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Simple Summary: Familial clustering of cancer and identification of high- and low-risk cancer
predisposition gene variants implicate that there are families that are at a high to moderate excess
risk of cancer. We wanted to test genetically whether there are families protected from cancer.
We whole-genome sequenced 51 elderly individuals without any personal or family history of cancer.
We identified less high-risk loss-of-function variants in known and suggested cancer predisposition
genes in these cancer-free individuals than in the general population. However, our results for
low-risk variants were not conclusive. Our study suggests that random environmental causes of
cancer are so dominant that a clear demarcation of cancer-free populations using genetic data may
not be feasible. However, carrier identification of and counseling about prevalent high-risk cancer
predisposition genes is useful.

Abstract: Familial clustering, twin concordance, and identification of high- and low-penetrance cancer
predisposition variants support the idea that there are families that are at a high to moderate excess risk
of cancer. To what extent there may be families that are protected from cancer is unknown. We wanted
to test genetically whether cancer-free families share fewer breast, colorectal, and prostate cancer
risk alleles than the population at large. We addressed this question by whole-genome sequencing
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(WGS) of 51 elderly cancer-free individuals whose numerous (ca. 1000) family members were found
to be cancer-free (‘cancer-free families’, CFFs) based on face-to-face interviews. The average coverage
of the 51 samples in the WGS was 42x. We compared cancer risk allele frequencies in cancer-free
individuals with those in the general population available in public databases. The CFF members
had fewer loss-of-function variants in suggested cancer predisposition genes compared to the ExAC
data, and for high-risk cancer predisposition genes, no pathogenic variants were found in CFFs.
For common low-penetrance breast, colorectal, and prostate cancer risk alleles, the results were not
conclusive. The results suggest that, in line with twin and family studies, random environmental
causes are so dominant that a clear demarcation of cancer-free populations using genetic data may
not be feasible.

Keywords: predisposing genes; high-risk genes; polygenic risk; random environment

1. Introduction

Familial cancer (i.e., two or more first-degree relatives diagnosed with the same cancer) accounts
for 25% of prostate cancer, 16% of breast cancer, and 15% of colorectal cancer [1]. For rarer cancers,
the proportions go down to about 2%. These proportions are much lower than twin estimates on the
heritability of various cancers [2,3]. This may imply, among various explanations, that population
genetics is characterized by common genes and polygenes of low penetrance, which would rarely
aggregate in families [1,4,5]. Germline genetics of cancer, as presently known, depends on the type of
cancer. For common cancers, such as breast and colorectal cancers, mutations in high-risk predisposition
genes BRCA1/2 and mismatch repair genes are rare, accounting for a small proportion of the particular
cancers (depending on population, approximately 1%) [6–8]. A number of other high-risk genes
are known, but mutations in these are even rarer [9]. In addition, numerous and ever-increasing
numbers of low-risk gene variants have been described for these cancers [10,11]. For other common
cancers, including prostate and lung cancers, high-penetrance genes are rarer but also for these cancers
numerous low-risk variants have been identified [8,9]. Combined, the high and low-risk variants
explain a small proportion of the known familial risk and even less about the heritability estimated
on twins.

A three-generation analysis in the Swedish Family-Cancer Database found that 16% of cancers
were diagnosed in the third generation individuals whose two older generations were cancer-free,
yet the relative risk (RR) of 0.9 showed no dramatic protection [12]. Recently, a whole-genome
sequencing (WGS) project among 2570 healthy elderly within the Medical Genome Reference Bank
in Australia reported fewer disease-associated common and rare germline variants compared to both
cancer cases and the gnomAD and UK biobank cohorts [13]. Here, we identified 51 elderly cancer-free
index persons (born in the 1920s or 1930s) whose siblings and relatives in one or two older and younger
generations were cancer-free. We used WGS to test genetically whether cancer-free families (CFFs)
share fewer cancer risk alleles than the population at large. We estimated that the CFFs, from which
an index individual was sequenced, covered a total of 1000 cancer-free individuals.

2. Results

A pedigree of a CFF is shown in Figure 1 pointing out the 80-year-old index person with an arrow.
In this, as in other families, the siblings as well as the individuals in the older generation(s) were either
alive or had died due to reason other than cancer. The index case of each family was whole genome
sequenced with an average coverage of 42x.
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Figure 1. Pedigree of one cancer-free family with the index case indicated by an arrow. 

2.1. Low-Risk Variants 

The analysis of the low-risk alleles included a total of 106 single-nucleotide polymorphisms 
(SNPs) for breast cancer, 81 SNPs for colorectal cancer, and 105 SNPs for prostate cancer identified in 
five large meta-analyses of whole-genome association studies (GWASs) [8,14–16]. The genotypes of 
these SNPs were determined from the WGS data of the CFFs based on the position of the SNP in the 
reference human genome (build GRCh37, assembly hs37d5). Table 1 compares the risk allele 
frequencies of the low-risk variants between the CFFs and the data from the gnomAD database. Only 
SNPs with nominally significant p-value < 0.05 in the analysis are shown. For breast cancer, risk allele 
frequencies for five SNPs were lower and for two SNPs higher than for the gnomAD data. The only 
variant for colorectal cancer was rarer in CFFs than in gnomAD and for prostate cancer risk allele 
frequencies for four SNPs were lower and for six SNPs higher in CFFs than in gnomAD. 

Table 1. Comparison of risk allele frequency between cancer-free families (CFFs) and gnomAD for 
breast, colorectal, and prostate cancers. 

Cancer SNPID Gene Risk Allele 
Frequency OR 95% CI p1 

GnomAD CFF 

BC 

rs10474352 ARRDC3 C 0.83 0.74 0.56 0.36 0.87 0.0097 
rs16886181 MAP3K1 C 0.17 0.08 0.41 0.20 0.85 0.0165 
rs206966 RP1-166H1.2 T 0.17 0.25 1.67 1.07 2.61 0.0248 
rs2992756 KLHDC7A T 0.49 0.37 0.62 0.41 0.93 0.0197 
rs653465 SLC4A7 C 0.47 0.57 1.48 1.00 2.20 0.0489 
rs7072776 DNAJC1 A 0.28 0.19 0.58 0.35 0.96 0.0348 
rs889312 MAP3K1 C 0.29 0.18 0.53 0.32 0.89 0.0154 

          
CRC rs17816465 GREM1 A 0.20 0.10 0.43 0.23 0.84 0.0125 

          

PC 

rs10460109 TSHZ1 T 0.42 0.56 1.72 1.16 2.55 0.0067 
rs3850699 TRIM8 A 0.68 0.56 0.6 0.41 0.89 0.0110 

rs28607662 TCF4 C 0.09 0.17 1.96 1.16 3.31 0.0118 
rs2066827 CDKN1B T 0.75 0.86 2.05 1.17 3.61 0.0125 
rs2680708 RNF43 G 0.60 0.48 0.62 0.42 0.91 0.0153 

rs33984059 RFX7 A 0.98 0.94 0.37 0.16 0.85 0.0193 
rs12155172 LINC01162 A 0.24 0.33 1.62 1.07 2.45 0.0216 
rs6465657 LMTK2 C 0.46 0.57 1.56 1.05 2.31 0.0265 

rs12543663 PCAT1 C 0.31 0.41 1.56 1.05 2.32 0.0270 

Figure 1. Pedigree of one cancer-free family with the index case indicated by an arrow.

2.1. Low-Risk Variants

The analysis of the low-risk alleles included a total of 106 single-nucleotide polymorphisms (SNPs)
for breast cancer, 81 SNPs for colorectal cancer, and 105 SNPs for prostate cancer identified in five large
meta-analyses of whole-genome association studies (GWASs) [8,14–16]. The genotypes of these SNPs
were determined from the WGS data of the CFFs based on the position of the SNP in the reference
human genome (build GRCh37, assembly hs37d5). Table 1 compares the risk allele frequencies of
the low-risk variants between the CFFs and the data from the gnomAD database. Only SNPs with
nominally significant p-value < 0.05 in the analysis are shown. For breast cancer, risk allele frequencies
for five SNPs were lower and for two SNPs higher than for the gnomAD data. The only variant for
colorectal cancer was rarer in CFFs than in gnomAD and for prostate cancer risk allele frequencies for
four SNPs were lower and for six SNPs higher in CFFs than in gnomAD.

The total number of risk alleles was calculated for each individual and their distribution is shown in
Supplementary Figure S1. The aggregation of the low-risk alleles in CFF individuals were tested against
the 1000 Genomes data for which individual genotype data were available (Table 2). Based on the total
number of risk alleles, the individuals were divided in quartiles with approximately equal numbers
of individuals in each quartile in the 1000 Genomes population. Compared to the 1000 Genomes
population, the proportion of CFF individuals decreased with the increasing number of breast cancer
risk alleles, for colorectal cancer there was no change, and for prostate cancer, the proportion of CFF
individuals increased with the increasing number of risk alleles.

Table 1. Comparison of risk allele frequency between cancer-free families (CFFs) and gnomAD for
breast, colorectal, and prostate cancers.

Cancer SNPID Gene Risk Allele
Frequency

OR 95% CI p 1
GnomAD CFF

BC

rs10474352 ARRDC3 C 0.83 0.74 0.56 0.36 0.87 0.0097
rs16886181 MAP3K1 C 0.17 0.08 0.41 0.20 0.85 0.0165

rs206966 RP1-166H1.2 T 0.17 0.25 1.67 1.07 2.61 0.0248
rs2992756 KLHDC7A T 0.49 0.37 0.62 0.41 0.93 0.0197
rs653465 SLC4A7 C 0.47 0.57 1.48 1.00 2.20 0.0489

rs7072776 DNAJC1 A 0.28 0.19 0.58 0.35 0.96 0.0348
rs889312 MAP3K1 C 0.29 0.18 0.53 0.32 0.89 0.0154

CRC rs17816465 GREM1 A 0.20 0.10 0.43 0.23 0.84 0.0125
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Table 1. Cont.

Cancer SNPID Gene Risk Allele
Frequency

OR 95% CI p 1
GnomAD CFF

PC

rs10460109 TSHZ1 T 0.42 0.56 1.72 1.16 2.55 0.0067
rs3850699 TRIM8 A 0.68 0.56 0.6 0.41 0.89 0.0110

rs28607662 TCF4 C 0.09 0.17 1.96 1.16 3.31 0.0118
rs2066827 CDKN1B T 0.75 0.86 2.05 1.17 3.61 0.0125
rs2680708 RNF43 G 0.60 0.48 0.62 0.42 0.91 0.0153

rs33984059 RFX7 A 0.98 0.94 0.37 0.16 0.85 0.0193
rs12155172 LINC01162 A 0.24 0.33 1.62 1.07 2.45 0.0216
rs6465657 LMTK2 C 0.46 0.57 1.56 1.05 2.31 0.0265

rs12543663 PCAT1 C 0.31 0.41 1.56 1.05 2.32 0.0270
rs9364554 SLC22A3 T 0.27 0.19 0.60 0.37 1.00 0.0478

1 p-value for Bonferroni adjusted significance level: breast cancer (BC), 0.05/106 = 0.0005; colorectal cancer (CRC),
0.05/81 = 0.0006; prostate cancer (PC), 0.05/105 = 0.0005; OR: odds ratio; 95%CI: 95% confidence interval; SNPID,
SNP identification number; p: p-value; bold values indicate statistical significance at p < 0.05.

Table 2. Combined effect of risk alleles related to breast, colorectal, and prostate cancers in cancer-free
families (CFFs) and 1000 Genomes data.

Cancer No. Risk Alleles 1000 Genomes No. CFF No. OR 95%CI p

BC

≤87 73 19 1.00 - -
88–91 72 12 0.64 0.29 1.42 0.27
92–96 77 11 0.55 0.24 1.23 0.15
>96 72 9 0.48 0.20 1.13 0.09

p-trend = 0.07

CRC

≤71 75 13 1.00
72–76 90 13 0.83 0.36 1.91 0.67
77–80 69 16 1.34 0.60 2.98 0.48
>80 60 9 0.87 0.35 2.16 0.76

p-trend = 0.88

PC

≤89 91 10 1.00
90–93 64 10 1.42 0.56 3.62 0.46
94–97 86 10 1.06 0.42 2.67 0.90
>97 53 21 3.61 1.58 8.23 0.0023

p-trend = 0.0055

BC: breast cancer; CRC: colorectal cancer; PC: prostate cancer; OR: odds ratio; 95%CI: 95% confidence interval;
p: p-value.

2.2. Suggested Cancer Predisposition Genes

Next, we calculated the probability of an individual in the CFFs and the ExAC population of
carrying potentially pathogenic variants in suggested cancer predisposition genes obtained from two
different sources [17,18] (Table 3). Pathogenicity was evaluated using the criteria of our in-house
developed Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) [19]. We extracted
all variants in these genes from the WGS data of the 51 CFF individuals and from the ExAC data.
After filtering the variants according to the criteria of the FCVPPv2, 54 non-synonymous variants
in 50 genes, and two loss-of-function variants in two genes were classified as potentially pathogenic
in CFFs among the 723 genes reported by Wei et al. [18], while 23,419 non-synonymous variants
in 367 genes and 3675 loss-of-function variants in 482 genes passed the filters in the ExAC population.
Among the 114 cancer predisposition genes reported by Rahman [17], 18 non-synonymous variants
in 14 genes and no loss-of-function variants were classified as potentially pathogenic in CFFs,
while 5619 non-synonymous variants in 70 genes and 791 loss-of-function variants in 81 genes passed
the filters in ExAC. The probability of carrying a non-synonymous variant in genes reported both by
Wei et al. and Rahman was higher in CFFs than in ExAC, while the probability of a CFF individual to
carry a loss-of-function variant was lower in genes of the Wei et al. list and no loss-of-function variants
in genes of the Rahman list were detected.
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Table 3. Comparison of the probability of carrying potentially pathogenic non-synonymous and loss
of function (LoF) variants within cancer predisposition genes (CPGs) in cancer-free families (pCFF)
and in the ExAC population (pExAC). Pathogenicity was evaluated using the criteria of our in-house
developed Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2).

Source of CPGs CFF
No. Variants P CFF ExAC

No. Variants P ExAC OR 95%CI

Wei [18] non-synonymous 54 67 % 23419 63 % 1.21 0.77 1.91
Wei [18] LoF 2 6 % 3675 15 % 0.35 0.00 0.53

Rahman [17] non-synonymous 18 31 % 5619 22 % 1.58 0.87 2.83
Rahman [17] LoF 0 0 % 791 4 %

LoF: loss-of-function, stop gain/loss, splice-site, and frameshift indel variants; P: probability; OR: odds ratio; 95%CI:
95% confidence interval.

2.3. High-Risk Breast, Colorectal, and Prostate Cancer Predisposition Genes

We searched the WGS data of the CFF individuals for missense and loss-of function variants
within the known high-risk genes BRCA1 and BRCA2 for breast cancer, APC, MLH1, MSH2, MSH6,
MUTYH, and PMS2 for colorectal cancer and HOXB13 for prostate cancer. In Table 4, we list the
high-risk gene variants with MAF < 0.001 found in the CFF individuals and report the number of the
missense and loss-of-function variants in ExAC and the probability of an ExAC individual to carry at
least one pathogenic/likely pathogenic variant. For the CFF variants, the scaled PHRED-like Combined
Annotation-Dependent Depletion CADD score, number of positive conservation (three tools) and
deleteriousness (10 tools) predictions, and the ClinVar significance are shown. In the ExAC population,
1692 missense or loss-of-function variants were reported of which 98 were classified as pathogenic/likely
pathogenic by ClinVar. In CFF, each of the listed 12 missense or loss-of-function variants occurred
only once and none of them were classified as pathogenic. No variants were found for BRCA1 and
HOXB13. ClinVar predicted all the CFF variants to be benign or likely benign, except that the MUTYH
variant was reported to be likely pathogenic. Of note, MUTYH is a recessive cancer predisposition
gene, and cancer might arise if a person inherited another mutated allele.
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Table 4. List of variants in known high-risk genes in breast, colorectal, and prostate cancers found in cancer-free families (CFFs) with annotations. For the ExAc
population, probability of carrying a pathogenic/likely pathogenic variant is shown.

Gene
Missense + LoF Variants in ExAC Missense + LoF Variants in CFF

Total No. No.
Pathogenic p ExAC 1 SNP ID Chr Position Ref/Alt Prevalence

ExAC NFE CADD Positive Conservation
Scores

Positive
Prediction Tools ClinVar Significance

BRCA2 691 40 0.112%
rs397507270 13 32907128 A/G 1.51 × 10−5 0.11 0 1 Likely benign/US
rs56087561 13 32913562 A/C 3.65 × 10−4 24.1 2 5 Benign
rs80358768 13 32913947 C/T 3.45 × 10−4 0.2 0 1 Benign

APC 481 2 0.003% rs748940586 5 112178309 A/C 1.51 × 10−5 22.7 3 8 US
No dbSNP 5 112178460 GTAT/G . 21.8 . . -

MLH1 167 3 0.008% rs41294980 3 37067306 G/A 1.18 × 10−3 7.3 1 0/4 2 Benign
rs63751225 3 37090075 T/C 1.80 × 10−4 22.1 3 4 US

MSH2 246 4 0.006% rs116117580 2 47739533 G/A 1.99 × 10−2 0.003 0 1 Not provided

MSH6 359 8 0.017%
rs752887988 2 48010377 C/T 0 33 3 7 -
rs267608075 2 48028282 A/T 1.83 × 10−4 13.0 3 5 Benign/US

MUTYH 174 12 0.079% rs36053993 1 45797228 C/T 3.96 × 10−3 29.4 3 3/4 2 Likely
Pathogenic/Pathogenic

PMS2 3 172 12 0.021% No dbSNP 7 6043400 T/C . 24.9 3 6 -

BRCA1 344 17 0.071% Not found - - - - - - - -

HOXB13 3 62 0 Not found - - - - - - - -

LoF: loss-of-function, stop gain/loss, splice-site, and frameshift indel variants; No: number; NFE: Non-Finnish European; US: uncertain significance; Conservational Scores:
Genomic Evolutionary Rate Profiling (GERP), PhastCons, and Phylogenetic P-value (PhyloP); inclusion cutoff ≥ 2/3; Prediction Tools: Sorting Intolerant from Tolerant (SIFT), Polymorphism
Phenotyping version-2 (PolyPhen-2) HDIV (HumDiv), PolyPhen-v2 HVAR (HumVar), Log ratio test (LRT), MutationTaster, Mutation Assessor, Functional Analysis Through Hidden Markov
Models (FATHMM), MetaSVM, MetaLR, Protein Variation Effect Analyzer (PROVEAN); inclusion cutoff ≥ 6/10; 1 probability of carrying pathogenic/likely pathogenic non-synonymous
and loss of function (LoF) variants in the ExAC population; 2 data from 4 prediction tools available; 3 the high-risk status of PMS2 and HOXB13 is under discussion.
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3. Discussion

In Poland, some 25% of all deaths are due to cancer, which is close to the average in Europe
as reported by the World Health Organization (WHO) (http://www.euro.who.int/en/health-topics/
noncommunicable-diseases/cancer/data-and-statistics). All persons with a cancer diagnosis do not die
of cancer, and we can assume that 35% of Poles have a cancer in their lifetime. This would imply that
among fully aged families of 10 persons, less than 1% would be cancer-free. Thus, such rare lucky
families may exist by chance. However, although twin data suggest that cancer is largely a random
environmental disease, family studies show that familial cancer is largely genetic, except for lung and
cervical cancer with a large environmental component [2,3,20]. Therefore, the investigated 51 CFFs can
be expected to show a reduced genetic predisposition to cancer.

The strongest evidence for lower predisposition to cancer in CFFs was that these individuals
carried a lower frequency of loss-of-function alleles in suggested cancer predisposition genes but not
of missense variants, as shown in Table 3. A relatively poor discrimination of missense variants for
cancer risk has been reported earlier [4]. In the same vein, analysis of variants in high-risk cancer
predisposition genes showed that the CFF population had 12 missense but no loss-of-function variants
and none of these were classified as pathogenic by ClinVar, whereas in ExAC 98 of the 1692 identified
variants were classified as pathogenic/likely pathogenic. The lack of loss-of-function variants in CFF
was probably not surprising because only 51 individuals were tested. The 12 missense variants were
benign as judged by the ClinVar significance, with one exception, MUTYH, which is a recessive
cancer predisposition gene. Interestingly even though the ClinVar score indicated benign phenotype,
the CADD scores were high (>20) for many of the variants.

The testing of low-risk variants did not give conclusive results. The frequencies of risk
alleles in CFFs varied inconsistently around the frequencies in the gnomAD database (Table 1).
Similarly, when CFF and the 1000 Genomes individuals were compared by the number of risk alleles,
the proportion of CFF individuals decreased with the increasing number of breast cancer risk alleles,
while an opposite trend was observed in prostate cancer. Data from GWASs on many cancers show
that even collectively low-risk alleles explain a small proportion of the empirical familial risk [8,21].
It is known that usually low-risk alleles are moderately enriched in familial compared to sporadic
cases, but even opposite results have been reported [22,23]. Improvement of risk prediction by adding
a polygenetic risk score to prediction models that include the family history indicate only partial
overlapping of these factors [24,25].

Overall, our results are concordant with the recent study on 2570 healthy elderly within the
Medical Genome Reference Bank in Australia [13]. In that study, the participants did not have any
personal history of cancer, cardiovascular disease, or dementia, while our study participants did
not have any personal or family history of cancer in one or two older and younger generations that
included around 1000 cancer-free individuals. A study of 51 individuals may not be impressive if one
fails to recognize that all the index cases were over 70 years old and that these represent families each
with an average of 20 elderly relatives none of whom were diagnosed with cancer. Unfortunately,
the age of death data were not complete, although most of the deceased were known to have reached an
age of late adulthood. Both studies reported fewer pathogenic/likely pathogenic variants in high-risk
cancer predisposition genes, while we also showed that loss-of-function variants within suggested
cancer predisposition genes were depleted in CFFs compared to the ExAC data. On the other hand,
the Australian study showed depletion of common cancer risk alleles among the elderly population,
which was not obvious in our study with 51 sequenced individuals.

It would also be interesting to search for genetic variants protecting against cancer, however,
that would require large, well-characterized elderly population without any personal or family history
of cancer. Even identification of cancer risk alleles is a challenging task, as shown by the GWASs
on common cancers of breast, colorectum, and prostate in which over 100,000 individuals were
genotyped [8,14–16].

http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/data-and-statistics
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/data-and-statistics
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Sample size was a limitation of the study even though the 51 sequenced individuals represented
1000 other individuals without known cancers. Unreported cancers may be another weakness
of the study because information on cancer in relatives was based on anecdotal data. However,
the family history data were collected by face-to-face interviews of individuals who had reported
no cancer family history in questionnaires within a large population screening conducted earlier;
thus, the data are likely to be more reliable than postal or telephone interviews. If the index persons
were 80 years in 2010 their grandparents were 80 years at around 1950. Even though cancer was
a known disease at that time, the incidence rates were earlier lower and thus the probability of
being cancer-free was higher. Yet even currently well-functioning national cancer registries may
miss up to 10% cancers, characterized by elderly patients and cancers, which may be diagnosed
with debilitating comorbidities such as lung cancer [26]. Nevertheless, the overall cancer incidence
in Poland is at a low European level, except for colorectal cancer, which is relatively common as shown
in the Cancer Statistics-Specific Cancers by the European Union with data extracted in August 2020
(https://ec.europa.eu/eurostat/statistics-explained/pdfscache/39738.pdf). Another minor weakness is
the likely genotypic stratification between the Polish population and the referent European populations.
Overall, the European population is genetically very homogenous, although a more detailed analysis of
population genetic structure using autosomal, Y-chromosome, and mitochondrial markers have shown
closest Polish resemblance to the Eastern neighbors Russians, Belarusians, and Ukrainians, followed by
Czechs, Slovaks, and Baltic populations [27–30]. To diminish bias related to population stratification and
to exclude cancer patients from the analyses, we included only the non-Finnish European non-TCGA
data from the ExAC and the gnomAD in our study. This may, however, have caused bias on our
analyses, as the samples from CFFs and the ExAC and the gnomAD populations were sequenced on
different platforms and the quality control was done separately. To avoid this bias, we used the quality
filtering protocol, as suggested [31].

In conclusion, no striking genetic differences between the CFF and the unselected reference
populations were detected. However, loss-of-function variants appeared to be at a lower frequency
in CFF members, and for high-risk cancer genes, no loss-of-function variants were found in CFFs.
The results appear to be consistent with the earlier finding from the Swedish Family-Cancer Database
that the overall cancer risk is not markedly depressed (RR 0.9) if two previous generations are
cancer-free because of random environmental and polygenic causes. They further agree with the
notions suggesting that carrier identification of and counseling about prevalent high-risk cancer
predisposition genes is useful, but the prospects of defining genetic basis for cancer protection may not
be promising [32].

4. Materials and Methods

4.1. Study Populations

The CFF group contained 51 individuals recruited by the Hereditary Cancer Center, Department of
Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. Family histories
were collected through face-to-face detailed interviews. An average interview took 20–30 min.
In West-Pomeranian region of Poland, population screening was performed mainly in years 2000–2001,
in which questionnaires about cancer family history were collected from about 1.25 million (~70%) of
inhabitants. Persons with negative cancer family history were invited to outpatient clinics and asked
to agree for recruitment to control group. In such a way, the group of about 1000 adult individuals was
established. Persons selected for the present study were part of this control group. They all were over
70 years old at the time of recruitment.

Different reference groups were used to perform distinct statistical analyses; these included data
from 64,603 (56,885 exome and 7718 genome individuals), 33,370, and 294 non-Finnish European
(NFE) individuals extracted from the Genome Aggregation Database (gnomAD) (https://gnomad.

https://ec.europa.eu/eurostat/statistics-explained/pdfscache/39738.pdf
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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broadinstitute.org/), the Exome Aggregation Consortium (ExAC) [33], and the 1000 Genomes database
(https://www.internationalgenome.org/1000-genomes-browsers), respectively.

4.2. Ethics Statement

The ethical approval for this study design was obtained from the Bioethics Committee of the
Pomeranian Medical Academy in Szczecin No: BN-001/174/05. Sample collection was performed
following the guidelines proposed by this Committee. A written informed consent was signed by each
participant in accordance with the Helsinki declaration.

4.3. Whole-Genome Sequencing

Whole-genome sequencing (WGS) of the cancer-free persons considered in the present study was
performed in the Illumina X10 platform using DNA extracted from the blood samples. WGS was carried
out as paired-end sequencing with a read length of 150 bp. Sequences were mapped to the reference
human genome (build GRCh37, assembly hs37d5) using BWA mem (version 0.7.15) and duplicates
were removed using Sambamba (version 0.1.19). Variants were called by using Platypus (version 0.8.1)
and annotated using ANNOVAR [34], dbSNP [35], 1000 Genomes phase III [36], dbNSFP v3.0 [37],
and ExAC [33], respectively. Variant filtering was carried out by considering a minimum of 5 reads
coverage and a QUAL score higher than 20. To check for family relatedness, a pairwise comparison of
variants among the cohort was performed. CFF, gnomAD, and ExAC data were filtered separately
based on the criteria described in [31] and bases with a minimum of 10 reads coverage in at least 90%
of samples were included in the analysis.

4.4. Low-Risk Variants

Five large recently published meta-analyses were used to collect single nucleotide polymorphisms
(SNPs) predicted by genome-wide association studies (GWASs) to be associated with the risk of
breast [8,15], colorectal [8,14], and prostate cancers [16] at the genome-wide significance level. SNPs with
any of the following criteria were filtered out: (1) unspecified risk allele, (2) unspecified minor allele
frequency (MAF) or MAF between 0.45 and 0.55, (3) effect size as odds ratio (OR) of the risk allele
below 1.04, (4) only estrogen receptor (ER) status/histology-specific associations, (5) absence in the
1000 Genomes data, and (6) from two or more SNPs with pairwise linkage equilibrium (r2) higher than
0.8, only one was included. After filtering, 106, 81, and 105 SNPs for breast, colorectal, and prostate
cancers, respectively, were used for further analyses. Logistic regression was performed to compare
risk allele frequencies of the selected SNPs between CFFs and gnomAD data (used as the reference
population). To account for the high number of tests, the significance level was adjusted using
Bonferroni correction. In order to calculate a polygenic risk score, the logistic regression model was
used to compare the number of risk alleles between CFFs and 294 non-Finnish European individuals
from 1000 Genomes for which individual genotype data were available. The trend test was performed
after dividing the individuals into quartiles based on the total number of risk alleles in individuals in
1000 Genomes and considering the groups as continuous variables.

4.5. Suggested Cancer Predisposition Genes

A comprehensive list of cancer predisposition genes was extracted from [17,18]. All missense
and loss-of-function variants listed for each of these genes were downloaded from the ExAC data.
Variants were filtered using the criteria of our in-house developed Familial Cancer Variant Prioritization
Pipeline version 2 (FCVPPv2) [19]. MAF of 0.1% was used with respect to 1000 Genomes phase III,
non-Finnish European non-TCGA ExAC data, and local datasets.

To select the top 10% of potentially deleterious variants in the human genome a scaled PHRED-like
Combined Annotation-Dependent Depletion (CADD) score greater than 10 was applied [38].
Assuming that variants in genes intolerant to variation are likely to be deleterious, a screening
for intolerance was performed; three different intolerance scores based on NHLBI-ESP6500 [39],

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.internationalgenome.org/1000-genomes-browsers
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ExAC datasets [33], and a local dataset with allele frequency data were considered. Additionally,
the Z-score, developed by the ExAC consortium for missense and synonymous variants,
was utilized [33].

To assess the evolutionary conservation of the variant position, three tools were used:
Genomic Evolutionary Rate Profiling (GERP >2.0) [40], PhastCons (>0.3) [41], and Phylogenetic
p-value (PhyloP ≥ 3.0) [42] with an inclusion of variants predicted to be located at a conserved genomic
position by at least two tools.

To evaluate the deleteriousness of the coding variants, prediction tools Sorting Intolerant from
Tolerant (SIFT) [43], Polymorphism Phenotyping version-2 (PolyPhen-2) HDIV (HumDiv) [44],
PolyPhen-v2 HVAR (HumVar) [44], Log ratio test (LRT) [45], MutationTaster [46], Mutation
Assessor [47], Functional Analysis Through Hidden Markov Models (FATHMM) [48], MetaSVM [37],
MetaLR [37], and Protein Variation Effect Analyzer (PROVEAN) [49] were used. Variants predicted to
be deleterious by more than 50% of these tools were included in the further analyses.

To evaluate the probability that one individual from the CFFs (PCFF) and the ExAC (PExAC)
population, respectively, carries at least one potentially pathogenic variant, we used the method
described by Castera et al. [50]. PExAC and PCFF were calculated using the following formula:
1- the probability of one individual not carrying any pathogenic variants. Therefore, (1) in which
(2) represented the probability that one ExAC individual from non-Finish European population carried
the ith variant among the k potentially pathogenic variants identified. OR was estimated by computing
(3) and bias-corrected and accelerated (BCa) bootstrapping was performed to calculate 95% confidence
interval (95%CI) of OR with 10,000 resampling [51].

PExAC = (1−
∏k

i=1
1−

ACNFEi −HomNFEi

(ANNFEi/2)
) (1)

ACNFEi −HomNFEi

(ANNFEi/2)
(2)

PCFF(1− PExAC)

(1− PCFF)PExAC
(3)

4.6. Variants in High-Risk Genes of Breast, Colorectal, and Prostate Cancer

We searched the WGS data of CFFs for missense and loss-of function variants within the known
high-risk genes BRCA1 and BRCA2 for breast cancer, APC, MLH1, MSH2, MSH6, MUTYH, and PMS2
for colorectal cancer and HOXB13 for prostate cancer. The pathogenicity was evaluated using the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). We also screened the ExAC non-Finnish
European data for missense and loss-of-function variants with MAF <0.001 that passed the ExAC QC
filters. The probability that one individual of the ExAC carries at least one pathogenic/likely pathogenic
variant reported in the ClinVar database was evaluated as described above.

All the statistical analyses were done using SAS version 9.4 and R version 3.5 (SAS Institute Inc.,
Cary, NC, USA).

5. Conclusions

Our whole-genome germline sequencing effort on 51 elderly cancer-free individuals whose
numerous (ca. 1000) family members were found to be cancer-free implicated that the cancer-free family
members had no pathogenic variants in high-risk breast, colorectal, and prostate cancer predisposition
genes. They also had fewer loss-of-function variants in suggested cancer predisposition genes compared
to the ExAC data. For common low-penetrance breast, colorectal, and prostate cancer risk alleles,
the results were not conclusive. The results suggest that, in line with twin and family studies, random
environmental causes are so dominant that a clear demarcation of cancer-free populations using genetic
data may not be feasible.

https://www.ncbi.nlm.nih.gov/clinvar/
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Figure S1: Distribution of the number of GWAS-identified risk alleles in the cancer free families (CFFs) and the
1000 Genomes population for the (a) breast cancer, (b) colorectal cancer, and (c) prostate cancer risk loci.
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