, such as the HexaBody technology. Until 

recently, clinically evaluated mAbs were mostly Fc-engineered to enhance ADCC function. Hence, 

evaluating Fc-engineered mAbs with enhanced CDC and potentially comparing them to mAbs with 

enhanced ADCC could provide crucial information regarding the contribution of mAb effector 

functions to clinical efficacy and toxicity, and the results of such clinical trials are highly anticipated. 

To conclude, our advanced knowledge of Fc structure and Fc-mediated effector function has 

enabled the clinical development of Fc-engineered mAbs. Expanding our clinical experience with 

these Fc-engineered mAbs will provide valuable information that could allow the development of 

antibodies with tailor-made effector functions. 
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