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Abstract: The application of non-targeted serum metabolomics profiling represents a noninvasive tool
to identify new clinical biomarkers and to provide early diagnostic differentiation, and insight into
the pathological mechanisms underlying hepatocellular carcinoma (HCC) progression. In this study,
we used proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and multivariate data analysis
to profile the serum metabolome of 64 HCC patients, in early (n = 28) and advanced (n = 36) disease
stages. We found that 1H-NMR metabolomics profiling could discriminate early from advanced HCC
patients with a cross-validated accuracy close to 100%. Orthogonal partial least squares discriminant
analysis (OPLS-DA) showed significant changes in serum glucose, lactate, lipids and some amino
acids, such as alanine, glutamine, 1-methylhistidine, lysine and valine levels between advanced
and early HCC patients. Moreover, in early HCC patients, Kaplan–Meier analysis highlighted the
serum tyrosine level as a predictor for overall survival (OS). Overall, our analysis identified a set of
metabolites with possible clinical and biological implication in HCC pathophysiology.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide.
The disease displays a complex molecular landscape that hampers patient’s prognosis and therapy [1].
HCC commonly arises in people with underlying liver diseases associated to viral infections
(chronic hepatitis B and C), toxic (alcohol and aflatoxin), metabolic (diabetes, hemochromatosis,
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and non-alcoholic fatty liver disease) and immune (autoimmune hepatitis and primary biliary)
factors [1].

Although many therapeutic approaches have so far been established for HCC treatment,
the unavailability of adequate biomarkers for early HCC diagnosis causes a poor prognosis. Hence,
specific and reliable biomarkers for the early diagnosis and prognosis of HCC can improve the
understanding of HCC etiology and allow an early detection of the disease for the reduction of HCC
incidence [2]. Altered tumor metabolism is now considered a hallmark of cancer, with diagnostic and
therapeutic implications in several cancer types, including HCC [3,4]. An altered metabolic profile
supports tumor growth, proliferation and survival by increasing energy production, macromolecular
biosynthesis and the maintenance of redox balance [3]. Significant modifications in metabolic pathways
have been identified in HCC, and associated with clinical outcomes [5]. For instance, early-stage HCC
tumors with a poor overall survival rate are characterized by proteomic alterations in glycolysis and
cholesterol metabolism, compared to patients with a better prognosis [5]. Metabolic alterations at the
tumor level may impact systemic homeostasis, thus inducing a global metabolic reprogramming that
may be useful for cancer development or progression monitoring. In the last few years, metabolite
quantification by Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy approaches have
been used to obtain a global, unbiased view of small molecules in biofluids and organs, thus contributing
to the understanding of the molecular characteristics of many diseases. Moreover, these approaches were
also used to define a series of biomarkers for early diagnoses and treatments of different diseases [6–9].
In this study, the serum of 64 HCC patients diagnosed in early (28 patients) and advanced (36 patients)
disease stages was collected and profiled by the 1H-Nuclear Magnetic Resonance (1H-NMR)-based
metabolomics approach coupled with multivariate data analysis. Significant differences in the serum
level of 11 metabolites were identified between the two different groups of patients. Based on
identified metabolites, we defined a metabolic signature useful to distinguish between HCC patients
and potentially correlated with clinical characteristics.

2. Results

2.1. Patient Characteristics and Clinical Outcomes

In this study, a total of 64 patients, 28 in early (EAR) and 36 in advanced (ADV) stage were
recruited. The main clinical characteristics of patients are shown in Table 1. In details, 28 EAR HCC
patients were treated with radiofrequency, and included in the study in the period between February
2016 and June 2018, with a calculated median disease-free survival (DFS) of 24.5 months (3.9–27.8).
The 36 ADV HCC patients were treated with sorafenib, and recruited in the study between March 2016
and June 2018, with a median overall survival (OS) of 13.1 months (95% CI 10.9–15.9). Both in EAR and
particularly in ADV stages, a number of HCC patients were diabetics with only a low percentage of
these being treated with metformin. In both EAR and ADV groups, most of the patients were Hepatitis
C Virus (HCV) positive. Moreover, more than half of ADV HCC patients had extrahepatic diseases.
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Table 1. Patient’s characteristics and etiology.

Patient’s Characteristics
Patients Recommended to

Radiofrequency (Early Stage)
(n = 28)

Patients Recommended to Sorafenib
(Advanced Stage)

(n = 36)

Median age (range) 65 (38–86) 70 (67–71)

Gender

Male 25 (89.3%) 32 (88.7%)
Female 3 (10.7%) 4 (11.3%)

Diabetes

Yes 6 (21.4%) 15 (41.7%)
No 22 (78.6%) 21 (58.3%)

Metformin treatment

Yes 4 (14.3%) 9 (25%)
No 24 (85.7%) 27 (75%)

Etiology

HCV 13 (46.4%) 16 (44.4%)
HBV 4 (14.3%) 5 (13.9%)

NASH 2 (7.1%) 8 (22.2%)
Others 9 (32.1%) 7 (19.5%)

BCLC stage

0/A 28 (100%) 0 (0%)
B 0 (0%) 16 (44.4%)
C 0 (0%) 20 (55.6%)

Child pugh

A 25 (89.3%) 32 (88.9%)
B 3 (10.7%) 4 (11.1%)

ECOG

0 28 (100%) 27 (75.0%)
>0 0 (0%) 9 (25.0%)

Extrahepatic disease

Yes 0 (0%) 19 (52.8%)
No 28 (100%) 17 (47.2%)

Portal Vein Thrombosis

Yes 0 (0%) 13 (26.1%)
No 28 (100%) 23 (63.9%)

Abbreviations: BCLC = Barcelona Clinic Liver Cancer; ECOG = Eastern Cooperative Oncology Group; HBV =
Hepatitis B virus; HCV = Hepatitis C Virus; NASH = non-alcoholic steatohepatitis.

2.2. H-NMR Analysis of Serum Samples

Representative proton Carr–Purcell–Meiboom–Gill nuclear magnetic resonance (1H CPMG NMR)
spectra obtained from serum patients in the EAR and ADV HCC stages are shown in Figure 1. 2D NMR
(J-resolved, homonuclear correlation spectroscopy (COSY), heteronuclear single-quantum correlation
spectroscopy (HSQC), and heteronuclear multiple bond correlation spectroscopy (HMBC)) experiments
were used to accurately assign the resonances of the identified metabolites, according to literature data
and public databases [8–11]. The 1H-NMR spectra were dominated by high-intensity signals ascribable
to the sugar moieties of α and β-glucose, lactate and some high molecular weight metabolites,
such as lipoproteins (VLDL/LDL). Small molecules, including formate, phenylalanine, tyrosine,
creatine/ phosphocreatine, histidine, 1-methylhistidine, alanine, glycine, citrate, glutamate, glutamine,
methionine, acetate, succinate, valine, lactate, leucine, lysine, isoleucine, 2-hydroxyisobutyrate,
3-hydroxybutyrate and others, were also observed. Overall, no significant differences in the number of
metabolites identified by 1H NMR in the spectra of EAR and ADV patients were observed.
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Figure 1. Typical proton Carr–Purcell–Meiboom–Gill nuclear magnetic resonance (1H CPMG NMR) 

spectra in the (a) aromatic, (b) sugars and (c) aliphatic regions, with some identified metabolites for 

the different groups of advanced (ADV) and early (EAR) hepatocellular carcinoma (HCC) patients 

referred to the specific sample spectra in the figure. 

2.3. Multivariate Analysis of NMR Data 

A multivariate statistical approach was performed by applying both unsupervised (PCA) and 

supervised (PLS-DA and OPLS-DA) statistical analyses on the whole NMR data. While the PCA 

analysis provides a general overview on the trends and patterns of data, the supervised methods 

need a prior knowledge of sample clustering, and are used to elucidate the most reliable class-

discriminating variables for group separation [12]. At a first glance, striking differences in peak 

intensities emerged from a comparison between EAR and ADV HCC patients, but not depending 

upon HCC etiology (Figure S1) and/or extra hepatic diseases (Figure S2).  

Figure 1. Typical proton Carr–Purcell–Meiboom–Gill nuclear magnetic resonance (1H CPMG NMR)
spectra in the (a) aromatic, (b) sugars and (c) aliphatic regions, with some identified metabolites for the
different groups of advanced (ADV) and early (EAR) hepatocellular carcinoma (HCC) patients referred
to the specific sample spectra in the figure.

2.3. Multivariate Analysis of NMR Data

A multivariate statistical approach was performed by applying both unsupervised (PCA) and
supervised (PLS-DA and OPLS-DA) statistical analyses on the whole NMR data. While the PCA
analysis provides a general overview on the trends and patterns of data, the supervised methods need
a prior knowledge of sample clustering, and are used to elucidate the most reliable class-discriminating
variables for group separation [12]. At a first glance, striking differences in peak intensities emerged
from a comparison between EAR and ADV HCC patients, but not depending upon HCC etiology
(Figure S1) and/or extra hepatic diseases (Figure S2).
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The PCA model was built using the first three principal components with an explained total
variance of more than 70% (R2X = 0.71, Q2 = 0.63) while the OPLS-DA model was obtained with
one predictive and two orthogonal components (R2X = 0.75, R2Y = 0.58, Q2 = 0.38, p[CV-ANOVA] =

9.9.00484 × 10−5 (Cohen’s coefficient (K) equal to 0.968, Table S1) (Figure 2a). The differences in the
metabolite patterns were studied by the analysis of the corresponding S-line plot (Figure 2b). From the
analysis, a relative lower level of lactate (loadings corresponding to the NMR signals at 1.34 and 4.14
ppm) was observed in ADV with respect to EAR HCC patients [6]. Moreover, a relative higher level of α-
and β-glucose was found in ADV with respect to EAR HCC patients. In addition to glucose, also other
types of sugars, including galactose, were significantly higher in ADV HCC [13]. Alanine (NMR signal
at 1.49 ppm), N-acetylglycoproteins (2.05 ppm), glycine (3.60 ppm), glutamine (2.15, 2.46 and 2.50
ppm), 1-methylhistidine (7.78 ppm) and other amino acids, such as valine and lysine, resulted in
being the most discriminating metabolites between EAR and ADV HCC patients. A decreased level
of alanine, glutamine, 1-methylhistidine, valine and lysine resulted in ADV with respect to EAR
patients, while N-acetylglycoproteins and glycine were increased in ADV with respect to EAR samples.
N-acetyl moieties of glycoproteins produced a broad resonance at 2.05 ppm in the 1H NMR spectrum.
This signal is generally ascribable to N-acetyl protons from α1 acid glycoprotein [14]. By the integration
of the corresponding selected NMR signals, a quantitative variation for discriminating metabolites
between EAR and ADV HCC patients was obtained and reported in Table 2. Results, measured as
the mean and standard deviation of integrals for each group, were validated by the univariate t-test,
with an adjusted p-value cut-off of 0.05 [15].
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ADV/EAR 
p-Value 

Alanine 1.49 9.40 × 10−3 ± 3.61 × 10-3 1.55 × 10−2 ± 5.74 × 10−3 0.6 2.69 × 10−6 

Glycine 3.60 2.42 × 10−2 ± 7.80 × 10−3 1.42 × 10−2 ± 8.85 × 10−3 1.7 9.94 × 10−6 

Glutamine 2.47 8.23 × 10−3 ± 3.36 × 10−3 1.21 × 10−2 ± 3.52 × 10−3 0.7 1.22 × 10−5 

β-Glucose 4.66 2.41 × 10−2 ± 9.20 × 10−3 1.29 × 10−2 ± 9.85 × 10−3 1.9 1.47 × 10−5 

α-Glucose 5.25 1.75 × 10−2 ± 6.42 × 10−3 9.56 × 10−3 ± 7.31 × 10−3 1.8 2.11 × 10−5 

Galactose 3.94 1.97 × 10−2 ± 5.66 × 10−3 1.28 × 10−2 ± 6.58 × 10−3 1.5 2.83 × 10−5 

Figure 2. Serum metabolic profile discriminates between advanced and early HCC patients.
(a) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot (R2X = 0.75, R2Y =

0.58, Q2 = 0.38 p[CV-ANOVA] = 9.00484 × 10−5 (Cohen’s coefficient (K) equal to 0.968, Table S1) and
(b) the corresponding S-line plot for the model displaying the discriminant metabolites and the related
predictive loadings (variables in the proton Nuclear Magnetic Resonance (1H-NMR) spectra. Variables
are colored according to the correlation scaled loading (p(corr)). The arrows indicate the metabolite
content increase for the advanced (ADV) and early (EAR) group.
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Table 2. Quantitative comparison of serum metabolites from ADV and EAR HCC patients.

Metabolite Chemical Shift
(ppm)

ADV Integrals
(Mean ± SD)

EAR Integrals
(Mean ± SD)

Ratio
ADV/EAR p-Value

Alanine 1.49 9.40 × 10−3
± 3.61 × 10-3 1.55 × 10−2

± 5.74 × 10−3 0.6 2.69 × 10−6

Glycine 3.60 2.42 × 10−2
± 7.80 × 10−3 1.42 × 10−2

± 8.85 × 10−3 1.7 9.94 × 10−6

Glutamine 2.47 8.23 × 10−3
± 3.36 × 10−3 1.21 × 10−2

± 3.52 × 10−3 0.7 1.22 × 10−5

β-Glucose 4.66 2.41 × 10−2
± 9.20 × 10−3 1.29 × 10−2

± 9.85 × 10−3 1.9 1.47 × 10−5

α-Glucose 5.25 1.75 × 10−2
± 6.42 × 10−3 9.56 × 10−3

± 7.31 × 10−3 1.8 2.11 × 10−5

Galactose 3.94 1.97 × 10−2
± 5.66 × 10−3 1.28 × 10−2

± 6.58 × 10−3 1.5 2.83 × 10−5

1-Methylhistidine 7.78 1.67 × 10−4
± 8.25 × 10−4 8.91 × 10−4

± 3.56 × 10−4 0.2 4.49 × 10−5

Lactate 1.34 1.25 × 10−1
± 7.70 × 10−2 2.15 × 10−1

± 1.21 × 10−1 0.6 9.08 × 10−5

Lysine 1.74 4.08 × 10−4
± 5.87 × 10−4 1.07 × 10−3

± 6.74 × 10−4 0.4 1.92 × 10−4

N-acetylglycoproteins 2.06 2.85 × 10−2
± 7.64 × 10−3 2.24 × 10−2

± 4.88 × 10−3 1.3 4.39 × 10−4

Valine 1.04 1.07 × 10−2
± 2.77 × 10−3 1.27 × 10−2

± 2.37 × 10−3 0.8 3.11 × 10−3

The selected Nuclear Magnetic Resonance (NMR) peaks (chemical shifts in the second column) determined in the
serum 1H NMR spectra for each group, were used for the quantification of metabolites, reported as mean and
relative standard deviation. Results were validated by the univariate t-test, with an adjusted p-value cut-off of 0.05.

2.4. Metabolic Pathway Analysis

Starting from the quantitative evaluation of discriminating metabolites between ADV and EAR
HCC patients, the Metabolic Pathway Analysis was performed in order to investigate on the potential
pathways that may significantly impact upon a given biological process [15–17]. According to both the
p-value and the impact value, the analysis showed target pathways that could be potentially altered
between the ADV and EAR HCC stages (Figure 3). Results from the pathway analysis are shown in
details in Table 3, in which many pathways are tested at the same time with resulting statistical p-values,
obtained for multiple testing. In particular, Table 3 reported the matched values over the total number
of metabolites for each pathway; the original (raw p) and the adjusted (by Holm –Bonferroni method
and FDR) p-value; the pathway impact value. Alanine, aspartate and glutamate metabolism, glycine,
serine and threonine metabolism, lysine metabolism, aminoacyl-tRNA biosynthesis, amino sugar and
nucleotide sugar metabolism, pyruvate metabolism, lysine and hypotaurine metabolism, resulted in
the most relevant metabolome views potentially involved in the observed variation of EAR and ADV
HCC serum metabolites, according to the p-value (−log(p)) and the impact value.

Table 3. Metabolic Pathway Analysis for serum metabolites of ADV and EAR HCC patients.

Pathway Name Matched Metabolites Raw p
(*10−6)

= −log(p) Holm Adjust
(*10−5)

FDR
(*10−5)

Impact

Alanine, aspartate and
glutamate metabolism alanine, glutamine (2/24) 0.39 14.76 1.2 0.48 0.26401

Glycine, serine and
threonine metabolism glycine (1/48) 9.94 11.52 23.2 1.99 0.18774

Lysine degradation lysine, glycine (2/47) 9.66 11.55 23.2 1.99 0.14675

Aminoacyl-tRNA
biosynthesis

glutamine, glycine, valine,
alanine, lysine (5/75) 0.45 14.62 1.3 0.48 0.05634

Amino sugar and
nucleotide sugar
metabolism

N-acetyl-d-glucosamine,
α-glucose (2/88) 0.08 16.37 0.3 0.25 0.01122

Pyruvate metabolism lactate (1/32) 0.59 7.44 328 64.80 0.13756

Lysine biosynthesis lysine (1/32) 94.80 9.26 75.8 11.70 0.09993

Taurine and hypotaurine
metabolism alanine (1/20) 2.69 12.83 7.3 1.07 0.03237

Total number of compounds involved in each pathway and metabolites matched from the uploaded data; p is the
original p-value calculated from the enrichment analysis; the impact is the pathway impact value calculated from
pathway topology analysis.
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Figure 3. (a) Metabolic Pathway Analysis identifies significant differences between advanced and early
HCC patients. Nodes in red indicate significance (p < 0.05), and the size of the nodes indicate impact.
(b) Main pathways through which amino acids supply the Krebs cycle to furnish energy. Red arrows
indicated the change direction: metabolite increased (upward arrow) and metabolite decreased (down
arrow) in advanced with respect to early HCC patients.

2.5. Kaplan-Meier Analysis of Disease-Free Survival and Overall Survival

The statistically significant differences in the metabolite profile could be also related to disease-free
survival (DFS) and overall survival (OS). The capability of 1H-NMR profiling was therefore tested.
In the cohort of EAR stage patients, at univariate analysis after the Bonferroni correction (p < 0.0025),
the median DFS was of 24.47 months (95% CI: 5.36 to 24.470) and 1.38 months (95% CI: 1.0 to 3.6) for
patients with a tyrosine value above and below an estimated threshold value of 0.24 mmol/L, directly
measured in the 1H NMR spectrum exhibiting the specific threshold area by the standard-addition
method [18] (HR = 0.01, 95% CI 0.0–0.03, p < 0.00001) (Figure 4). In the cohort of the ADV stage treated
with sorafenib, at univariate analysis after Bonferroni correction (p < 0.0025) no significant correlation
of the metabolite serum level with OS was found.
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3. Discussion

During these years, the clear role of specific metabolic pathways in driving pro-tumorigenic events
including tumor growth, chemoresistance and plasticity, is emerged [19–24]. An over-expression
of metabolic genes regulating glycolysis, aminoacyl-tRNA biosynthesis, pyrimidine biosynthesis,
purine biosynthesis and pentose phosphate pathway characterize tumor tissues compared to normal
samples, thus highlighting the hypothesis of a specific metabolic signature at the tumor level [25]. Tumor
mediated changes in whole-body metabolism can support the growth and proliferation, diverting key
metabolites towards anabolic or catabolic processes [26]. From a clinical perspective, this underscores
the opportunity to monitor systemic metabolites for studies of cancer metabolism.

This study provides a detailed snapshot of the serum metabolite profile in EAR and ADV HCC
patients. The reported metabolites revealed a distinctive metabolic fingerprint in the two HCC
stages. In addition, the metabolomic profiling coupled with pathway analysis provided a deeper
understanding of the metabolome changes among HCC patients. Several metabolic pathways were
identified, including pathways related to amino acid, pyruvate and glutamine metabolisms.

Numerous studies have reported the dysregulation of the amino acid metabolism in HCC [27–30].
Consistent with these results, we observed decreased serum levels of alanine, glutamine,
1-methylhistidine, lysine and valine in ADV with respect to EAR HCC patients; on the contrary,
serum glycine level was increased in ADV vs EAR patients. These metabolite changes would
be intimately associated with the progression of HCC. To note that, except for lysine and valine,
which are essential amino acids, the others can be endogenously synthesized, and the liver represents,
in physiological conditions, an important site of amino acid synthesis [31]. Thus, a reduced level of
serum non-essential amino acids can be related to both reduced synthesis and increased utilization.
Cancer cells have a high energy demand, and also require increased building blocks to sustain their
rapid rate of growth, so that they plastically make adequate their metabolism to increase the utilization
of alternative sources. Indeed, increased demand for amino acid has been found in malignant
tumors [32]. Glutamine is an amino acid that is largely used in cancer cells, as its withdrawal from the
extracellular environment can significantly affect tumor growth [33]. As known, glutamine is converted
to glutamate, and further metabolized to α-ketoglutarate for ATP synthesis through the tricarboxylic
acid cycle [33]. Glutamine resulted from the glutamine synthetase (GS) reaction between glutamate and
ammonia in an ATP-dependent manner. Consistently, GS is a marker of HCC, and its high expression
may increase the metastatic potential in HCC patients [34]. A study reported that plasma glutamine
and alanine were lower in HCC patients when compared with normal subjects and patients with liver
cirrhosis, indicating that the consumption of these amino acids increased in HCC [35]. Based on these
observations, the lower level of both alanine and glutamine, found in the serum of ADV in comparison
with EAR HCC patients, might be seen as a consequence of a higher utilization of these amino acids in
the ADV HCC stage. Metabolic Pathway Analysis showed that the alanine and glutamate metabolism
was the most impacting pathway differentiating EAR from ADV HCC patients. On the other hand,
also the lysine degradation pathway was among the metabolisms which maximally differentiated the
EAR from the ADV stage. We could therefore speculate that an increased metabolism of these amino
acids (alanine, glutamate and lysine) can be considered as indicative of HCC progression.

Interestingly, the serum glycine level positively correlated with the HCC worsening due to the
higher level of this amino acid which we measured in the serum of ADV vs EAR patients. Glycine plays
a key role in regulating the methylation status of cancer cells and for DNA and RNA synthesis [36].
Recently, it has been reported that a high level of blood serine/glycine might form a protective niche for
the maintenance of leukemia cells in xenografted mice [37], and that a downregulation of the glycine
decarboxylase, an enzyme involved in glycine catabolism, enhances HCC progression and intrahepatic
metastasis [38]. Based on this knowledge, the increased serum glycine level observed in ADV vs EAR
HCC patients could be seen as a result of a reduced glycine catabolism in the advanced HCC stage.
Metabolic Pathway Analysis also showed that the metabolism of glycine and serine was among the
most impacting processes in HCC progression.
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Valine belongs to the branched amino acids group (BCCA), for which a role in the pathophysiology
of liver diseases has been established [39]. BCCA are primarily catabolized by extrahepatic tissues by a
transamination reaction to form glutamate. Glutamate can be converted to glutamine by the action of
the GS enzyme. Thus, decline in the level of the BCCA may affect the body glutamate–glutamine pool.
Our results are consistent with these indications. Experimental evidences suggest that cancer enhances
the oxidation of BCAAs and declines the BCCAs level [39]. Indeed, in advanced cirrhotic patients,
it has been reported that the serum concentrations of BCCA are decreased, and the administration of
BCCA-rich medicines induced positive results in patients with cirrhosis. Interestingly, valine has been
demonstrated to stimulate immune response [40], thus having therapeutic potential for reducing HCC
in patients with cirrhosis by restoring the immune functions [40–42].

We also measured a strong decrease in the 1-methylhistidine level in ADV vs EAR HCC patients.
This metabolite is produced from histidine metabolism, and has been defined as a marker of skeletal
muscle metabolism [43]. Histidine is an essential amino acid involved in many functions in the body;
it controls gene expression and enzyme activity through methylation. The intake of histidine in a
mouse model of hepatic injury has been reported to reduce the levels of inflammatory cytokines in
the liver [44]. It has been reported that histidine treatment regulates hepatic glucose metabolism in
type 2 diabetes [45], and improves insulin sensitivity [46]. Due to the observed higher serum glucose
level in ADV with respect to EAR HCC patients, we speculated that an altered histidine metabolism,
revealed by a modified serum level of 1-methylistine, might be associated with the hyperglycemia
of these patients. It should be considered that about 42% of patients in the ADV HCC stage were
diabetic, as evident from the clinical data reported in Table 1. Furthermore, the higher glucose level
of ADV patients is in line with the increased serum amount of N-acetylglycoprotein found in ADV
with respect to EAR patients. Protein glycosylation, an enzymatic process by which saccharide groups
are added to the maturing proteins, is involved in fundamental molecular and cell biology processes
occurring in cancer, including metastasis formation. It has also been established that especially the
N-glycosite occupancy of a protein is associated with the enzymatic activity and the physical stability
of glycoproteins [47], which might contribute to the metastasis of HCC.

The anaerobic metabolism of glucose generates lactate, and a high level of lactate with a low level
of glucose is at the basis of the cancer glycolytic shift described as the “Warburg effect”. This metabolic
shift has been found both in human and animal models of HCC [48–50]. Lactate is one of the most
known biomarkers in tissue hypoxia and necrosis [51], and represents an important substrate for tumor
energy metabolism and growth [48]. Indeed, aerobic not transformed to stromal cells can utilize lactate
excreted by anaerobic tumor cells to produce pyruvate, which, in turn, can be extruded to refuel tumor
cells, thus generating a pathway similar to the Cori cycle [48]. Although the serum lactate level of both
EAR and ADV patients is normally higher than in control subjects (data not shown), ADV patients
had lower serum lactate than EAR patients, when compared to each other. The metabolic pathway
analysis assigned a high impact score (0.13756) to the pyruvate metabolism as a discriminating pathway
between ADV and EAR HCC patients. Interestingly, in the same patients, a higher level of serum
glucose was measured with respect to EAR patients. Based on our results, we speculate that ADV
patients might have increased lactate utilization, or alternatively a decreased glucose metabolism to
lactate, considering the higher serum glucose level in ADV with respect to EAR patients. This suggests
that serum lactate levels may identify a metabolic classification that could improve HCC diagnosis.
On the other hand, considering that increased glucose metabolism is often used as a clinical indication
for cancer diagnosis, our result deserves further investigation.

Kaplan–Meier analyses which were conducted for both groups of HCC patients revealed that EAR
patients with a serum tyrosine level under an estimated threshold of 0.24 mmol/L had significantly
lower disease-free survival (DFS). Tyrosine is an amino acid that can be synthesized mainly in the liver
from phenylalanine by the phenylalanine hydroxylase enzyme. It should be noted that the activity of
phenylalanine hydroxylase was reduced in biopsies from liver cirrhosis, alcoholic hepatitis and other
liver diseases [52].
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Moreover, after oral assumption of L-phenylalanine, patients with liver cirrhosis or acute hepatitis
show significant higher serum concentrations of phenylalanine, and significantly lower concentrations
of tyrosine than normal persons [52]. Interestingly, it has been reported that only in the end-stage of
liver disease the reaction catalyzed by phenylalanine hydroxylase may be impaired, and such defects
can be corrected by transplantation [53]. On the light of these considerations, tyrosine levels can be
considered an important serum biomarker for HCC progression.

4. Materials and Methods

4.1. Patient Sampling

This was a retrospective study carried out on 64 HCC patients consecutively treated at Istituto
Scientifico Romagnolo per lo Studio e la Cura dei Tumori and the Department of Internal Medicine of
Faenza, from 2016 to 2018. A number of 28 patients were considered in the early (EAR) HCC stage,
according with Barcelona Clinic Liver Cancer (BCLC) 0 or A, and recommended for radiofrequency,
while 36 patients were diagnosed in the advanced (ADV) HCC stage, according to the American
Association for the Study of Liver Diseases (AASLD) guidelines, recommended for sorafenib treatment,
and refractory, or no longer amenable to locoregional therapies. EAR HCC patients had a calculated
median DFS of 24.5 months (3.9–27.8), whereas ADV HCC patients had a median OS of 13.1 months
(95% CI: 10.9–15.9). Serum samples used for metabolomic study were collected before initiating
treatments, and were stored at a temperature of −80 ◦C until the NMR measurements were performed.
The study protocol was reviewed and approved by the local Ethics Committee (CEIIAV: Comitato
etico IRST IRCCS AVR). Study number IRST B041 protocol number 5482/v.1 intern code: L3P1192.
All patients provided written, informed consent.

4.2. Sample Preparation and NMR Measurements

Serum samples (200 µL) were processed according to standard procedures for NMR metabolomics
measurement [8,9,54]. Briefly, prior to NMR analysis, sera were thawed at room temperature, and an
aliquot of 200 µL was added of 400 µL of saline buffer solution (NaCl 0.9%, 50 mM sodium phosphate
buffer in D2O containing TSP 0.05% wt for chemical shift calibration, pH 7.4) to minimize the variation
in pH and transferred in a 5 mm NMR tube [54–56]. The NMR experiments were recorded on a
Bruker Avance III NMR spectrometer (Bruker, Ettlingen, Germany), operating at 600.13 MHz for 1H
observation, equipped with a TCI cryoprobe (Triple Resonance inverse Cryoprobe), incorporating a
z-axis gradient coil and automatic tuning-matching (Supplementary: Section S1).

4.3. NMR Data Processing and Statistical Analyses

The CMPG spectra were processed and multivariate statistical analyses (unsupervised principal
component analysis, PCA and the supervised partial least squares and orthogonal partial least
squares discriminant analyses, PLS-DA and OPLS-DA), together with K(Cohen’s coefficient) according
to the Naïve–Bayes classification, were performed using SIMCA 14 (Sartorius Stedim Biotech,
Umeå, Sweden) [57–59] and WEKA 3.8.3 (University of Waikato, Hamilton, Waikato, New Zealand)
softwares [60,61] (Supplementary: Section S2). Relevant metabolites identified by discriminant
loadings in the OPLS-DA S-line plot were successively quantified by analyzing the integrals of selected
distinctive unbiased NMR signals (Amix 3.9.14, Bruker Biospin, Italy). Results, represented as mean
intensities and standard deviation (SD) of the selected NMR peaks, were validated by a univariate
t-test, using the free MetaboAnalyst software [15]. The level of statistical significance was calculated
at least at p-values < 0.05 with 95% confidence level. Finally, the Metabolic Pathway Analysis was
performed, using as the input matrix the discriminant metabolites previously quantified by selected
distinctive unbiased NMR signals [62,63]. To examine the association between the serum level of
metabolites and disease free survival (DFS) for EAR and overall survival (OS) for ADV HCC patients,
Kaplan–Meier survival curves were compared using the log-rank test.
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Statistical analysis of OS data was made by the MedCalc package (MedCalc® version 16.8.4).
X-tile 3.6.1 software (Yale University, New Haven, CT, USA) was used to determine the cutoff value
for baseline levels. An estimation of the serum absolute concentration value for the corresponding
metabolite identified by the Kaplan–Meier survival curves was also calculated by the standard-addition
method (Supplementary: Section S3) [18].

5. Conclusions

The application of non-targeted serum metabolomics profiling provides early diagnostic
differentiation and insight into the pathological mechanisms underlying HCC progression. We found
that 1H-NMR metabolomics profiling could discriminate early from advanced HCC patients.
Orthogonal partial least squares discriminant analysis (OPLS-DA) showed significant changes in serum
glucose, lactate, lipids and several amino acids, between advanced and early HCC patients. Altogether,
our results might indicate a shift of liver metabolism, in ADV HCC, toward the utilization of alternative
metabolite sources to support the plastic and energetic demands of cancer cells. If the metabolic shift
is a consequence of decreased glucose metabolism or increased amino acid demands remains to be
investigated. On the other hand, it is well known that cachexia, causing ongoing muscle loss, is an event
that accompanies cancer [64]. Finally, this study identifies a range of possible markers, whose serum
levels might be indicative of HCC prognosis. Moreover, considering the high percentage of subjects
with extrahepatic diseases in the ADV HCC groups, these results should be validated by a larger cohort
of samples to test the clinical validity of characteristic metabolites-derived classification models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/241/s1.
Figure S1: t[2]/t[3] PCA scoreplot (the first three principal components explained 78.5% of the total variance (R2X=

0.785, Q2=0.698, t[1]= R2X= 0.597, Q2=0.549, t[2]= R2X= 0.116, Q2=0.186, t[3]=R2X= 0.0723, Q2=0.177). (1: hcv,
chronic hepatitis C; 2: hbv, chronic hepatitis B; 3: NASH, nonalcoholic steatohepatitis; 4: others)., Figure S2:
t[1]/t[2] PCA scoreplot (the first two principal components explained 67% of the total variance (R2X= 0.675,
Q2=0.55, t[1]= R2X= 0.51, Q2=0.42, t[2]= R2X= 0.17, Q2=0.22; 1: extrahepatic; 0: no extrahepatic diseases for
ADV HCC patients)., Table S1: Classifier Output from Weka analysis, according to Naïve–Bayes classification
(Software WEKA 3.8.3, University of Waikato New Zealand), Section S1: NMR measurements, Section S2: NMR
data processing and multivariate statistical analyses, Section S3: Tyrosine measure by standard-addition method
in the 1H NMR spectrum.,
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