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Simple Summary: Angiotensin inhibitors are broadly applied in the treatment of renal and 

cardiovascular diseases. This review aims to show that these drugs have also been beneficial in 

cancer therapies. Underlying molecular mechanisms are elucidated. Angiotensin signaling and the 

antifibrotic properties of inhibiting this signaling are discussed in detail. In essence, these 

antifibrotic effects are due to crosstalk with TGF-β signaling, which is also described in detail. Due 

to the altered matrix synthesis by cancer associated fibroblasts under these therapies, TGF-β 

signaling affects more than just the composition of the extracellular matrix itself, extending to 

cellular behaviors. Beyond the stroma, TGF-β signaling is also of interest in the epithelial 

mesenchymal transition, which is also covered. 

Abstract: Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have 

antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in 

cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug 

delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β—a known 

driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus 

drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during 

malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β 

family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent 

noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug 

developments. TGF-β is also an inducer of epithelial–mesenchymal transition (EMT). EMT is a 

highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a 

hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is 

characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits. 

Keywords: angiotensin inhibition; cancer; cancer-associated fibroblasts (CAFs); desmoplasia; 

epithelial–mesenchymal transition (EMT); mesenchymal–epithelial transition (MET); stemness 

 

1. Introduction 

In 1971, US president Richard M. Nixon declared a “war on cancer”, aiming to cure cancer within 

the next 25 years. Despite huge scientific efforts, the target of finding a cure for cancer was not 

achieved, as elegantly laid out by the landmark publication of Bailar and Gornik 25 years later [1]. 

Despite that well-defined molecular targets have been identified, personalized cancer therapies have 

not been found for all cancer types. Excellent results for one type of therapy were shown in the 

treatment of Philadelphia chromosome-positive (t(9;22)(q34;q11.2)) chronic myelogenous leukemia 

(CML) with imatinib as a designed drug that attacks the BCR–ABL fusion product [2,3]. One of the 

reasons for this success was that this fusion protein is unique to the cancer cells and does not occur 

in normal cells. In addition, imatinib performs well because CML is a “liquid” cancer without 

significant intercellular junctions, extracellular matrix (ECM) and without forming cell aggregates, 
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so the drug can easily reach each malignant cell. In contrast to “liquid” cancers, “solid” cancers 

generate obstacles for drug delivery. It is still un clear which effects are responsible for poor drug 

penetration into solid tumors [4]. It is likely that the drug penetration problem is a multifactorial one 

and that the elevated intra-tumoral fluid (IFP) pressure is caused, among other factors, by the 

molecular composition of the tumor microenvironment itself, abnormal structure of blood and 

lymphatic vessels and a change in the porosity of the tumor cells caused by alterations of the cell-to-

cell contact [4,5]. However, as tumors are very heterogeneous, these factors likely do not all apply to 

the same extent for all cancer types. For each histological cancer entity, these factors may be of varying 

importance. In a few cancer entities such as pancreatic ductal adenocarcinomas or subtypes of breast 

cancer, this barrier seems to be so strong that cancer therapy is failing in nearly every case [6,7]. In In 

this paper, angiotensin inhibitors are revisited in the context of these alterations in the tumor 

microenvironment. Angiotensin inhibition is a standard therapy in hypertension, with additional 

antifibrotic effects being observed [8]. Signaling and effects of different inhibitors, angiotensins, 

angiotensin receptors and angiotensin-converting-enzymes (ACE) are the focus of this review. The 

crosslink to transforming growth factor-β (TGF-β) signaling and its impacts on cancer therapy are 

also covered. The underlying role of TGF-β and the canonical and noncanonical signaling and its 

general role in cancer biology are elucidated [9]. Furthermore, TGF-β is also a potent inducer of the 

highly complex epithelial–mesenchymal-transition (EMT), which are also covered. 

2. Angiotensin Inhibition: How an Old Drug Shows New Tricks 

Drugs for inhibition of the renin–angiotensin–aldosterone systems (RAASi) (see Table 1) are 

standard medication in the therapy of arterial hypertension [10], heart failure [11] and kidney disease, 

especially those involving kidney fibrosis (e.g., diabetic nephropathy, hypertensive nephropathy) 

[12,13]. Under physiological conditions, the renin–angiotensin–aldosterone systems (RAAS) 

maintains the arterial blood pressure, the serum sodium concentration and the extracellular volume 

[14]. The first step of the RAAS is the release of renin from the juxtaglomerular cell in the kidney. 

Renin cleaves angiotensinogen to the decapeptide angiotensin I. This decapeptide is then cleaved by 

the angiotensin-converting enzyme (ACE) to angiotensin II, which acts as a main effector on the 

angiotensin 1 and 2 receptors (AT1/2), with the AT1 receptor being the key receptor for the 

vasoconstrictive effects. Further, angiotensin II stimulates the adrenal zona glomerulosa to release 

the mineralocorticoid aldosterone, which increases renal sodium reabsorption. The RAAS acts via a 

reduction of the vasoconstrictive angiotensin II signaling, by either inhibiting the ACE (drugs with 

the suffix -pril), thus the conversion of angiotensin I (AngI) to angiotensin II (AngII) or by blocking 

the angiotensin I receptor (AT1) (drugs with the suffix -sartan) [14,15]. 

In conventional therapy, regimes of the above mentioned diseases, the benefits are not solely 

due to the reduction of blood pressure as angiotensin inhibitors have shown additional 

cardioprotective and nephroprotective effects by inhibition of collagen synthesis [16,17]. Collagen 

synthesis is—beyond the cardiovascular and renal system—also of interest during the formation of 

the cancer stroma. The aim of numerous studies has been to investigate the antifibrotic effect on 

production of tumor extracellular matrix (ECM) and the following effects in cancer therapy, 

especially in context of enhancing the drug delivery. Delivery of substances into tissues depends on 

two basic physical mechanisms, namely diffusion and convection. Convection speed mainly depends 

on flow from vessels through the tissue into lymphatics. Diffusion speed mainly depends on the 

molecular size and concentration gradient and is effective over very short distances [18]. Transport 

within tissues is either dominated by one mechanism or is approximately in equilibrium. Most small 

molecules like oxygen are mainly transported through diffusion and reach distances of around 100 

µm around blood vessels [18,19]. Conversely, the transport of large molecules depends mostly on 

convection and tissue permeability [20]. A common feature of human tumors is an ECM-rich 

microenvironment with high density of collagen and hyaluronan. This mass often surrounds nests of 

tumor cells and increases the distance from blood vessels to tumor cells, thus decreasing drug 

delivery of even small molecules [21,22]. The growth of tumor cells and matrix lead to solid stress 

and a consecutive compression of micro vessels, especially lymphatic vessels, leading to decreased 
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convection and increased interstitial fluid pressure. Fluid pressure is also increased by the dense 

matrix, which increases the flow resistance, leading to impaired convection. Additionally, the dense 

matrix displays an obstacle for larger molecules, especially nanobodies [5,18,20]. 

In general, it is well known that RAASi such as losartan reduce the stromal collagen I and 

hyaluronan synthesis [23]; this reduction is caused by depletion of TGF-β1 signaling [8,24]. In 

addition to collagen synthesis, TGF-1 also controls hyaluronan synthesis. It has been shown that 

hyaluronan synthases 1–3 are decreased in cancer-associated fibroblasts (CAF) after losartan therapy. 

This observation shows that losartan is at least a trifunctional drug that decreases hypertension, 

collagen and hyaluronan syntheses. Similar effects have been demonstrated for the ACE inhibitor 

lisinopril, albeit in comparison with the angiotensin receptor blocker (ARB) losartan, with an inferior 

collagen I and hyaluronan reduction [23]. 

The underlying molecular mechanisms for these different actions are well-investigated. Three 

different angiotensin receptor groups have been found: AT1-, AT2- and Mas-receptor. These 

receptors belong to the G-protein-coupled receptor family. Angiotensin II is the ligand of AT1 and 

AT2 receptors. Both receptors stimulate different intracellular pathways and have different, partly 

opposite effects. The above-mentioned inferiority of lisinopril compared to losartan has been traced 

back to these opposite AT1 and AT2 effects. This finding was confirmed using AT1 and AT2 receptor 

knockout mouse models, which were transplanted with the human breast cancer cell line E0771. 

Compared with wild-type mice, AT1 knockout mice showed less collagen I and hyaluronan 

deposition in the ECM, and the AT2 knockout mice showed more collagen I and hyaluronan 

deposition [23,25]. 

Angiotensin II is cleaved from angiotensin I by the angiotensin-converting enzyme I (ACE I). 

ACE I is not specific for the latter reaction; it also cleaves bradykinin, substance P, N-acetyl–seryl–

aspartyl–lysyl–proline (tetrapeptide AcSDKP) and the luteinizing hormone-releasing hormone 

[26,27]. Additionally, angiotensin-converting enzyme inhibitors (ACEi) inhibit the production of Ang 

1–7. This variety of interactions make ACEi a multifunctional drug with effects well above classical 

ARBs. The exact effect of ACE on malignant tissues is—due to numerous interactions—nearly 

unpredictable. This broad spectrum of activities may offer a chance of discovering new drugs by 

evaluating the property of every substrate and every product of the ACE I, i.e., AcSDKP and 

substance P. AcSDKP stimulates the secretion of matrix metalloproteinase-1 and is able to induce 

angiogenesis. Antifibrotic and anti-inflammatory properties have been found in diverse tissues such 

as heart, lung, liver and kidney [28–31]. Initially, AcSDKP was described to be a highly potent 

inhibitor of hematopoietic pluripotent stem cell proliferation [32]. AcSDKP is the cleavage product of 

thymosin β4 by prolyl oligopeptidase (POP). An increased concentration of AcSDKP has been found 

to be present in intra-tumoral blood compared to concentrations in normal tissue in human breast, 

colon head and neck, kidney, lung, skin, ovary and prostate cancer [33]. Additionally, increased 

AcSDKP plasma levels have been detected in some patients with CLL and AML [34]. Another 

example is the tachykinin substance P with its G protein-coupled receptor neurokinin-1 receptor 

(NK1R). Neurokinins have pleiotropic properties (mediators of inflammations, wound healing, 

leukocyte trafficking, microvasculature permeability and cell survival [35–37]), and despite its name 

it is not only synthesized by neurons, but also by other cell types, such as immune cells (i.e., 

macrophages/monocytes, dendritic cells, mast cells, neutrophils, natural killer cells, T-lymphocytes) 

and endothelial cells [38–40]. The NK1R antagonist aprepitant shows crosstalk to Wnt signaling in 

colon cancer cell lines. After administration of aprepitant the Wnt-associated proteins cyclin D1, c-

Myc and LEF-1 were downregulated, causing G2 arrest and apoptosis [41]. Additionally, in 

hepatoblastoma cell lines aprepitant impaired the interaction between Forkhead Box M1 protein with 

β-catenin, consequently inhibiting Wnt signaling [42]. In breast cancer, substance P application 

induces matrix metalloproteinase 2 and 14 by enhancing ERK1/2, JNK and AKT pathways, causing 

invasion and proliferation [37]. 

The Mas receptor binds angiotensin 1–7 and shows opposite effects of the classical effects of 

ACE-angiotensin II/AT1. Ang 1–7 is produced by the angiotensin-converting enzyme II, with Ang II 

as a major substrate. Under physiological circumstances the Mas/Ang 1–7 pathway can be seen as a 
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regulator of the AT1/angiotensin II pathway [43]. Therefore, it has anti-fibrotic, anti-proliferative and 

anti-hypertrophic properties. In mouse models high dose Ang 1–7 was capable of antagonizing the 

Ang II effect on blood pressure [44]. In reality, the ACE2/Ang1–7/Mas axis has broader actions, but 

the complexity of the whole renin–angiotensin–aldosterone system (RAAS) homeostasis and its 

actions is very impressive and exceeds the aim of this review (Figures 1 and 2). Figure 1 shows the 

angiotensin homeostasis dependent on the balance between ACE and ACE2 and their consequential 

effect on the AngII and Ang1–7 equilibrium, thus emphasizing the effect of a shift in this balance, 

considering fibrosis arrhythmias, vasoconstriction, proliferation hypertrophy, etc. Figure 2 

summarizes the cleavage pathways for angiotensinogen, underlining the complexity with multiple 

involved enzymes and numerous intermediate products. 

Table 1. List of important angiotensin inhibitors. 

ACE Inhibitor (-pril) AT1 Blocker (-sartan) 

Ramipril Candesartan 

Enalapril Losartan 

Captopril Olmesartan 

Lisinopril Telmisartan 

Perindopril Valsartan 

 Irbesartan 

Angiotensin-converting enzyme (ACE); Angiotensin-receptor-1 (AT-1), for details see text. 

 

Figure 1. Homeostasis between angiotensin-converting-enzyme (ACE) and angiotensin-converting-

enzyme 2 (ACE2) and their products (esp. AngII and Ang(1–7)) determines their net effect on 

proliferation and blood pressure; adapted from [43]. 
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Figure 2. Overview of the cleavage products of angiotensinogen; ACE1/2 (angiotensin-converting 

enzyme 1/2, aminopeptidase (AP), aminopeptidase A(-N) (APA(-N)) prolyl endopeptidase (PEP), 

prolylcarboxyendopeptidase (PRCP/PCP), neutral endopeptidase (NEP), carboxypeptidase (CP), 

decarboxylase (DCase), thimet oligopeptidase (THOP); modified after [45]. 

The hyaluronan-induced vessel compression depends, among other factors, on the collagen 

content of the tissue. An inverse correlation has been shown between hyaluronan content and 

perfusion only in collagen rich tumors [23]. This idea was supported by a study by Nieskoski in 2017 

when it was proposed that collagen traps the hyaluronan between its fibrils and therefore increases 

the total tissue pressure [46]. It is proposed that hyaluronan acts like a spring under tension within 

the collagen trap. This model suggests that the depletion of both ECM components offers a potential 

target in the improvement of cancer therapy by lowering the total tissue pressure and thereby 

probably decreasing the interstitial fluid pressure. The benefit of this approach would be expected to 

correlate with the pressure values and the grade of desmoplasia in ECM [23]. 

RAASis have a further additional dimensions beyond the interference with production of matrix 

components; they also seem to decrease the connective tissue growth factor 2 (CCN2). This factor 

plays a stabilizing role in the generation of ECM fibrosis. This stabilization implies a potential 

destabilization of the ECM structure by CCN2 inhibition through RAASi, and it yields another 

additional, yet unevaluated impact for RAASi usage as a potential supporting agent in cancer therapy 

[23]. 

Losartan has been found to reduce collagen I production from cancer associated fibroblasts 

(CAFs) in a dose-dependent manner. In addition, it reduces not only matrix production by CAFs in 

general, but it also reduces the total amount of CAFs. The molecular background is interference with 

downstream TGF-β1 signaling by inhibiting thrombospondin-1 synthesis (TSP-1). Angiotensin II 

induces TSP-1 synthesis via p38 MAPK and JNK signaling and TSP-1 acts as a major activator of TGF-

β. Consequently, reduced angiotensin II signaling leads to reduced TSP-1 levels and therefore to 

reduced TGF-β signaling [47]. This reduction causes reduced solid stress and maybe vessel 

compression, thus enhancing oxygen and drug delivery [8,23]. 
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The reduction of collagen and hyaluronan content and thereby the potential impaired ECM 

organization, leads to decreased mechanical forces that contribute to the solid stress within the tumor 

tissue. Therefore, the latter reduction lowers the compression of blood vessels, improving the 

delivery of drugs and oxygen. This effect was shown for breast and pancreatic cancer [23]; however, 

the exact mechanism and the importance of the ECM composition on vessel compression remains 

unclear. Studies on hepatocellular carcinomas indicate that the vessel decompression results in a 

clinical benefit due to angiotensin inhibition. A retrospective data analysis revealed a significant 

improvement in overall survival for patients with hepatocellular carcinoma (HCC) and good hepatic 

function: Child Pugh class A-treated between 1992 and 2013 with the cancer-specific drug sorafenib, 

together with inhibitors of the renin–angiotensin system as modulators of the ECM [48]. Similar 

beneficial effects have been found in mostly retrospective studies on other tumor entities, i.e., breast 

cancer [49], rectal cancer [50], renal cell carcinoma [51,52], pancreatic cancer [53], lung cancer [54,55] 

and glioblastoma [56]. 

There is also evidence for a vascular endothelial growth factor (VEGF)-independent activation 

of angiogenesis via angiotensin II (Ang II). This evidence led to the hypothesis that angiotensin 

inhibition could reduce angiogenesis in tumors. Despite known interactions with proangiogenic 

signaling, the clinical importance of this mechanism remains unclear [23,57]. 

However, RAASis alone do not affect the median survival in experiments, but in combination 

with chemotherapy they shown an increased overall survival benefit [8,23,24,48–56]. The RAAS and 

their downstream signaling present an interesting target for new chemotherapeutic drugs 

augmenting antifibrotic drugs, which could also offer advances for other therapies, such as heart 

failure and kidney disease. 

3. TGF-β 

As mentioned above, TGF-β1 signaling is reduced by RAASi. TGF-β-signaling is a promising 

target for drugs because it has an extensive signaling pathway and yields numerous interactions with 

cancer cells, CAFs and immune response cells. The magnitude of the signaling and possible 

interactions is shown in Figure 3. TGF-β takes part in different cellular signaling pathways and shows 

extensive crosstalk in a cellular background-dependent manner. These pathways include signals for 

important cancer hallmark features such as migration, apoptosis, proliferation and differentiation, 

including in particular EMT and cancer progression. Collaboration of the WNT and TGF-β pathways 

are necessary for the induction of EMT, as without WNT signaling TGF-β signaling would cause cell 

cycle arrest only [58]. 

The TGF-β signal pathway is engaged in extensive crosstalk with other cell signaling pathways. 

Its signaling is divided into the canonical SMAD pathway and the noncanonical SMAD-independent 

pathway. Overall, there are more than 30 members of the TGF-β superfamily, containing bone 

morphogenetic protein (BMPs), nodal, activin and inhibin [9,59]. 

The canonical pathway is executed in cancer cells, as well as in associated stromal cells, the 

cancer-associated fibroblasts (CAF). CAFs are a main player in the formation of the tumor 

microenvironment and are associated with increased growth, metastatic potential and chemotherapy 

resistance. TGF-β1 is frequently secreted by tumor cells and is in general the main player within 

tumor cell-stroma cell crosstalk. Once CAFs are induced they produce TGF-β1 themselves, leading 

to an auto-/paracrine stimulus for both cancer and stroma cells, maintaining fibrogenesis [60,61]. 

In the canonical TGF-β signal pathway the TGF-β ligand binds to the receptor Type 2; its 

binding to the receptor recruits and activates the receptor Type 1. This receptor, in turn, 

phosphorylates the C-terminal SXS-motif of receptor-regulated SMAD2/3 (r-SMAD). This 

phosphorylation is now required for the formation of a heterotrimeric complex, which is necessary 

for efficient nuclear accumulation and the initiation of sufficient signaling through interactions with 

common-mediator SMAD4 (co-SMAD) and SMAD-binding elements (SBE) in target gene promoters 

(5′-GTCT-3′-4bp SMAD box) [62–66]. Most common is the signaling through SMAD3/4 complexes, 

while SMAD 2 plays a less important role in SMAD signaling. The affinity between SMADs and the 

SBEs is very low, therefore additional transcription factors and transcriptional co-activators and co-
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repressors are recruited to form a multi-transcription factor complex, facilitating a stable interaction 

with the DNA. The SMAD 4-associated transcription factors are Runx-related proteins, FoxH1, Mixer 

and E2F; associated co-activators are CBP and P300 and associated Sloan Kettering Institute (SKI) co-

repressors and Ski novel (SnoN) [67,68]. Furthermore, the SMAD3 binding needs nucleosome-

depleted areas for DNA binding. Altogether, SMAD3 binds in a cell-type specific manner at different 

DNA sequences, mostly mediated through master transcription factors (i.e., OCT4, Myod1, PU.1) to 

promote a cell-specific TGF-β response [65,69,70]. SMAD6 and SMAD7 belong to the group of 

inhibitory SMADs (I-SMAD) which prevent phosphorylation of r-SMADs. SMAD7 signaling is 

considered to be a negative feedback loop from SMAD 2/4, 3/4 complexes [66,71,72]. The signaling is 

summarized in Figure 3. 

The effect of TGF-β on cancer cells themselves still remains elusive. A change of TGF-ß action 

during different stages of malignant progression is proposed. In normal epithelial cells TGF-β has 

growth-inhibitory and apoptosis-promoting properties, this role persisting during early tumor 

stages. In many tumor entities cancer cells lose the negative response on TGF-β, and they develop 

antagonistic properties such as a pro-oncogenic and pro-metastatic ones [73]. Alterations in the TGF-

β signaling cascade have been found in various cancer entities. The term “alterations” includes point 

mutations, but also gains, amplifications, deletions and DNA methylation. Forty-three genes of the 

canonical TGFβ superfamily and 50 SMAD downstream targets from the “PanCancer cohort” were 

analyzed with 33 entities from 9125 patients. Within the 43 canonical TGFβ genes 39% displayed an 

alteration in at least one gene. An alteration frequency of over 50% was found in 12 tumor types, 

cutaneous melanoma had with 70% the highest frequency, while the lowest was found with 4% in 

thyroid carcinoma. Their mRNA analysis of the 50 downstream genes revealed that in all mutations 

the direction of changes in target genes was the same. This finding implies that every change was 

directed, either in increasing or decreasing activity, across a heterogenous population of tumor types 

[74]. 

Due to its extensive complexity, there are numerous possible alterations and co-alterations, and 

they have been shown to occur at different levels of the signaling cascade. Starting at the ligand level, 

they include TGF-ß amplification, transforming growth factor receptor 2 (TGFBR2) mutations at the 

receptor level, SMAD4 mutations at the signal transduction level, and finally, further on downstream, 

SMAD4 target gene level. As seen in gliomas, the homozygote deletion of the cyclin-dependent 

kinase inhibitor 2 (CDKN2B), a tumor-suppressive target of the SMAD pathway, was found to be 

mutated [9,74–77]. 

The tumor stroma consists of connective tissue, which is in its composition, especially in 

desmoplastic tumors, not unlike scar tissue [78]. In this non-malignant tissue TGF-β acts in its 

physiological key role in initiating wound healing, scar formation and induction of fibrosis. 

Especially in wound healing it was shown that TGF-β signaling is a key inducer of fibrosis. 

Remarkedly, it is released within five minutes after epithelial damage. As mentioned above, cancer 

cells can act like these injured epithelia and release TGF-β. The SMAD3 pathway is the key pathway 

for TGF-β response in fibroblasts. TGF-β release stimulates production of further profibrotic 

molecules in fibroblasts, neutrophils and macrophages [79–83]. TGF-β is an inducer of CCN2 (a.k.a., 

connective tissue growth factor (CTGF), which takes part in important TGF-β effects, such as 

fibroblast proliferation and production and stabilization of ECM [23,82]. 

Compared to epithelial cells, TGF-β has opposing effects on stromal mesenchymal cells. TGF-β 

stimulates cell proliferation and ECM secretion of fibroblasts/myofibroblasts. TGF-β promotes the 

transition from fibroblasts to contractile myofibroblasts. These myofibroblasts are designated as 

cancer-associated fibroblasts in malignant tissues [84]. Numerous matrix and membrane proteins are 

upregulated through TGF-β, i.e., collagen I–V, laminin entactin, perlecan, elastin, fibronectin, 

hyaluronan and osteopontin. Additionally, TGF-β has negative effects on the degradation of matrix 

by decreasing the activity of matrix metalloproteases (MMPs), which are matrix-degrading enzymes 

[85–87]. 

The effect of TGF-β on the tumor microenvironment can be summarized as induction of fibrosis 

by enhancing ECM structural proteins, ECM-modulating enzymes and depleting ECM-degrading 
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enzymes. These alterations lead to increased matrix stiffness and physical forces within the tissue, 

causing solid stress, blood and lymphatic vessel compression and altered gene expression in cancer 

cells and other stromal cells [88,89]. The compressive stress reaction of cancer cells includes 

enhancement of invasive and metastatic properties, resulting in an increase in malignancy [86]. These 

alterations in the tumor microenvironment have important implications for therapy and therapy 

resistance. The desmoplastic character of some cancer entities with cell nests surrounded by a dense 

collagen rich stroma leads to increased diffusion distance and a steric barrier, presumably especially 

in the use of macromolecular drugs. There are a few therapeutic strategies targeting TGF-β signaling, 

such as neutralizing antibodies, ligand traps, antisense-oligonucleotides, kinase inhibitors and 

immune strategies [90]. As TGF-β was shown to be a potent inducer of EMT and is crucial for 

maintaining EMT, its role during EMT is described below. 

 

Figure 3. Transforming growth factor-β signaling in a nutshell. Canonical SMAD pathway and the 

noncanonical crosstalk to other signaling pathways. Partly modified after [86]. 

4. EMT 

Carcinomas develop from epithelial cells, which are characterized by structural intercellular 

junctions, namely adherens junctions, tight junctions and gap junctions. This feature of intercellular 

junctions in epithelial tissues can be considered as antimigratory, anti-invasive and therefore 

antimetastatic. In order to become metastatic, it is functionally necessary to lose these intercellular 

junctions in order to acquire a migratory phenotype. Loss of epithelial characteristics causes 

consecutively enhanced motility, loss of apical–basal polarity, detachment from the basement 

membrane, and in general a partial or a complete mesenchymal phenotype. During this process, 

which is called EMT, the cells simultaneously display mesenchymal and epithelial traits. Cancer cells 

thereby recapitulate, at least in part, classical EMT, which is a physiological process during 

embryogenesis, especially during gastrulation. The term “classical” thereby implies a complete linear 

transformation from an epithelial cell to a mesenchymal one at the end of the process. Cancer cells, 

and in particular metastatic ones, can use this conserved embryonic differentiation program. EMT in 

cancer cells is often incomplete; however, the loss of epithelial characteristics is large enough for the 
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definition of EMT, even without a complete switch to classical mesenchymal characteristics. In order 

to distinguish between the different types of EMT, the term “partial EMT” was coined [91]. One of 

the first experimental observations of EMT in adult non-malignant cells was observed in a 

gastrulation-independent EMT during lens development, with lens epithelial cells adapting 

mesenchymal traits in a collagen matrix [92]. 

EMT was considered to be a binary state of cells, especially during gastrulation, for a long time. 

However, recent findings have shown that epithelial–mesenchymal hybrid states exist that are not 

exclusively found in cancer cells, as this process can also take place during organogenesis and wound 

healing. Due to the linear appearance in gastrulation, the initial term coined was epithelial–

mesenchymal transformation, which was accordingly changed to transition to accommodate the 

existence of partial EMT states [93]. 

The old binary view on EMT grounds on an oversimplification in experimental design, 

especially with considerations of the EMT marker expression, which does not reflect the occurrence 

of intermediate stages during this process (e.g., most commonly used markers: epithelial: E-cadherin, 

occludins and cytokeratins; mesenchymal: vimentin and N-cadherin) [94]. The co-expression of 

mesenchymal und epithelial markers in one cell led to the hypothesis that the process in not 

necessarily binary and also yields a first definition of partial EMT states. To define partial EMT in 

one cell only by its co-expression of epithelial and mesenchymal markers would be an 

oversimplification, because paradoxically for partial EMT the expression of mesenchymal markers is 

not a necessity [94]. For partial EMT, the loss of epithelial hallmarks (e.g., apical–basal polarity, E-

cadherin) is sufficient and seems to appear especially in early tumor stages [95]. Further, classical 

epithelial markers may remain initially untouched. EMT typically starts with altering cell polarity 

and thereby affects tight junctions, adherens junctions, desmosomes and gap junctions [95,96]. In 

cancer cells the extent of EMT is very heterogenous and also varies within different tumor entities 

[94,97]. The loco typico of intensified EMT processes within a malignant tumor is found in the 

invasion front. At this front it is difficult to separate a mesenchymal cancer cell that has undergone 

EMT from an original tumor stroma cell, which is naturally of mesenchymal descent. This 

differentiation problem was solved by cell lineage labeling. This approach provided experimental in 

vivo evidence of spontaneous EMT. A Cre/LOX system was used, with a FSP1-Cre (fibroblast specific 

protein), WAP-Cre (whey acidic protein) and an upstream stop cassette floxed LacZ reporter, which 

is histochemically visualized by blue X-Gal. It was crossed into three different tumor models (WAP-

Myc, MMTV-PyMT, MMTV-neu). The stroma surrounding the tumor in the WAP-Myc model stained 

blue after X-gal staining. There were blue stained spindle-shaped cells within the stroma, and further 

immunostaining revealed that some of these cells express fibronectin or fibronectin and cytokeratin 

or fibronectin, cytokeratin and E-cadherin [98,99]. 

E-cadherin is frequently suppressed in epithelial cells undergoing EMT and therefore represents 

a main hallmark of the transition of epithelial cells into mesenchymal ones during EMT, but other 

epithelial intercellular junction molecules are suppressed too, such as ZO-1, occludin, claudin-1/-7, 

plakophilin and desmoplakin [95,100]. These proteins are all junctional proteins and their 

downregulation results in a loss of attachment, which is necessary for further motility, invasion and 

thus metastasis formation. 

However, despite all this evidence for the vital role of EMT during metastasis formation, there 

is further evidence that metastasis can develop independently of EMT, for example by using the 

podoplanin pathway and remodeling of the cytoskeleton [101] or via vessels that encapsulate tumor 

clusters (VETC) in HCC [102] or via COL1A1 in breast cancer [103]. Despite these studies, the role of 

EMT-independent metastasis remains controversial, as EMT is widely viewed to be essential in the 

metastatic cascade [104] and furthermore, has implications for other cancer hallmarks, e.g., stemness 

and drug resistance [105]. 

As outlined above, in metastatic deposits re-expression of epithelial marker/epithelial junctions 

is observed, hence metastases resemble the epithelial phenotype of the primary tumor. This reversal 

of the EMT is called mesenchymal–epithelial transition (MET), yielding adhesive tumor cells, forming 

new epithelial differentiated metastases [98]. The necessity of MET in the metastatic cascade has been 
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extensively investigated. The human bladder carcinoma cell line TSU-Pr1 with both mesenchymal 

and epithelial traits was used to generate a progression series by inoculating the original cell line 

orthotopically, intracardiac or intratibial into immunodeficient mice. The progression cell lines TSU-

Pr1 B1 were obtained from a single bone metastasis from the original TSU-Pr1 after intracardial 

injection of tumor cells in SCID mice. This was repeated with the TSU-Pr1 B1 cell line, yielding TSU-

Pr1 B2. TSU-Pr1 has a fibroblastoid phenotype; with the progression series the cells developed an 

epithelial character and lost mesenchymal traits (e.g., vimentin expression). The metastases all 

resembled an epithelial phenotype. Additionally, the orthotopic inoculated mesenchymal cells 

produced more micrometastases compared to the epithelial phenotype cells and vice versa, the 

intracardiac or intratibial inoculation, skipping the initial metastatic steps, was favorable for 

metastases formation from epithelial phenotype cells [104,106]. 

In pancreatic ductal adenocarcinoma small metastases displayed a more mesenchymal 

phenotype, whereas with increasing size of metastases, displayed a more epithelial character, 

convenient to MET [107]. The epithelial glycoprotein-2 was determined within different cell lines 

(three SCLC, three ovarian, three colon), in cell culture and after transplantation in SCID mice. In the 

early metastases the glycoprotein was found to be transiently downregulated, indicating a transient 

loss with probably general reexpression of epithelial markers [108]. 

4.1. Extracellular Factors Regulating EMT 

EMT is a highly complex biologic process, there are many factors promoting and inhibiting EMT. 

The crosstalk between all promotors and inhibitors determines the extent and permanence of the 

transition. For example, TGF- 1,2,3 receptor blockade displayed chemostatic effects in this context, 

simultaneously decreasing the degree of mesenchymal markers as a hallmark of EMT inhibition, 

underlining the great influence of TGF-ß in tumor biology [100,109]. TGF-β may be the most famous 

inducer of EMT. There are several other important EMT promoting factors such as hypoxia, Wnt, IL-

6, Notch, FGF, EGF, HGF, PFGF, UV light, hydrostatic pressure, tension and shear stress [100,110–

112]. The latter are all signals acting on an extremely complex equilibrium of factors influencing the 

degree of transition on a variable spectrum. The following downstream signaling implies an orchestra 

of factors, including transcription factors, RNA interference, epigenetic modifications, alternative 

splicing, subcellular localization and protein stability [94]. 

4.2. Transcription Factors Regulating EMT 

EMT underlies an extensive influence of environmental factors upon the cancer cells, 

necessitating control and crosstalk between different cells orchestrated by EMT-activating-

transcription factors (EMT-TFs). The EMT-TF core family consists of SNAI1, SNAI2, TWIST1, ZEB1 

and ZEB2. EMT-TF are widely seen as the master regulators of EMT [113–115] (Figure 4). These TFs 

were shown to have impact in nearly all cancer stages and are known drivers of malignancy. They 

can have both inductive and repressive features at the same time, depending on whether they induce 

an epithelial or mesenchymal phenotype [116]. As they are responsible for the maintenance of the 

epithelial or mesenchymal phenotype, respectively, they are also expressed to a varying degree, 

depending on the cell type, in normal tissues [117,118]. 
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Figure 4. Key regulation of the core epithelial–mesenchymal transition (EMT)-activating-

transcription factors (EMT-TFs) and their major targets. Modified from [96]. 

The different core EMT-TFs have different functions, and the activation clusters determine the 

degree of transition and hence the phenotype of the cell. For example, TWIST1 acts on trend as a 

potent mesenchymal inducer, but has a low epithelial repressing potency. Interestingly, TWIST 1-

induced regulation has been shown to directly influence the cellular phenotype of cancer cells at the 

tumor invasion front. TWIST 1 has been found regulating invadopodia and actin cytoskeleton in 

invading tumor cells [119]. In contrast, SNAI1 and ZEB1 show a mostly low potency in induction of 

mesenchymal features, but a high potency for epithelial repression. Thus, SNAI1 and SNAI2 were 

found to suppress E-cadherin expression in different (cancer) cell lines [120,121]. Furthermore, in 

SNAI1-overexpressing MDCK cells, an E-cadherin-independent suppression of tight junction 

proteins was found (e.g., ZO-1, different claudins). This suppression was found both on the 

transcriptional and on the translational level. SNAI1-overexpressed MDCK cells displayed a 

mesenchymal phenotype, and ectopic E-cadherin reexpression alone was unable to reverse the 

phenotype, indicating that SNAI1 was the regulator of the epithelial phenotype and E-cadherin its 

executor. Additionally, SNAI1 acted on survival pathways (MEK/ERK and PI3K/AKT) and the 

antiapoptotic BCL-xl expression was increased [122–124]. A set of SNAI1 potentially regulated genes 

is summarized in Figure 4. As mentioned before, the displayed genes are possibly regulated, 

depending on cell background, yielding an individual reaction set for every tumor type and EMT-

TF. For example, SNAI1 or TWIST1 were knocked out in pancreatic cancer cells (KPC), with no effect 

on invasion or metastasis formation being observed [125]. Nevertheless, an increased gemcitabine 

sensitivity was found after the knock-out. This led to the hypothesis that EMT is not a necessity for 

metastasis formation [125]. Another group found in the same mouse model a reduction in the number 

of metastases through ZEB1 knock-out [126]. This observation emphasizes the impact and effect-

heterogenicity of single EMT-TFs. 

ZEB1 was found to be a driver of malignancy in melanomas, resulting in poor patient outcome 

[127]. ZEB2, another core EM-TF from the ZEB family, displayed opposite effects in mouse 

melanomas; ZEB2 decreased the malignant progression and the loss of ZEB2 increased it [127]. This 

finding can be explained by the physiological role of ZEB proteins in melanocytes. ZEB1 is important 
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for maintenance of the stem cell character of melanoblasts, whereas ZEB2 acts as a differentiation 

signal in these cells. The loss of ZEB2 decreased the microphthalmia-associated transcription factor, 

a key inducer of differentiation in melanocytes [117]. The oncogenic properties of ZEB1 were 

enhanced by TWIST1, whereas SNAI2 was associated with increased ZEB2 tumor suppression 

[117,127]. These studies underline the complicated interactions of EMT-TF, not only in the different 

effects in different cellular background, but also in the co-expression and crosstalk of different EMT-

TFs themselves. 

TGF-β is an inducer of EMT, especially in the context of wound healing and closure of disrupted 

epithelial sheets. During regeneration, TGF-β induces via SNAI2 a migratory partial EMT phenotype 

within epithelial cells, as observed in the migratory front of keratinocytes on the wound border 

[128,129]. 

As implied previously, EMT-TF can also take effect on different pro- and antiapoptotic genes, 

such as the BCL-2 family [130]. In breast cancer and epithelial ovarian cancer cells SNAI1/2 repressed 

p53 and anti- and proapoptotic p53 effector proteins, resulting in a suppression of the physiological 

DNA damage response [131,132]. In a cisplatin resistance study in head and neck cancer, SNAI1 was 

shown to induce the excision repair cross complementation Group 1 protein (ERCC1), resulting in 

increased resistance [133]. In FaDu hypopharyngeal cancer cells, TWIST1- overexpressing cancer cells 

showed a decreased sensitivity to taxol, due to an increased p-glycoprotein activity and impaired 

apoptosis following increased BCL-2 and decreased Bax and cleaved caspase-3 and -9 [134]. 

The regulation of the EMT-TFs does not only involve proteins, but also miRNAs (see Figure 5) 

which have either negative or double negative (i.e., positive) feedback loops, as shown in Figure 5 

[94,135]. 

 

Figure 5. Core of the double-negative feedback loop between EMT-TF and microRNA. Modified from 

[94] 

In addition to the classical EMT-TF, a growing number of minor EMT-inducing or EMT-

enhancing proteins have been uncovered [96]. They seem to directly induce EMT under certain 

circumstances or have been found to cooperate with core EMT-TFs. For example: Tead2–Yap–Taz, 

E12-47, SOX4, SOX9, FOXC2, FOXA2, FOXF2, HMGA2, PRRX1, ZNF281 [96,136–139]. The basal 

breast cancer cell line FOXC2 was found to delocalize E-cadherin into the cytosol, induce N-cadherin, 

vimentin, fibronectin, αSMA and to regulate canonical TGF-β signaling [138]. Forced expression of 

Tead2 in Py2 T murine breast cancer cells decreased the expression of E-cadherin and ZO-1, while 

increasing the levels of vimentin, ZEB1, ZEB2 and SNAI2 and altering the cytoskeleton from cortical 

actin-to-actin stress fibers [136]. 
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There are also EMT-inhibiting transcription factors such as grainyhead-like 2 (Grhl2) and 

Ovol1/2 [94]. Due to the many different transcription factors regulating EMT, it is at present 

impossible to determine a universal applicable rule for the effect of EMT-TF in cancer cells. The effect 

and importance of distinct TFs are highly dependent on the cellular background and they vary 

between stage and tumor type. 

4.3. EMT and Stemness 

The interplay between EMT and stemness are discussed using the intestinal stem cells as a model 

system. The intestinal stem cells (ISC) reside in a niche within the intestinal crypts. This niche protects 

cells from TGF-β signaling; as mentioned above TGF-β has cytostatic properties on epithelial cells. 

The niche also contains mitotic and stem cell-maintaining signaling, such as WNT, NOTCH and EGF. 

Differentiated Paneth cells residing in an adjacent location at the base of the crypts express the latter 

factors and are important for the integrity of the stem cell niche, as upon removal of Paneth cells, the 

stem cells also disappear. If the stem cells are destroyed, the niche itself is able to re-induce stem cells 

from progenitor cells, as seen in vitro [140,141]. Similar in vivo experiments in other stem cell 

compartments have shown even further potential in regaining stemness. After destruction of basal 

cells in the mouse trachea, fully differentiated club cells regained stemness and refilled the stem cell 

niche [142]. Similar findings were made in renal tubule restoration after damage, where differentiated 

tubular epithelial cells transiently dedifferentiated and proliferated to repair the damage, after which 

the cells re-differentiated [143]. Therefore, cancer stem cells (CSCs) are not only a very promising 

target for cancer therapy, but they are also subject to EMT. The transporter for diphtheria toxin was 

brought under the control of LGR5—the intestinal stem cell marker—within a colorectal cancer 

xenograft model. As expected, the toxin killed the stem cell marker-positive cells, consequently 

leading to decreased tumor growth. LGR5-negative proliferative cells tried continuously to replenish 

the LGR5+ stem cell pool. After therapy cessation the primary tumor recovered, but the distant 

metastases did not, indicating that potent stem cell niches are mainly found in the primary tumor 

[144]. At the invasive border of squamous cell carcinomas, the EMT inducer TGF-β was found to slow 

down the proliferation of CSCs, resulting in resistance against antiproliferative therapy. Lineage 

tracking showed that these cells rebuild the tumor after cisplatin treatment [144]. Similar data were 

obtained from CSC in breast and skin cancer, subpopulations of those cells that had undergone EMT, 

resulting in more migratory phenotype with slow cell proliferation [145]. 

EMT is often seen as a necessity for metastasis formation as this differentiation program induces 

an invasive and migratory phenotype, with an increased metastasis-initiating potential. Once 

established as disseminated tumor cells in a distant organ, the formation of clinically detectable 

metastases requires a reverse EMT, namely MET, and thus silencing of EMT-TF occurs, resulting in 

an epithelial phenotype of the metastasis. Consequently, tumor cells fixed in an epithelial EMT 

phenotype have been shown to elicit very poor metastatic potential [146,147]. Therefore, interplay 

between EMT and stemness is important. 

One example for direct interplay of EMT and stemness was found in immortalized human 

mammary epithelial (HMLEs) cells. TWIST1 or SNAI1 were expressed ectopically in these cells. The 

TWIST1 or SNAI1 induction lead to an CSC-like/mammary stem cell status with an CD44high/CD22low 

phenotype [148]. In mammosphere assays, following EMT, cells displayed more than a 30-fold 

increase in the number of mammospheres. In a similar study, with transiently-induced TWIST1 in 

HMLEs, after the signaling was stopped the cells regained an epithelial phenotype, but stem-like 

properties remained stable, measured by the ability to form mammospheres [149]. 

Considering in vivo appearance of metastasis, resembling an epithelial phenotype after 

switching from EMT to MET, EMT can be mainly seen as a context-dependent positive or negative 

differentiation program for stem cells. This process is supported by the physiological properties of 

stem cells and the growth inhibition through TGF-β in the ISC niche, as mentioned above. For 

example, there is experimental evidence that TWIST1 can induce stable stem-like cells in mammary 

epithelial cells [149]. Nevertheless, in general EMT has a temporo-spatial limitation within the 

metastatic cascade, so does the inhibition of stem cells. As a result, epithelial phenotypic metastasis 
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can be formed. In general, there is data supporting both the inhibitory and stimulating influence of 

EMT on stemness or on stem-like properties. These data were obtained in different contexts 

(inhibitory: [146,150] stimulating: [96,151]). 

Beyond the extensive transcriptional regulation, there is an overlying network of influences, 

such as epigenetic (mentioned above; histone modification, DNA methylation) posttranscriptional 

(alternative splicing, miR-sponge, processing), translational (stability polyA-tail, initiation) and 

posttranslational (ubiquitylation, acetylation, phosphorylation), which all also influence EMT/MET 

transitions. 

5. Conclusions 

Cancer remains a common cause of death, and thus it may be helpful to revisit some old standard 

medications under new aspects, in order to repurpose them to improve cancer treatment. 

Angiotensin inhibitors are such candidate drugs—especially those acting on AT-1 signaling, which 

has been found to be an important pro-fibrotic signaling. The angiotensin receptor blockage is able 

to reduce TGF-β1 signaling, therefore decreasing collagen I and hyaluronan synthesis, resulting in 

reduced desmoplasia and probably increased drug delivery [23]. The effect of a direct receptor 

blockade on desmoplasia is greater than the effect of blockade of the converting enzyme, most likely 

due to the different AT-receptors and plethora of proteins cleaved by ACE-I. The analyses of 

retrospective clinical studies from different entities indicate that these effects are not theoretical only 

but are clinically apparent in an increased overall patient survival. TGF-β is pivotal in the 

communication of cancer cells with cancer-associated fibroblasts and with the induction and 

maintenance of the latter, TGF-β builds a positive auto-stimulatory feedback loop within CAFs. There 

are a considerable number of potential new drugs in development targeting TGF-β, aiming from 

different angles (antibodies, ligand traps, antisense-oligonucleotides, kinase inhibitors, immune 

strategies) [90]. TGF-β is also a potent inducer of EMT. EMT is characterized through loss of epithelial 

characteristics and/or gain of mesenchymal characteristics and together with its counterpart MET, 

they are broadly known as key players in metastasis formation. Especially in cancer, the transition 

lies within a limited spatiotemporal spectrum between epithelial and mesenchymal cells. The degree 

of transition is regulated by numerous mechanisms, such as extracellular signals, transcription 

factors, microRNAs, alternative splicing and epigenetics. The plethora of factors contributing to EMT 

offer several potential new drug targets. However, later steps of the metastatic cascade impede the 

usage of anti-EMT drugs, as these drugs could even facilitate the formation of metastasis, because the 

reversal of EMT the MET is seen in metastasis. Therefore, EMT-inhibitors could block the early steps 

within the metastatic cascade, while promoting the later steps of the cascade [94]. In conclusion, 

further research is needed in order to win the war on cancer; hence we may need to further re-

evaluate older drugs within the context of cancer. 

Funding: The APC was founded by intramural funds. 

Acknowledgments: We thank Liz Grundy for her thorough English language editing. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bailar, J.C., 3rd; Gornik, H.L. Cancer undefeated. N. Engl. J. Med. 1997, 336, 1569–1574, 

doi:10.1056/NEJM199705293362206. 

2. Deininger, M.W.; Goldman, J.M.; Lydon, N.; Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively 

inhibits the growth of BCR-ABL-positive cells. Blood 1997, 90, 3691–3698. 

3. Angstreich, G.R.; Smith, B.D.; Jones, R.J. Treatment options for chronic myeloid leukemia: Imatinib versus 

interferon versus allogeneic transplant. Curr. Opin. Oncol. 2004, 16, 95–99. 

4. Chauhan, V.P.; Stylianopoulos, T.; Boucher, Y.; Jain, R.K. Delivery of molecular and nanoscale medicine to 

tumors: Transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 281–298, 

doi:10.1146/annurev-chembioeng-061010-114300. 



Cancers 2020, 12, 2785 15 of 22 

 

5. Stylianopoulos, T.; Martin, J.D.; Chauhan, V.P.; Jain, S.R.; Diop-Frimpong, B.; Bardeesy, N.; Smith, B.L.; 

Ferrone, C.R.; Hornicek, F.J.; Boucher, Y.; et al. Causes, consequences, and remedies for growth-induced 

solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 15101–15108, 

doi:10.1073/pnas.1213353109. 

6. Gkretsi, V.; Stylianou, A.; Papageorgis, P.; Polydorou, C.; Stylianopoulos, T. Remodeling Components of 

the Tumor Microenvironment to Enhance Cancer Therapy. Front. Oncol. 2015, 5, 214, 

doi:10.3389/fonc.2015.00214. 

7. Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. 

Rev. Biomed. Eng. 2014, 16, 321–346, doi:10.1146/annurev-bioeng-071813-105259. 

8. Diop-Frimpong, B.; Chauhan, V.P.; Krane, S.; Boucher, Y.; Jain, R.K. Losartan inhibits collagen I synthesis 

and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 2011, 

108, 2909–2914, doi:10.1073/pnas.1018892108. 

9. Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630, doi:10.1038/nrm3434. 

10. Wright, J.M.; Musini, V.M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev. 2018, 4, 

CD001841, doi:10.1002/14651858.CD001841.pub3. 

11. Marques Da Silva, P.; Aguiar, C. Sacubitril/valsartan: An important piece in the therapeutic puzzle of heart 

failure. Rev. Port. Cardiol. 2017, 36, 655–668, doi:10.1016/j.repc.2016.11.013. 

12. Xu, R.; Sun, S.; Huo, Y.; Yun, L.; Huang, S.; Li, G.; Yan, S. Effects of ACEIs Versus ARBs on Proteinuria or 

Albuminuria in Primary Hypertension: A Meta-Analysis of Randomized Trials. Medicine (Baltimore) 2015, 

94, e1560, doi:10.1097/MD.0000000000001560. 

13. Srivastava, S.P.; Goodwin, J.E.; Kanasaki, K.; Koya, D. Inhibition of Angiotensin-Converting Enzyme 

Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes 2020, 

11, E211, doi:10.3390/genes11020211. 

14. Atlas, S.A. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic 

inhibition. J. Manag. Care Pharm. 2007, 13, 9–20, doi:10.18553/jmcp.2007.13.s8-b.9. 

15. Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system 

for homeostasis and pathologies. Biomed. Pharm. 2017, 94, 317–325, doi:10.1016/j.biopha.2017.07.091. 

16. Lijnen, P.; Papparella, I.; Petrov, V.; Semplicini, A.; Fagard, R. Angiotensin II-stimulated collagen 

production in cardiac fibroblasts is mediated by reactive oxygen species. J. Hypertens 2006, 24, 757–766, 

doi:10.1097/01.hjh.0000217860.04994.54. 

17. Nogueira, A.; Pires, M.J.; Oliveira, P.A. Pathophysiological Mechanisms of Renal Fibrosis: A Review of 

Animal Models and Therapeutic Strategies. In Vivo (Athens Greece) 2017, 31, 1–22, 

doi:10.21873/invivo.11019. 

18. Dewhirst, M.W.; Secomb, T.W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 

2017, 17, 738–750, doi:10.1038/nrc.2017.93. 

19. Primeau, A.J.; Rendon, A.; Hedley, D.; Lilge, L.; Tannock, I.F. The distribution of the anticancer drug 

Doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 2005, 11, 8782–8788, 

doi:10.1158/1078-0432.CCR-05-1664. 

20. Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater. 2013, 12, 958–962, 

doi:10.1038/nmat3792. 

21. Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. 

Int. J. Mol. Sci. 2019, 20, 4504, doi:10.3390/ijms20184504. 

22. Miao, L.; Lin, C.M.; Huang, L. Stromal barriers and strategies for the delivery of nanomedicine to 

desmoplastic tumors. J. Control. Release Off. Soc. 2015, 219, 192–204, doi:10.1016/j.jconrel.2015.08.017. 

23. Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; 

Han, X.; Adstamongkonkul, P.; et al. Angiotensin inhibition enhances drug delivery and potentiates 

chemotherapy by decompressing tumour blood vessels. Nat. Commun. 2013, 4, 2516, 

doi:10.1038/ncomms3516. 

24. Liu, J.; Liao, S.; Diop-Frimpong, B.; Chen, W.; Goel, S.; Naxerova, K.; Ancukiewicz, M.; Boucher, Y.; Jain, 

R.K.; Xu, L. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma 

by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA 2012, 109, 16618–16623, 

doi:10.1073/pnas.1117610109. 

25. Rodrigues-Ferreira, S.; Nahmias, C. G-protein coupled receptors of the renin-angiotensin system: New 

targets against breast cancer? Front. Pharmacol. 2015, 6, 24, doi:10.3389/fphar.2015.00024. 



Cancers 2020, 12, 2785 16 of 22 

 

26. Gonzalez-Villalobos, R.A.; Shen, X.Z.; Bernstein, E.A.; Janjulia, T.; Taylor, B.; Giani, J.F.; Blackwell, W.L.; 

Shah, K.H.; Shi, P.D.; Fuchs, S.; et al. Rediscovering ACE: Novel insights into the many roles of the 

angiotensin-converting enzyme. J. Mol. Med. Berl. 2013, 91, 1143–1154, doi:10.1007/s00109-013-1051-z. 

27. Skidgel, R.A.; Erdos, E.G. Novel activity of human angiotensin I converting enzyme: Release of the NH2- 

and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc. Natl. Acad. Sci. 

USA 1985, 82, 1025–1029. 

28. Rasoul, S.; Carretero, O.A.; Peng, H.; Cavasin, M.A.; Zhuo, J.; Sanchez-Mendoza, A.; Brigstock, D.R.; 

Rhaleb, N.E. Antifibrotic effect of Ac-SDKP and angiotensin-converting enzyme inhibition in hypertension. 

J. Hypertens 2004, 22, 593–603. 

29. Wang, M.; Liu, R.; Jia, X.; Mu, S.; Xie, R. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal inflammation 

and tubulointerstitial fibrosis in rats. Int. J. Mol. Med. 2010, 26, 795–801, doi:10.3892/ijmm_00000527. 

30. Peng, H.; Carretero, O.A.; Brigstock, D.R.; Oja-Tebbe, N.; Rhaleb, N.E. Ac-SDKP reverses cardiac fibrosis 

in rats with renovascular hypertension. Hypertension 2003, 42, 1164–1170, 

doi:10.1161/01.HYP.0000100423.24330.96. 

31. Li, P.; Xiao, H.D.; Xu, J.; Ong, F.S.; Kwon, M.; Roman, J.; Gal, A.; Bernstein, K.E.; Fuchs, S. Angiotensin-

converting enzyme N-terminal inactivation alleviates bleomycin-induced lung injury. Am. J. Pathol. 2010, 

177, 1113–1121, doi:10.2353/ajpath.2010.081127. 

32. Lenfant, M.; Wdzieczak-Bakala, J.; Guittet, E.; Prome, J.C.; Sotty, D.; Frindel, E. Inhibitor of hematopoietic 

pluripotent stem cell proliferation: Purification and determination of its structure. Proc. Natl. Acad. Sci. USA 

1989, 86, 779–782, doi:10.1073/pnas.86.3.779. 

33. Liu, J.M.; Kusinski, M.; Ilic, V.; Bignon, J.; Hajem, N.; Komorowski, J.; Kuzdak, K.; Stepien, H.; Wdzieczak-

Bakala, J. Overexpression of the angiogenic tetrapeptide AcSDKP in human malignant tumors. Anticancer. 

Res. 2008, 28, 2813–2817. 

34. Liu, J.-M.; Gora-Tybor, J.; Grzybowska-Izydorczyk, O.; Bignon, J.; Robak, T.; Wdzieczak-Bakala, J. Elevated 

plasma levels of the angiogenic tetrapeptide acetyl-ser-asp-lys-pro are found in some patients with 

hematologic malignancies. Leuk. Lymphoma 2009, 50, 2096–2097, doi:10.3109/10428190903331074. 

35. Mayordomo, C.; García-Recio, S.; Ametller, E.; Fernández-Nogueira, P.; Pastor-Arroyo, E.M.; Vinyals, L.; 

Casas, I.; Gascón, P.; Almendro, V. Targeting of substance P induces cancer cell death and decreases the 

steady state of EGFR and Her2. J. Cell. Physiol. 2012, 227, 1358–1366, doi:10.1002/jcp.22848. 

36. Palma, C. Tachykinins and their receptors in human malignancies. Curr. Drug. Targets 2006, 7, 1043–1052, 

doi:10.2174/138945006778019282. 

37. Javid, H.; Mohammadi, F.; Zahiri, E.; Hashemy, S.I. The emerging role of substance P/neurokinin-1 receptor 

signaling pathways in growth and development of tumor cells. J. Physiol. Biochem. 2019, 75, 415–421, 

doi:10.1007/s13105-019-00697-1. 

38. Suvas, S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J. 

Immunol. Baltim. Md. 2017, 199, 1543–1552, doi:10.4049/jimmunol.1601751. 

39. Milner, P.; Ralevic, V.; Hopwood, A.M.; Fehér, E.; Lincoln, J.; Kirkpatrick, K.A.; Burnstock, G. 

Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary 

artery and release of substance P and acetylcholine during hypoxia. Experientia 1989, 45, 121–125, 

doi:10.1007/BF01954843. 

40. Peng, L.; Agogo, G.O.; Guo, J.; Yan, M. Substance P and fibrotic diseases. Neuropeptides 2019, 76, 101941, 

doi:10.1016/j.npep.2019.101941. 

41. Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. 

Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol. 2015, 47, 151–

160, doi:10.3892/ijo.2015.3016. 

42. Ilmer, M.; Garnier, A.; Vykoukal, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M. Targeting the 

Neurokinin-1 Receptor Compromises Canonical Wnt Signaling in Hepatoblastoma. Mol. Cancer Ther. 2015, 

14, 2712, doi:10.1158/1535-7163.MCT-15-0206. 

43. Santos, R.A.; Ferreira, A.J.; Simoes, E.S.A.C. Recent advances in the angiotensin-converting enzyme 2-

angiotensin(1-7)-Mas axis. Exp. Physiol. 2008, 93, 519–527, doi:10.1113/expphysiol.2008.042002. 

44. Santos, R.A.; Ferreira, A.J.; Verano-Braga, T.; Bader, M. Angiotensin-converting enzyme 2, angiotensin-(1-

7) and Mas: New players of the renin-angiotensin system. J. Endocrinol. 2013, 216, R1-R17, doi:10.1530/JOE-

12-0341. 



Cancers 2020, 12, 2785 17 of 22 

 

45. Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-

Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on 

Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553, doi:10.1152/physrev.00023.2016. 

46. Nieskoski, M.D.; Marra, K.; Gunn, J.R.; Hoopes, P.J.; Doyley, M.M.; Hasan, T.; Trembly, B.S.; Pogue, B.W. 

Collagen Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer. Sci. Rep. 

2017, 7, 10093, doi:10.1038/s41598-017-10671-w. 

47. Naito, T.; Masaki, T.; Nikolic-Paterson, D.J.; Tanji, C.; Yorioka, N.; Kohno, N. Angiotensin II induces 

thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: A mechanism for 

activation of latent TGF-beta1. Am. J. Physiol. Renal. Physiol. 2004, 286, F278–287, 

doi:10.1152/ajprenal.00139.2003. 

48. Pinter, M.; Weinmann, A.; Worns, M.A.; Hucke, F.; Bota, S.; Marquardt, J.U.; Duda, D.G.; Jain, R.K.; Galle, 

P.R.; Trauner, M.; et al. Use of inhibitors of the renin-angiotensin system is associated with longer survival 

in patients with hepatocellular carcinoma. United Eur. Gastroenterol. J. 2017, 5, 987–996, 

doi:10.1177/2050640617695698. 

49. Chae, Y.K.; Valsecchi, M.E.; Kim, J.; Bianchi, A.L.; Khemasuwan, D.; Desai, A.; Tester, W. Reduced risk of 

breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. Cancer Invest. 2011, 29, 585–

593, doi:10.3109/07357907.2011.616252. 

50. Morris, Z.S.; Saha, S.; Magnuson, W.J.; Morris, B.A.; Borkenhagen, J.F.; Ching, A.; Hirose, G.; McMurry, V.; 

Francis, D.M.; Harari, P.M.; et al. Increased tumor response to neoadjuvant therapy among rectal cancer 

patients taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Cancer 2016, 

122, 2487–2495, doi:10.1002/cncr.30079. 

51. Izzedine, H.; Derosa, L.; Le Teuff, G.; Albiges, L.; Escudier, B. Hypertension and angiotensin system 

inhibitors: Impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. Ann. Oncol. 

2015, 26, 1128–1133, doi:10.1093/annonc/mdv147. 

52. Keizman, D.; Huang, P.; Eisenberger, M.A.; Pili, R.; Kim, J.J.; Antonarakis, E.S.; Hammers, H.; Carducci, 

M.A. Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal 

cell carcinoma: A retrospective examination. Eur. J. Cancer 2011, 47, 1955–1961, 

doi:10.1016/j.ejca.2011.04.019. 

53. Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Sasahira, N.; Hirano, K.; Kogure, H.; Kawakubo, K.; Yagioka, 

H.; Yashima, Y.; et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic 

cancer receiving gemcitabine. Br. J. Cancer 2010, 103, 1644–1648, doi:10.1038/sj.bjc.6605955. 

54. Wilop, S.; von Hobe, S.; Crysandt, M.; Esser, A.; Osieka, R.; Jost, E. Impact of angiotensin I converting 

enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-

small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol. 2009, 

135, 1429–1435, doi:10.1007/s00432-009-0587-3. 

55. Menter, A.R.; Carroll, N.M.; Sakoda, L.C.; Delate, T.; Hornbrook, M.C.; Jain, R.K.; Kushi, L.H.; Quinn, V.P.; 

Ritzwoller, D.P. Effect of Angiotensin System Inhibitors on Survival in Patients Receiving Chemotherapy 

for Advanced Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2017, 18, 189–197 e183, 

doi:10.1016/j.cllc.2016.07.008. 

56. Januel, E.; Ursu, R.; Alkhafaji, A.; Marantidou, A.; Doridam, J.; Belin, C.; Levy-Piedbois, C.; Carpentier, A.F. 

Impact of renin-angiotensin system blockade on clinical outcome in glioblastoma. Eur. J. Neurol. 2015, 22, 

1304–1309, doi:10.1111/ene.12746. 

57. Buharalioglu, C.K.; Song, C.Y.; Yaghini, F.A.; Ghafoor, H.U.; Motiwala, M.; Adris, T.; Estes, A.M.; Malik, 

K.U. Angiotensin II-induced process of angiogenesis is mediated by spleen tyrosine kinase via VEGF 

receptor-1 phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1043–1055, 

doi:10.1152/ajpheart.01018.2010. 

58. Scheel, C.; Eaton, E.N.; Li, S.H.; Chaffer, C.L.; Reinhardt, F.; Kah, K.J.; Bell, G.; Guo, W.; Rubin, J.; 

Richardson, A.L.; et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell 

states in the breast. Cell 2011, 145, 926–940, doi:10.1016/j.cell.2011.04.029. 

59. Wrana, J.L. Signaling by the TGFbeta superfamily. Cold Spring Harb. Perspect. Biol. 2013, 5, a011197, 

doi:10.1101/cshperspect.a011197. 

60. Houthuijzen, J.M.; Jonkers, J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor 

microenvironment. Cancer Metastasis Rev. 2018, 37, 577–597, doi:10.1007/s10555-018-9768-3. 



Cancers 2020, 12, 2785 18 of 22 

 

61. Kakarla, S.; Song, X.-T.; Gottschalk, S. Cancer-associated fibroblasts as targets for immunotherapy. 

Immunotherapy 2012, 4, 1129–1138, doi:10.2217/imt.12.112. 

62. Macias-Silva, M.; Abdollah, S.; Hoodless, P.A.; Pirone, R.; Attisano, L.; Wrana, J.L. MADR2 is a substrate 

of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 

1996, 87, 1215–1224. 

63. Zhang, Y.; Feng, X.; We, R.; Derynck, R. Receptor-associated Mad homologues synergize as effectors of the 

TGF-beta response. Nature 1996, 383, 168–172, doi:10.1038/383168a0. 

64. Jonk, L.J.; Itoh, S.; Heldin, C.H.; ten Dijke, P.; Kruijer, W. Identification and functional characterization of a 

Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, 

and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 1998, 273, 21145–21152. 

65. Shi, Y.; Wang, Y.F.; Jayaraman, L.; Yang, H.; Massague, J.; Pavletich, N.P. Crystal structure of a Smad MH1 

domain bound to DNA: Insights on DNA binding in TGF-beta signaling. Cell 1998, 94, 585–594. 

66. Feng, X.H.; Derynck, R. Specificity and versatility in tgf-beta signaling through Smads. Annu. Rev. Cell Dev. 

Biol. 2005, 21, 659–693, doi:10.1146/annurev.cellbio.21.022404.142018. 

67. Imamura, T.; Hikita, A.; Inoue, Y. The roles of TGF-β signaling in carcinogenesis and breast cancer 

metastasis. Breast Cancer 2012, 19, 118–124, doi:10.1007/s12282-011-0321-2. 

68. Tecalco-Cruz, A.C.; Ríos-López, D.G.; Vázquez-Victorio, G.; Rosales-Alvarez, R.E.; Macías-Silva, M. 

Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in 

health and disease. Signal Transduct. Target. Ther. 2018, 3, 15, doi:10.1038/s41392-018-0015-8. 

69. Ross, S.; Hill, C.S. How the Smads regulate transcription. Int. J. Biochem. Cell Biol. 2008, 40, 383–408, 

doi:10.1016/j.biocel.2007.09.006. 

70. Mullen, A.C.; Orlando, D.A.; Newman, J.J.; Loven, J.; Kumar, R.M.; Bilodeau, S.; Reddy, J.; Guenther, M.G.; 

DeKoter, R.P.; Young, R.A. Master transcription factors determine cell-type-specific responses to TGF-beta 

signaling. Cell 2011, 147, 565–576, doi:10.1016/j.cell.2011.08.050. 

71. Attisano, L.; Wrana, J.L. Signal transduction by the TGF-beta superfamily. Science 2002, 296, 1646–1647, 

doi:10.1126/science.1071809. 

72. Papageorgis, P.; Lambert, A.W.; Ozturk, S.; Gao, F.; Pan, H.; Manne, U.; Alekseyev, Y.O.; Thiagalingam, A.; 

Abdolmaleky, H.M.; Lenburg, M.; et al. Smad signaling is required to maintain epigenetic silencing during 

breast cancer progression. Cancer Res. 2010, 70, 968–978, doi:10.1158/0008-5472.CAN-09-1872. 

73. Seoane, J.; Gomis, R.R. TGF-beta Family Signaling in Tumor Suppression and Cancer Progression. Cold 

Spring Harb. Perspect Biol. 2017, 9, doi:10.1101/cshperspect.a022277. 

74. Korkut, A.; Zaidi, S.; Kanchi, R.S.; Rao, S.; Gough, N.R.; Schultz, A.; Li, X.; Lorenzi, P.L.; Berger, A.C.; 

Robertson, G.; et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of 

Signaling by the TGF-beta Superfamily. Cell Syst. 2018, 7, 422–437 e427, doi:10.1016/j.cels.2018.08.010. 

75. Massague, J. TGFbeta in Cancer. Cell 2008, 134, 215–230, doi:10.1016/j.cell.2008.07.001. 

76. Levy, L.; Hill, C.S. Alterations in components of the TGF-beta superfamily signaling pathways in human 

cancer. Cytokine Growth Factor Rev. 2006, 17, 41–58, doi:10.1016/j.cytogfr.2005.09.009. 

77. Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma 

genes and core pathways. Nature 2008, 455, 1061–1068, doi:10.1038/nature07385. 

78. Dvorak, H.F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015, 3, 1–11, doi:10.1158/2326-

6066.CIR-14-0209. 

79. Wahl, S.M.; Hunt, D.A.; Wakefield, L.M.; McCartney-Francis, N.; Wahl, L.M.; Roberts, A.B.; Sporn, M.B. 

Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc. 

Natl. Acad. Sci. USA 1987, 84, 5788–5792. 

80. Gilbert, R.W.D.; Vickaryous, M.K.; Viloria-Petit, A.M. Signalling by Transforming Growth Factor Beta 

Isoforms in Wound Healing and Tissue Regeneration. J. Dev. Biol. 2016, 4, doi:10.3390/jdb4020021. 

81. Kane, C.J.; Hebda, P.A.; Mansbridge, J.N.; Hanawalt, P.C. Direct evidence for spatial and temporal 

regulation of transforming growth factor beta 1 expression during cutaneous wound healing. J. Cell Physiol. 

1991, 148, 157–173, doi:10.1002/jcp.1041480119. 

82. Leask, A.; Abraham, D.J. TGF-beta signaling and the fibrotic response. FASEB J. 2004, 18, 816–827, 

doi:10.1096/fj.03-1273rev. 

83. Yang, Y.C.; Piek, E.; Zavadil, J.; Liang, D.; Xie, D.; Heyer, J.; Pavlidis, P.; Kucherlapati, R.; Roberts, A.B.; 

Bottinger, E.P. Hierarchical model of gene regulation by transforming growth factor beta. Proc. Natl. Acad 

.Sci. USA 2003, 100, 10269–10274, doi:10.1073/pnas.1834070100. 



Cancers 2020, 12, 2785 19 of 22 

 

84. Wipff, P.J.; Rifkin, D.B.; Meister, J.J.; Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the 

extracellular matrix. J. Cell Biol. 2007, 179, 1311–1323, doi:10.1083/jcb.200704042. 

85. Overall, C.M.; Wrana, J.L.; Sodek, J. Independent regulation of collagenase, 72-kDa progelatinase, and 

metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J. 

Biol. Chem. 1989, 264, 1860–1869. 

86. Papageorgis, P.; Stylianopoulos, T. Role of TGFbeta in regulation of the tumor microenvironment and drug 

delivery (review). Int. J. Oncol. 2015, 46, 933–943, doi:10.3892/ijo.2015.2816. 

87. Branton, M.H.; Kopp, J.B. TGF-beta and fibrosis. Microbes Infect. 1999, 1, 1349–1365. 

88. Demou, Z.N. Gene expression profiles in 3D tumor analogs indicate compressive strain differentially 

enhances metastatic potential. Ann. Biomed. Eng. 2010, 38, 3509–3520, doi:10.1007/s10439-010-0097-0. 

89. Kalli, M.; Papageorgis, P.; Gkretsi, V.; Stylianopoulos, T. Solid Stress Facilitates Fibroblasts Activation to 

Promote Pancreatic Cancer Cell Migration. Ann. Biomed. Eng. 2018, 46, 657–669, doi:10.1007/s10439-018-

1997-7. 

90. Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta signaling in cancer treatment. Curr. Pharm. Des. 

2014, 20, 2934–2947, doi:10.2174/13816128113199990591. 

91. Yeung, K.T.; Yang, J. Epithelial-mesenchymal transition in tumor metastasis. Mol. Oncol. 2017, 11, 28–39, 

doi:10.1002/1878-0261.12017. 

92. Greenburg, G.; Hay, E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics 

of migrating mesenchymal cells. J. Cell Biol. 1982, 95, 333–339, doi:10.1083/jcb.95.1.333. 

93. Kim, D.H.; Xing, T.; Yang, Z.; Dudek, R.; Lu, Q.; Chen, Y.-H. Epithelial Mesenchymal Transition in 

Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J. Clin. Med. 2017, 7, 1, 

doi:10.3390/jcm7010001. 

94. Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. Emt: 2016. Cell 2016, 166, 21–45, 

doi:10.1016/j.cell.2016.06.028. 

95. Huang, R.Y.; Guilford, P.; Thiery, J.P. Early events in cell adhesion and polarity during epithelial-

mesenchymal transition. J. Cell Sci. 2012, 125, 4417–4422, doi:10.1242/jcs.099697. 

96. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. 

Mol. Cell Biol. 2014, 15, 178–196, doi:10.1038/nrm3758. 

97. Brabletz, T.; Jung, A.; Reu, S.; Porzner, M.; Hlubek, F.; Kunz-Schughart, L.A.; Knuechel, R.; Kirchner, T. 

Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor 

environment. Proc. Natl. Acad. Sci. USA 2001, 98, 10356, doi:10.1073/pnas.171610498. 

98. Aiello, N.M.; Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 2019, 216, 1016–

1026, doi:10.1084/jem.20181827. 

99. Trimboli, A.J.; Fukino, K.; de Bruin, A.; Wei, G.; Shen, L.; Tanner, S.M.; Creasap, N.; Rosol, T.J.; Robinson, 

M.L.; Eng, C.; et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 

2008, 68, 937–945, doi:10.1158/0008-5472.CAN-07-2148. 

100. Heldin, C.H.; Vanlandewijck, M.; Moustakas, A. Regulation of EMT by TGFbeta in cancer. FEBS Lett. 2012, 

586, 1959–1970, doi:10.1016/j.febslet.2012.02.037. 

101. Wicki, A.; Lehembre, F.; Wick, N.; Hantusch, B.; Kerjaschki, D.; Christofori, G. Tumor invasion in the 

absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. 

Cancer Cell 2006, 9, 261–272, doi:10.1016/j.ccr.2006.03.010. 

102. Fang, J.-H.; Zhou, H.-C.; Zhang, C.; Shang, L.-R.; Zhang, L.; Xu, J.; Zheng, L.; Yuan, Y.; Guo, R.-P.; Jia, W.-

H.; et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial–

mesenchymal transition–independent manner. Hepatology 2015, 62, 452–465, doi:10.1002/hep.27760. 

103. Liu, J.; Shen, J.X.; Wu, H.T.; Li, X.L.; Wen, X.F.; Du, C.W.; Zhang, G.J. Collagen 1A1 (COL1A1) promotes 

metastasis of breast cancer and is a potential therapeutic target. Discov. Med. 2018, 25, 211–223. 

104. Ye, X.; Weinberg, R.A. Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. 

Trends Cell Biol. 2015, 25, 675–686, doi:10.1016/j.tcb.2015.07.012. 

105. Schmalhofer, O.; Brabletz, S.; Brabletz, T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of 

cancer. Cancer Metastasis Rev. 2009, 28, 151–166, doi:10.1007/s10555-008-9179-y. 

106. Chaffer, C.L.; Brennan, J.P.; Slavin, J.L.; Blick, T.; Thompson, E.W.; Williams, E.D. Mesenchymal-to-

epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer 

Res. 2006, 66, 11271–11278, doi:10.1158/0008-5472.CAN-06-2044. 



Cancers 2020, 12, 2785 20 of 22 

 

107. Aiello, N.M.; Bajor, D.L.; Norgard, R.J.; Sahmoud, A.; Bhagwat, N.; Pham, M.N.; Cornish, T.C.; Iacobuzio-

Donahue, C.A.; Vonderheide, R.H.; Stanger, B.Z. Metastatic progression is associated with dynamic 

changes in the local microenvironment. Nat. Commun. 2016, 7, 12819, doi:10.1038/ncomms12819. 

108. Jojovic, M.; Adam, E.; Zangemeister-Wittke, U.; Schumacher, U. Epithelial glycoprotein-2 expression is 

subject to regulatory processes in epithelial-mesenchymal transitions during metastases: An investigation 

of human cancers transplanted into severe combined immunodeficient mice. Histochem. J. 1998, 30, 723–

729, doi:10.1023/a:1003486630314. 

109. Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; 

Brown, D.; Moers, V.; Lemaire, S.; et al. Identification of the tumour transition states occurring during EMT. 

Nature 2018, 556, 463–468, doi:10.1038/s41586-018-0040-3. 

110. Wu, M.Z.; Tsai, Y.P.; Yang, M.H.; Huang, C.H.; Chang, S.Y.; Chang, C.C.; Teng, S.C.; Wu, K.J. Interplay 

between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol. Cell 

2011, 43, 811–822, doi:10.1016/j.molcel.2011.07.012. 

111. Shirakihara, T.; Horiguchi, K.; Miyazawa, K.; Ehata, S.; Shibata, T.; Morita, I.; Miyazono, K.; Saitoh, M. TGF-

beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 2011, 

30, 783–795, doi:10.1038/emboj.2010.351. 

112. Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 

2014, 16, 488–494, doi:10.1038/ncb2976. 

113. Moreno-Bueno, G.; Portillo, F.; Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. 

Oncogene 2008, 27, 6958–6969, doi:10.1038/onc.2008.346. 

114. Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. 

Cell Dev. Biol. 2011, 27, 347–376, doi:10.1146/annurev-cellbio-092910-154036. 

115. Stemmler, M.P.; Eccles, R.L.; Brabletz, S.; Brabletz, T. Non-redundant functions of EMT transcription 

factors. Nat. Cell Biol. 2019, 21, 102–112, doi:10.1038/s41556-018-0196-y. 

116. De Craene, B.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. 

Rev. Cancer 2013, 13, 97–110, doi:10.1038/nrc3447. 

117. Denecker, G.; Vandamme, N.; Akay, O.; Koludrovic, D.; Taminau, J.; Lemeire, K.; Gheldof, A.; De Craene, 

B.; Van Gele, M.; Brochez, L.; et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that 

controls melanogenesis and melanoma progression. Cell Death Differ. 2014, 21, 1250–1261, 

doi:10.1038/cdd.2014.44. 

118. Smita, S.; Ahad, A.; Ghosh, A.; Biswas, V.K.; Koga, M.M.; Gupta, B.; Acha-Orbea, H.; Raghav, S.K. 

Importance of EMT Factor ZEB1 in cDC1 "MutuDC Line" Mediated Induction of Th1 Immune Response. 

Front. Immunol. 2018, 9, 2604, doi:10.3389/fimmu.2018.02604. 

119. Paz, H.; Pathak, N.; Yang, J. Invading one step at a time: The role of invadopodia in tumor metastasis. 

Oncogene 2014, 33, 4193–4202, doi:10.1038/onc.2013.393. 

120. Batlle, E.; Sancho, E.; Francí, C.; Domínguez, D.; Monfar, M.; Baulida, J.; García De Herreros, A. The 

transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell 

Biol. 2000, 2, 84–89, doi:10.1038/35000034. 

121. Villarejo, A.; Cortés-Cabrera, A.; Molina-Ortíz, P.; Portillo, F.; Cano, A. Differential role of Snail1 and Snail2 

zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J. Biol. Chem. 2014, 289, 930–

941, doi:10.1074/jbc.M113.528026. 

122. Vega, S.; Morales, A.V.; Ocana, O.H.; Valdes, F.; Fabregat, I.; Nieto, M.A. Snail blocks the cell cycle and 

confers resistance to cell death. Genes Dev. 2004, 18, 1131–1143, doi:10.1101/gad.294104. 

123. Cano, A.; Perez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, 

M.A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin 

expression. Nat. Cell Biol. 2000, 2, 76–83, doi:10.1038/35000025. 

124. Ohkubo, T.; Ozawa, M. The transcription factor Snail downregulates the tight junction components 

independently of E-cadherin downregulation. J. Cell Sci. 2004, 117, 1675–1685, doi:10.1242/jcs.01004. 

125. Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.C.; LeBleu, V.S.; Kalluri, R. 

Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in 

pancreatic cancer. Nature 2015, 527, 525–530, doi:10.1038/nature16064. 

126. Krebs, A.M.; Mitschke, J.; Lasierra Losada, M.; Schmalhofer, O.; Boerries, M.; Busch, H.; Boettcher, M.; 

Mougiakakos, D.; Reichardt, W.; Bronsert, P.; et al. The EMT-activator Zeb1 is a key factor for cell plasticity 

and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 2017, 19, 518–529, doi:10.1038/ncb3513. 



Cancers 2020, 12, 2785 21 of 22 

 

127. Caramel, J.; Papadogeorgakis, E.; Hill, L.; Browne, G.J.; Richard, G.; Wierinckx, A.; Saldanha, G.; Osborne, 

J.; Hutchinson, P.; Tse, G.; et al. A switch in the expression of embryonic EMT-inducers drives the 

development of malignant melanoma. Cancer Cell 2013, 24, 466–480, doi:10.1016/j.ccr.2013.08.018. 

128. Haensel, D.; Dai, X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and 

where we are heading. Dev. Dyn. 2018, 247, 473–480, doi:10.1002/dvdy.24561. 

129. Hudson, L.G.; Newkirk, K.M.; Chandler, H.L.; Choi, C.; Fossey, S.L.; Parent, A.E.; Kusewitt, D.F. Cutaneous 

wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J. Dermatol. Sci. 2009, 56, 

19–26, doi:10.1016/j.jdermsci.2009.06.009. 

130. Franco, D.L.; Mainez, J.; Vega, S.; Sancho, P.; Murillo, M.M.; de Frutos, C.A.; Del Castillo, G.; Lopez-Blau, 

C.; Fabregat, I.; Nieto, M.A. Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT 

in hepatocytes. J. Cell Sci. 2010, 123, 3467–3477, doi:10.1242/jcs.068692. 

131. Kajita, M.; McClinic, K.N.; Wade, P.A. Aberrant expression of the transcription factors snail and slug alters 

the response to genotoxic stress. Mol. Cell Biol. 2004, 24, 7559–7566, doi:10.1128/MCB.24.17.7559-7566.2004. 

132. Kurrey, N.K.; Jalgaonkar, S.P.; Joglekar, A.V.; Ghanate, A.D.; Chaskar, P.D.; Doiphode, R.Y.; Bapat, S.A. 

Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and 

acquiring a stem-like phenotype in ovarian cancer cells. Stem. Cells 2009, 27, 2059–2068, 

doi:10.1002/stem.154. 

133. Hsu, D.S.; Lan, H.Y.; Huang, C.H.; Tai, S.K.; Chang, S.Y.; Tsai, T.L.; Chang, C.C.; Tzeng, C.H.; Wu, K.J.; 

Kao, J.Y.; et al. Regulation of excision repair cross-complementation group 1 by Snail contributes to 

cisplatin resistance in head and neck cancer. Clin. Cancer Res. 2010, 16, 4561–4571, doi:10.1158/1078-

0432.CCR-10-0593. 

134. Lu, S.; Yu, L.; Mu, Y.; Ma, J.; Tian, J.; Xu, W.; Wang, H. Role and mechanism of Twist1 in modulating the 

chemosensitivity of FaDu cells. Mol. Med. Rep. 2014, 10, 53–60, doi:10.3892/mmr.2014.2212. 

135. Slabakova, E.; Culig, Z.; Remsik, J.; Soucek, K. Alternative mechanisms of miR-34a regulation in cancer. 

Cell Death Dis. 2017, 8, e3100, doi:10.1038/cddis.2017.495. 

136. Diepenbruck, M.; Waldmeier, L.; Ivanek, R.; Berninger, P.; Arnold, P.; van Nimwegen, E.; Christofori, G. 

Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-

mesenchymal transition. J. Cell Sci. 2014, 127, 1523–1536, doi:10.1242/jcs.139865. 

137. Ocana, O.H.; Corcoles, R.; Fabra, A.; Moreno-Bueno, G.; Acloque, H.; Vega, S.; Barrallo-Gimeno, A.; Cano, 

A.; Nieto, M.A. Metastatic colonization requires the repression of the epithelial-mesenchymal transition 

inducer Prrx1. Cancer Cell 2012, 22, 709–724, doi:10.1016/j.ccr.2012.10.012. 

138. Mani, S.A.; Yang, J.; Brooks, M.; Schwaninger, G.; Zhou, A.; Miura, N.; Kutok, J.L.; Hartwell, K.; Richardson, 

A.L.; Weinberg, R.A. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated 

with aggressive basal-like breast cancers. Proc. Natl. Acad. Sci. USA 2007, 104, 10069–10074, 

doi:10.1073/pnas.0703900104. 

139. Hahn, S.; Jackstadt, R.; Siemens, H.; Hunten, S.; Hermeking, H. SNAIL and miR-34a feed-forward 

regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013, 32, 3079–3095, 

doi:10.1038/emboj.2013.236. 

140. Tetteh, P.W.; Basak, O.; Farin, H.F.; Wiebrands, K.; Kretzschmar, K.; Begthel, H.; van den Born, M.; Korving, 

J.; de Sauvage, F.; van Es, J.H.; et al. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of 

Their Enterocyte-Lineage Daughters. Cell Stem. Cell 2016, 18, 203–213, doi:10.1016/j.stem.2016.01.001. 

141. Sato, T.; Van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; Van Den Born, M.; Barker, N.; Shroyer, N.F.; 

van de Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. 

Nature 2011, 469, 415–418, doi:10.1038/nature09637. 

142. Tata, P.R.; Mou, H.; Pardo-Saganta, A.; Zhao, R.; Prabhu, M.; Law, B.M.; Vinarsky, V.; Cho, J.L.; Breton, S.; 

Sahay, A.; et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013, 503, 218–

223, doi:10.1038/nature12777. 

143. Kusaba, T.; Lalli, M.; Kramann, R.; Kobayashi, A.; Humphreys, B.D. Differentiated kidney epithelial cells 

repair injured proximal tubule. Proc. Natl. Acad. Sci. USA 2014, 111, 1527–1532, 

doi:10.1073/pnas.1310653110. 

144. De Sousa e Melo, F.; Kurtova, A.V.; Harnoss, J.M.; Kljavin, N.; Hoeck, J.D.; Hung, J.; Anderson, J.E.; Storm, 

E.E.; Modrusan, Z.; Koeppen, H.; et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon 

cancer. Nature 2017, 543, 676–680, doi:10.1038/nature21713. 



Cancers 2020, 12, 2785 22 of 22 

 

145. Creighton, C.J.; Li, X.; Landis, M.; Dixon, J.M.; Neumeister, V.M.; Sjolund, A.; Rimm, D.L.; Wong, H.; 

Rodriguez, A.; Herschkowitz, J.I.; et al. Residual breast cancers after conventional therapy display 

mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 2009, 106, 13820–13825, 

doi:10.1073/pnas.0905718106. 

146. Celia-Terrassa, T.; Meca-Cortes, O.; Mateo, F.; Martinez de Paz, A.; Rubio, N.; Arnal-Estape, A.; Ell, B.J.; 

Bermudo, R.; Diaz, A.; Guerra-Rebollo, M.; et al. Epithelial-mesenchymal transition can suppress major 

attributes of human epithelial tumor-initiating cells. J. Clin. Investig. 2012, 122, 1849–1868, 

doi:10.1172/JCI59218. 

147. Tran, H.D.; Luitel, K.; Kim, M.; Zhang, K.; Longmore, G.D.; Tran, D.D. Transient SNAIL1 expression is 

necessary for metastatic competence in breast cancer. Cancer Res. 2014, 74, 6330–6340, doi:10.1158/0008-

5472.CAN-14-0923. 

148. Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, 

C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. 

Cell 2008, 133, 704–715, doi:10.1016/j.cell.2008.03.027. 

149. Schmidt, J.M.; Panzilius, E.; Bartsch, H.S.; Irmler, M.; Beckers, J.; Kari, V.; Linnemann, J.R.; Dragoi, D.; 

Hirschi, B.; Kloos, U.J.; et al. Stem-cell-like properties and epithelial plasticity arise as stable traits after 

transient Twist1 activation. Cell Rep. 2015, 10, 131–139, doi:10.1016/j.celrep.2014.12.032. 

150. Sarrio, D.; Franklin, C.K.; Mackay, A.; Reis-Filho, J.S.; Isacke, C.M. Epithelial and mesenchymal 

subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties. Stem. 

Cells 2012, 30, 292–303, doi:10.1002/stem.791. 

151. Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. 

Nat. Rev. Clin. Oncol. 2017, 14, 611–629, doi:10.1038/nrclinonc.2017.44. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


