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Abstract: Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to
have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM,
was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC)
via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found
that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude
mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed
cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect
and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC
were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured
and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using
Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found
that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the
dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI
induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan
(VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated
A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1β,
IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and
flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying
the cytokines level of IL-1β and IL-18 using ELISA, the NLRP3 inflammasome was found to be
activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD,
could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism
study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen
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species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS,
remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome
in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced,
caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in
NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby
provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.

Keywords: NSCLC; polyphyllin VI; pyroptosis; ROS/NF-κB/NLRP3/GSDMD

1. Introduction

Lung cancer, as one of the most common malignant tumors, is the leading cause of cancer-related
death worldwide [1]. It has a dismal prognosis and a five year survival rate lower than 15% [2].
Non-small cell lung cancer (NSCLC), which includes squamous cell carinoma, adenocarcinoma and
large-cell carcinoma, is a classic subtype of lung cancer and accounts for 85% of all lung cancer cases [3].
Although there are many therapeutic methods, including surgery, radiotherapy and chemotherapy,
chemotherapy is still the common strategy for lung cancer treatment [4,5]. However, chemotherapy is
less sensitive to NSCLC as compared to small lung cancer [6]. Therefore, novel strategies are essential
for the improvement of clinical survival rate based on a better understanding of tumor biology.

Pyroptosis, also known as inflammatory necrosis, is a highly inflammatory form of programmed
cell death, which was first discovered in 2001 by Dr. Brad T. Cookson [7], and is characterized by cell
swelling and large bubbles emerging from the plasma membrane [8,9]. Recently, emerging evidence
shows that pyroptosis plays a critical role in inhibiting the proliferation of tumor cells in vitro and
tumor growth in vivo [10]. Pyroptosis has a distinct morphology and mechanism as compared to other
types of cell death [11,12]. Caspase-1, an interleukin-1 converting enzyme (ICE), proteolytically cleaves
the precursors of the inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18, as well as the
pyropotsis inducer Gasdermin D (GSDMD), into mature and active forms [12]. The pro-capsase-1
can be recruited by various inflammasomes and is activated within the inflammasome following
its assembly [13]. NACHT, LRR and PYD domains-containing protein 3 (NLRP3), also known
as NALP3 and cryopyrin, belonging to the NOD-like receptor (NLR), together with the adaptor
apoptosis-associated speck-like protein containing a CARD (ASC) protein PYCARD, a N-terminal
PYRIN-PAAD-DAPIN domain (PYD) and a C-terminal caspase-recruitment domain (CARD), to form a
caspase-1 activating complex known as the NLRP3 inflammasome [14]. Increasing evidence indicates
that the NLRP3 inflammasome, the most characterized and studied inflammasome, responds to
various activators, such as microorganisms and their derived products, as well as endogenous danger
signals [15–17]. Activation of the NLRP3 inflammasome requires the following two distinct signals:
the first is to synthesize the nuclear factor kappa B (NF-κB)-mediated NLRP3, and pro-IL-1β and IL-18
expression by inflammatory stimuli such as TLR4 agonists; the second signal is the assembly of the
NLRP3 inflammasome, caspase-1 activation, and IL-1β and IL-18 secretions [14,18]. Oxidative stress is
characterized by an imbalance between the production and accumulation of reactive oxygen species
(ROS), which are mainly from the damaged mitochondria [19]. Emerging evidences indicate that ROS,
as second messengers in the physiology of cells, play an important role in controlling tumor growth
and signaling transduction [20]. Recently, ROS has also been considered to be one of the first identified
triggers of NLRP3 inflammasome activation [21], and many chemical compounds were reported to
activate NLRP3 inflammasome via increasing intracellular ROS levels [22]. Meanwhile, N-acetyl and
P22 (phox), the typical ROS scavengers, could significantly downregulate the NLRP3 inflammasome [23].
Therefore, ROS generation is essential for the activation of the NLRP3 inflammasome. In addition,
ROS also plays a critical role in the signal transduction pathways. The NF-κB pathway was initially
thought to regulate inflammasome activation and improve NLRP3 protein expression [21]. Meanwhile,
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many studies showed that N-acetyl-L-cysteine (NAC) could inhibit the NF-κB signaling pathway,
and thus suppress the transcription in vivo and in vitro, resulting in a decrease in pro-inflammatory
cytokines secretion [24]. Therefore, the ROS-mediated NF-κB signaling pathway plays an important
role in the activation of the NLRP3 inflammasome.

To date, many approved drugs with potent anti-tumor effects, such as vinca alkaloids,
podophyllotoxins, taxanes, camptothecins, etc., were isolated from the natural plants.
Traditional Chinese medicines (TCMs) in China have a 2000 year history and have proven to
be safe and effective in the prevention and treatment of diverse diseases [25]. Trillium tschonoskii
Maxim. (TTM), also known as Yan Ling Cao in Chinese, a folk medical herb that is commonly
used in China, has many pharmacological effects, such as blood pressure reduction, neuroprotection,
anti-inflammatory, analgesia and hemolysis, and anti-aging [26,27]. Furthermore, we have previously
reported that TTM possessed potent anti-tumor effects in cell and animal models [28]. Moreover,
polyphyllin VI (PPVI), a main saponin in TTM, was previously reported by us to significantly suppress
NSCLC in vitro and in vivo. In this study, the NLRP3 inflammasome was found to be activated in
PPVI-administrated, A549-bearing athymic nude mice; the further study revealed that PPVI induced
an apoptosis-to-pyroptosis switch and ultimately cell death in A549 and H1299 cells via the activation
of caspase-1. In addition, PPVI-induced activation of the NLRP3 inflammasome was closely associated
with the ROS/NF-κB/NLRP3/GSDMD signal axis. Therefore, this study clarified the mechanism of
PPVI in the inhibition of NSCLC for the first time, and demonstrated that PPVI is valuable for the
further development of a new candidate for the treatment of NSCLC in the future.

2. Results

2.1. PPVI Activates NLRP3 Inflammasome in A549-Bearing Athymic Nude Mice

The PPVI shown in Figure 1A, a main saponin in TTM, has been previously demonstrated
by us to significantly inhibit the proliferation of NSCLC via the ROS-triggered, mTOR-mediated
apoptotic and autophagic cell death in vitro and in vivo [29]. Recently, emerging evidences indicate
that pyroptosis also plays an important role in cancer [30]. Through further detection of the NLRP3
inflammasome in the tumor tissue of A549-bearing athymic nude mice using Western blotting
and immunohistochemistry methods, Figure 1B showed that PPVI significantly improved the
protein expression of NLRP3, cleaved-caspase-1, cleaved-IL-1β and cleaved-GSDMD in tumor tissue.
Furthermore, the immunohistochemistry results in Figure 1C showed that PPVI significantly increased
the expression of NLRP3, caspase-1, IL-1β and GSDMD in a dose manner. Taken together, the present
in vivo experiment suggests that PPVI could activate the NLRP3 inflammasome in A549-bearing
athymic nude mice.

2.2. PPVI Induces Distinct Patterns of Apoptosis and Lytic Cell Death in A549 and H1299 Cells

In this study, the anti-proliferative effect of PPVI at 24, 48 and 72 h timepoints was firstly
investigated and confirmed in A549 and H1299 cells, which was consistent with our previously
reported result (Figure S1A,B) [29]. Furthermore, the MTT result indicated that PPVI exhibited a
similar inhibitive effect among the wild type (WT) EGFR NSCLC cell lines (A549 and H1299) and
mutated-EGFR cell line (PC-9) (Figure S1C). To reveal the type of cell death induced by PPVI, A549 and
H1299 cells were doubly stained with Hoechst33324/PI, the nuclei of cells was stained by Hoechst33324,
while PI could penetrate into the dying cells with the loss of cell membrane integrity. As shown
in Figure 2A,B, the Hoechst33324 staining displayed that the cell density of A549 or H1299 cells
was decreased by PPVI, and PI staining indicated that the proportion of PPVI-induced lytic cells
death (PI-positive cells) was increased in a dose manner. Furthermore, the dynamic change in cell
morphology and the cell death process of A549 cells were observed by an ImageXpress Micro 4
Widefield High-Content Imaging System. A total of 6 µM of PPVI-induced A549 cells gradually
shrank and the PI uptake into cells increased, followed by the swell and rupture of the cell membrane,
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and, ultimately, cell death (Figure 2C and Video S1). These imaging results clearly indicate that
PPVI-induced A549 cells underwent an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death.
Moreover, we also used annexin V-FITC/PI together with flow cytometry to analyze the percentage of
cell viability, early apoptosis, late apoptosis, and the pyroptosis of A549 and H1299 cells after being
treated by PPVI for 24 h. Similar concentrations of PPVI were used and the results showed that
PPVI significantly and dose-dependently increased the rate of pyroptotic cells, and correspondingly
decreased the cell viability of A549 and H1299 cells (Figure 2D,E) [31]. Taken together, the above
results suggested that PPVI significantly induced lytic cell death (pyroptosis) in A549 and H1299 cells.

2.3. PPVI Induces Cell Death via the Activation of Caspase-1 in A549 and H1299 Cells

Emerging evidences indicate that caspase-1 can proteolytically cleave the precursors of the
inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18, as well as the GSDMD, into mature
and active forms, and ultimately initiates cell pyroptotic death [32]. In this study, to investigate
whether PPVI-induced pyroptotic death in A549 and H1299 cells links with the cleavage of caspase-1,
we employed a Caspase-1 Activity Assay Kit (Colorimetric) to detect the activated caspase-1. As shown
in Figure 3A,B, 4 µM PPVI significantly increased the level of activated caspase-1 in A549 and H1299
cells. In addition, VX-765, a specific inhibitor of caspase-1, was also employed. The MTT result shown
in Figure 3A,B indicated that VX-765 significantly improved the cell viability of PPVI-treated A549 and
H1299 cells. In the meantime, the LIVE/DEAD cell imaging results also displayed that the percentage
of cell with red fluorescence in PPVI-treated A549 and H1299 cells was remarkably decreased by
VX-765 (Figure S2). Moreover, the Hoechst33324/PI staining (Figure 3C,D) and flow cytometry analysis
(Figure 3E,F) results showed that VX-765 could significantly decrease the proportion of PPVI-induced
cells with PI uptake and the percentage of pyroptotic cells in A549 and H1299 cells, respectively,
and ultimately reduced the cell death of A549 and H1299 cells. Taken together, these data suggest that
PPVI induced cell pyroptotic death via the activation of caspase-1 in A549 and H1299 cells.

2.4. PPVI Activates NLRP3 Inflammasome in A549 and H1299 Cells

It has been reported that the inactive zymogen form of caspase-1 autoactivates when it is assembled
into the filamentous inflammasome complex [33]. The activation of the NLRP3 inflammasome, the most
commonly studied inflammasome, in PPVI-treated A549 and H1299 cells, was investigated in this study.
Firstly, A549 and H1299 cells transfected with EGFP-NLRP3, mCherry-ASC and EGFP-caspase-1 were treated
with PPVI under the indicated concentrations for 24 h. After treatment, the captured representative images
showed that PPVI significantly and dose-dependently increased EGFP-NLRP3 expression in A549 and H1299
cells. Consistent with this, we observed that PPVI could induce mCherry-ASC speck formation, which is
required for the cleavage of caspase-1. Therefore, the expression of EGFP-caspase-1 was also found to
be increased in PPVI-treated A549 and H1299 cells, respectively (Figure 4A,B). In addition, the intensity
of GFP and RFP, representing the expression of NLRP3, caspase-1 or ASC, was detected and quantitated
using flow cytometry. As shown in Figure 4C–E, PPVI significantly increased the cell percentage with
GFP-NLRP3, mCherry-ASC and EGFP-caspase-1 in a dose-dependent manner, which was consistent with the
results in H1299 cells (Figure 4F–H). Furthermore, the protein expression of NLRP3, ASC, caspase-1 and the
pro-inflammatory cytokines, such as IL-1β and IL-18, and GSDMD, was detected by Western blot. As shown
in Figure 5A,B, PPVI dose-dependently increased the protein expression of NLRP3 and ASC, and the cleaved
form of caspase-1, IL-1β, IL-18 and GSDMD, which was accompanied by the gradient-increased secretion of
IL-1β and IL-18 into the cell supernatant of A549 cells (Figure 5C,D) and H1299 cells (Figure 5E,F). Moreover,
VX-765 and NSA (a specific inhibitor of GSDMD) could significantly decrease PPVI-induced expression of
NLRP3, ASC and caspase-1 in transiently transfected EGFP-NLRP3, mCherry-ASC and EGFP-caspase-1
A549 and H1299 cells (Figure 6A,B). In addition, the flow cytometry analysis result shown in Figure 6C,D
suggested that NSA significantly decreased the percentage of pyroptotic cells in Annexin V-FITC/PI-stained
A549 and H1299 cells. Taken together, these data indicate that PPVI could activate the NLRP3 inflammasome,
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and then promote the release level of inflammatory cytokines and the cleavage of GSDMD in A549 and
H1299 cells.Cancers 2020, 12, x 4 of 31 

 

 
Figure 1. Polyphyllin VI (PPVI) activates the NLRP3 inflammasome in A549 bearing athymic nude 
mice. (A) Chemical structure of PPVI. (B) Tumor tissue lysates were analyzed by Western blot for 
NLRP3, caspase-1, IL-1β, GSDMD and β-actin. Bar chart indicates the relative density of the protein 
to β-actin; bars, S.D. ** p ≤ 0.01; *** p ≤ 0.001. The full-length Western blotting images are shown in 
Figure S4. (C) The expression of NLRP3, caspase-1, IL-1β and GSDMD in the tumor tissue of A549-
bearing athymic nude mice were analyzed by the immunohistochemistry method. Magnification: 40×, 
Scale bar: 40 µm. 

Figure 1. Polyphyllin VI (PPVI) activates the NLRP3 inflammasome in A549 bearing athymic nude
mice. (A) Chemical structure of PPVI. (B) Tumor tissue lysates were analyzed by Western blot for
NLRP3, caspase-1, IL-1β, GSDMD and β-actin. Bar chart indicates the relative density of the protein
to β-actin; bars, S.D. ** p ≤ 0.01; *** p ≤ 0.001. The full-length Western blotting images are shown
in Figure S4. (C) The expression of NLRP3, caspase-1, IL-1β and GSDMD in the tumor tissue of
A549-bearing athymic nude mice were analyzed by the immunohistochemistry method. Magnification:
40×, Scale bar: 40 µm.
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Figure 2. PPVI induces lytic cell death in A549 and H1299 cells. A549 cells (A) and H1299 cells (B) 
were treated with PPVI for 24 h. The cells were then stained with 2 µg/mL PI (red, staining dying 
cells) plus 2 µg/mL Hoechst 33342 (blue, staining all cells) for 10 min, and observed by fluorescent 
microscopy. Bar chart indicates the percentage of cells with PI signal to blue signal; bars, S.D. *** p ≤ 
0.001. Magnification: 10×, Scale bar: 25 µm. (C) The time-lapse phase-contrast and fluorescent images 

Figure 2. PPVI induces lytic cell death in A549 and H1299 cells. A549 cells (A) and H1299 cells (B) were
treated with PPVI for 24 h. The cells were then stained with 2 µg/mL PI (red, staining dying cells) plus
2 µg/mL Hoechst 33342 (blue, staining all cells) for 10 min, and observed by fluorescent microscopy.
Bar chart indicates the percentage of cells with PI signal to blue signal; bars, S.D. *** p ≤ 0.001.
Magnification: 10×, Scale bar: 25 µm. (C) The time-lapse phase-contrast and fluorescent images
of A549 cells stained with PI and Hoechst 33342 solution were taken at the indicated timepoints
after the stimulation of 6 µM PPVI. The images in the red, blue and white channels were merged
at the same field. Red arrow indicated the cells at 6–9 h, beginning with membrane blebbing and
producing apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane
rupture. The real-time video was included in Video S1. Data shown are representative of at least
three independent experiments. Magnification: 10×, Scale bar: 100 µm. Pyroptotic cells or living cells
of A549 cells (D) and H1299 cells (E) treated as indicated graded concentrations were measured by
flow cytometry using an annexin V-FITC/PI apoptotic detecting kit. Annexin V+/PI+ indicated the
pyroptotic cells and annexin-V−/PI− represented living cells. Bar chart indicates the percentage of
pyroptotic cells and living cells; bars, S.D. ** p ≤ 0.01, *** p ≤ 0.001.
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measured by using a Caspase-1 Activity Assay Kit (Colorimetric) according to the manufacturer’s 
instructions. Bar chart indicated the amount of pNA in A549 and H1299 cells. A549 cells (C) and 
H1299 cells (D) were treated with PPVI or co-treated with PPVI and VX-765 at the indicated 
concentration for 24 h. After treatment, the cytotoxicity was measured by using MTT assay. Bar chart 

Figure 3. PPVI induces cell death via the activation of caspase-1 in A549 and H1299 cells. A549 cells (A)
and H1299 cells (B) were treated with 4 µM PPVI for 24 h; the activated caspase-1 were then measured by
using a Caspase-1 Activity Assay Kit (Colorimetric) according to the manufacturer’s instructions. Bar chart
indicated the amount of pNA in A549 and H1299 cells. A549 cells (C) and H1299 cells (D) were treated
with PPVI or co-treated with PPVI and VX-765 at the indicated concentration for 24 h. After treatment, the
cytotoxicity was measured by using MTT assay. Bar chart indicates the cell viability of A549 and H1299
cells; bars, S.D. * p ≤ 0.05; ** p ≤ 0.01. A549 cells (E) and H1299 cells (F) were treated with PPVI or co-treated
with PPVI and VX-765 at the indicated concentration for 24 h. The cells were then stained with 2 µg/mL PI
(red, staining dying cells) plus 2 µg/mL Hoechst 33342 (blue, staining all cells) for 10 min, and observed
by fluorescent microscopy. Bar chart indicates the percentage of cells with PI signal compared to blue
signal. Magnification: 10×, Scale bar: 100 µm. Necrotic cells, pyroptotic cells, apoptotic cells or living
cells of A549 cells (G) and H1299 cells (H), treated as indicated graded concentrations, were measured
by flow cytometry using an annexin V-FITC/PI apoptotic detecting kit. Annexin V-/PI+ indicated the
necrotic cells, annexin V+/PI+ indicated the pyroptotic cells, annexin V+/PI− represented apoptotic cells and
annexin-V−/PI− represented living cells. Bar chart indicates the percentage of necrotic cells, pyroptotic cells,
apoptotic cells and living cells; bars, S.D. ** p ≤ 0.01, *** p ≤ 0.001.
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cells (A) and H1299 cells (B) transiently transfected with EGFP-N1-NLRP3, mCherry-C1-ASC and 
EGFP-N1-caspase-1 plasmids for 24 h were treated with PPVI as indicated by the graded 
concentrations for another 24 h. After treatment, the cells were fixed with 4% PFA, and the 
representative images were captured using the fluorescence microscope. Magnification: 40×. Scale 

Figure 4. PPVI increased the expression of NLRP3, ASC and caspase-1 in A549 and H1299 cells.
A549 cells (A) and H1299 cells (B) transiently transfected with EGFP-N1-NLRP3, mCherry-C1-ASC and
EGFP-N1-caspase-1 plasmids for 24 h were treated with PPVI as indicated by the graded concentrations
for another 24 h. After treatment, the cells were fixed with 4% PFA, and the representative images
were captured using the fluorescence microscope. Magnification: 40×. Scale bar: 25 µm. A549 cells
(C–E) and H1299 cells (F–H) transiently transfected with EGFP-N1-NLRP3, mCherry-C1-ASC and
EGFP-N1-caspase-1 plasmids for 24 h were then treated with PPVI as indicated by the graded
concentrations for another 24 h. After treatment, the cells were trypsinzed and collected for the analysis
of fluorescence intensity by flow cytometry. Bar chart indicates the percentage of cells with GFP or
mCherry signal in A549 and H1299 cells; bars, S.D. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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NLRP3, mCherry-C1-ASC and EGFP-N1-caspase-1 plasmids for 24 h were then treated with PPVI as 
indicated by the graded concentrations for another 24 h. After treatment, the cells were trypsinzed 
and collected for the analysis of fluorescence intensity by flow cytometry. Bar chart indicates the 
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Figure 5. PPVI activated the NLRP3 inflammasome and promoted the release of IL-1β and IL-18.
A549 cells (A) and H1299 cells (B) were treated with PPVI as indicated by the graded concentrations for
24 h. Cell protein was then harvested for detecting NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD and
β-actin by Western blot. Bar chart indicates the relative density of protein to β-actin; bars, S.D. * p ≤ 0.05;
** p ≤ 0.01. The full-length Western blotting images are shown in Figure S5. A549 cells and H1299 cells
were treated with PPVI as indicated by gradient concentrations for 24 h. Culture medium was collected
for centrifugation and the supernatant was used for the detection of the level of IL-1β and IL-18 by
using a Human IL-1β ELISA Kit (CHE0001) and a Human IL-18 ELISA Kit (CHE0007). Bar chart
indicates the level of IL-1β and IL-18 in the cell supernatant of A549 cells (C,D) and H1299 cells (E,F),
respectively. bars, S.D. * p ≤ 0.05; ** p ≤ 0.01. *** p ≤ 0.001.
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Figure 6. PPVI VX-765 and NSA reversed the activation of the NLRP3 inflammasome of PPVI-treated 
A549 and H1299 cells. A549 cells (A) and H1299 cells (B), transiently transfected with EGFP-N1-
NLRP3, mCherry-C1-ASC and EGFP-N1-caspase-1 plasmids for 24 h, were treated with PPVI or co-
treated with VX-765 or NSA and PPVI, as per the indicated concentration, for another 24 h. After 
treatment, the cells were fixed with 4% PFA, and the representative images were captured using the 
fluorescence microscope. Magnification: 20×. Scale bar: 50 µm. Pyroptotic cells of A549 cells (C) and 
H1299 cells (D) treated with PPVI or co-treated with NSA and PPVI, as indicated. Treatment 

Figure 6. PPVI VX-765 and NSA reversed the activation of the NLRP3 inflammasome of PPVI-treated
A549 and H1299 cells. A549 cells (A) and H1299 cells (B), transiently transfected with EGFP-N1-NLRP3,
mCherry-C1-ASC and EGFP-N1-caspase-1 plasmids for 24 h, were treated with PPVI or co-treated
with VX-765 or NSA and PPVI, as per the indicated concentration, for another 24 h. After treatment,
the cells were fixed with 4% PFA, and the representative images were captured using the fluorescence
microscope. Magnification: 20×. Scale bar: 50 µm. Pyroptotic cells of A549 cells (C) and H1299 cells
(D) treated with PPVI or co-treated with NSA and PPVI, as indicated. Treatment concentrations were
measured by flow cytometry using an annexin V-FITC/PI apoptotic detecting kit. Annexin V+/PI+

indicated the pyroptotic cells. Bar chart indicates the percentage of pyroptotic cells and living cells;
bars, S.D. ** p ≤ 0.01, *** p ≤ 0.001.
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2.5. PPVI Increases the Intracellular ROS Level in A549 and H1299 Cells

As is known to us, cancer cells die in three main ways—apoptosis, autophagy and
pyroptosis/necrosis [34]—and excessive ROS, mainly generated from the damaged mitochondrial,
has been proven to a big trigger of apoptosis, autophagy and pyroptosis [35]. Thus, we here aimed to
investigate whether PPVI can increase ROS levels in A549 and H1299 cells by employing H2DCF-DA
as a fluorescence probe together with flow cytometry analysis for ROS measurement. As shown
in Figure 7A,B, PPVI significantly increased the intracellular ROS level in A549 and H1299 cells.
Furthermore, NAC, as the classical ROS scavenger, could remarkably decrease the ROS level in
PPVI-treated A549 and H1299 cells (Figure 7C,D). Therefore, these data suggest that PPVI could
increase the intracellular ROS level in A549 and H1299 cells.

2.6. PPVI Activates ROS-Triggered NF-κB Signaling Pathway in A549 and H1299 Cells

Growing evidence shows that ROS, as a trigger, promotes the release of pro-inflammatory
cytokines as well as the activation of pro-inflammatory transcription factors (NF-κB) [36]. Furthermore,
the NF-κB pathway was primarily thought to modulate the activation of the NLRP3 inflammasome
and the gene expression of NLRP3 [37]. In this study, the protein expression of p65 (NF-κB) in
PPVI-treated A549 and H1299 cells was firstly determined by using Western blot. As shown in
Figure 8A,B, PPVI dose-dependently increased p65 protein expression. To investigate whether the
increased ROS level participates in the activation of NF-κB in PPVI-treated A549 and H1299 cells,
the protein expression of p65 in PPVI or PPVI plus NAC treated A549 and H1299 cells was detected by
using Western blot. As we expected, NAC significantly inhibited PPVI-induced p65 protein expression
(Figure 8C,D). Therefore, concluded that PPVI activated NF-κB signaling pathway via increasing the
intracellular ROS level in A549 and H1299 cells.

2.7. PPVI Induces Pyroptotic Cell Death via the ROS/NF-κB Pathway in A549 and H1299 Cells

To investigate whether the increased ROS level is closely associated with the activation of the
NLRP3 inflammasome and the corresponding induced pyroptotic cell death, we firstly determined the
EGFP-NLRP3 expression by measuring the intensity of the GFP signal in transiently transfected A549
and H1299 cells by flow cytometry. As shown in Figure 9A,B, we found that NAC significantly decreased
the GFP intensity of PPVI-treated A549 and H1299 cells. In addition, we have also observed the
EGFP-caspase-1 expression in transiently transfected A549 and H1299 cells by fluorescence microscope.
The Figure 9C,D displayed that the expression of caspase-1 was significantly inhibited by NAC in
PPVI-treated A549 and H1299 cells. Therefore, these data suggest that the activation of the NLRP3
inflammasome was closely linked with ROS generation. Furthermore, by employing the MTT method,
the cell death of A549 and H1299 cells, induced by PPVI, was remarkably reversed by NAC (Figure
S3). Moreover, the PPVI-induced cell death of A549 and H1299 cells was reversed by the specific
inhibitor of NF-κB, named Bay 11-7085 (BAY) (Figure 10A,B). The double Hoechst/PI staining results
also displayed that BAY significantly decreased the PI uptake, which was increased by PPVI in A549
and H1299 cells (Figure 10C,D). Taken together, these data suggest that PPVI-induced pyroptosis in
A549 and H1299 cells via ROS triggered NF-κB activation.
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Figure 7. PPVI increased the intracellular reactive oxygen species (ROS) levels in A549 and H1299 cells.
A549 cells (A) and H1299 cells (B) were treated with PPVI as indicated graded by the concentrations for
24 h. The cells were then incubated with 5 µM H2DCFDA reagent for 30 min, and the ROS generation
was determined by flow cytometry. Bar chart indicates the ROS levels in A549 and H1299 cells; bars,
S.D. * p ≤ 0.05; *** p ≤ 0.001. A549 cells (C) and H1299 cells (D) were treated with PPVI or co-treated
with PPVI and NAC for 24 h. The cells were then incubated with 5 µM H2DCFDA reagent for 30 min,
and the ROS generation was determined by flow cytometry. Bar chart indicates the ROS levels in A549
and H1299 cells; bars, S.D. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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Figure 8. PPVI activated the ROS/NF-кB pathway in A549 and H1299 cells. A549 cells (A) and H1299
cells (B) were treated with PPVI as indicated by the graded concentrations for 24 h. A549 cells (C)
and H1299 cells (D) were treated with PPVI or co-treated with NAC and PPVI, as indicated by the
concentration shown, for 24 h. After treatment, cell protein was then harvested to detect p65 and
β-actin by Western blot. Bar chart indicates the relative density of p65 to β-actin; bars, S.D. p ≤ 0.05;
* p ≤ 0.01. The full-length Western blotting images are shown in Figure S6.
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Figure 9. NAC inhibits the expression of NLRP3 and caspase-1 in PPVI treated A549 cells and H1299
cells. A549 cells (A) and H1299 cells (B) transiently transfected with EGFP-N1-NLRP3 plasmid for 24 h,
treated with PPVI or co-treated with NAC and PPVI, at indicated concentrations, for another 24 h.
After treatment, the cells were trypsinzed and collected for the analysis of fluorescence intensity by
flow cytometry. Bar chart indicates the percentage of cells with GFP signal in A549 and H1299 cells;
bars, S.D. ** p ≤ 0.01; *** p ≤ 0.001. A549 cells (C) and H1299 cells (D) transiently transfected with
EGFP-N1-caspase-1 for 24 h were treated with PPVI or co-treated with NAC and PPVI at indicated
concentrations for another 24 h. After treatment, the cells were fixed with 4% PFA, and the representative
images were captured using the fluorescence microscope. Magnification: 40×. Scale bar: 25 µm.
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Figure 10. BAY-inhibited, PPVI-induced pyroptotic cell death in A549 cells and H1299 cells. A549 cells
(A) and H1299 cells (B) treated with PPVI or co-treated with PPVI and BAY at the indicated concentration
for 24 h. After treatment, the cytotoxicity was measured by MTT method, and the bar chart indicates
the cell viability of A549 and H1299 cells; bars, S.D. ** p ≤ 0.01; *** p ≤ 0.001. A549 cells (C) and H1299
cells (D) treated with PPVI or co-treated with PPVI and BAY at the indicated concentration for 24 h.
The cells were then stained with 2 µg/mL PI (red, staining dying cells) plus 2 µg/mL Hoechst 33342
(blue, staining all cells) for 10 min, and then observed by fluorescent microscopy. Bar chart indicates
the percentage of cells with PI signal compared to blue signal; bars, S.D. *** p ≤ 0.001. Magnification:
10×, Scale bar: 100 µm.

3. Discussion

NSCLC is a type of epithelial lung cancer that accounts for about 85% of all lung cancers [38].
As NSCLC is relatively insensitive to chemotherapy as compared to small cell carcinoma, more than
one kind of treatment is commonly used, according to the stage of NSCLC. Emerging evidences show
the combinational use of chemotherapeutic reagents has been applied to increase the five year survival
rate of NSCLC [39]. Therefore, finding novel therapeutic strategies is urgent for NSCLC. Apoptosis,
autophagy and pyroptosis are three main types of cell death [40]. Many traditional chemotherapies
for NSCLC, such as gefitinib, cisplatin, paclitaxel, erlotinib and crizotinib, were reported to induce
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cell apoptotic and autophagic death to inhibit tumor growth and cell proliferation [41–44]. However,
there are limited studies on the involvement of pyroptosis and related drugs for NSCLC.

Pyroptosis is an inflammatory of programmed cell death which occurs most frequently under the
conditions of infection and antimicrobial response [7]. Emerging evidences indicate that inflammation
plays an important role in the tumor development, including initiation, growth, invasion and
metastasis [45]. Although there are many studies on the toll-like receptors (TLRs) or interferon
(IFN) pathways in tumor development, the role of inflammasomes in tumors is poorly clarified [46].
Inflammasome is an innate immune pathway which is involved in the release of pro-inflammatory
cytokines, such as IL-1β and IL-18. To date, various inflammasomes, including NLRP1, NLRP2,
NLRP3, absent in melanoma (AIM2) and NLRC4, have been identified [47]. Among them, the NLRP3
inflammasome is the most well studied inflammasome [47]. Upon upregulation of the NLRP3 protein,
caspase-1 begin as an inactive precursor called zymogen. The caspase-1 enzymes become activated
when they oligomerize and form tetramers [47,48]. This cysteine-cleaved caspase-1 not only causes cell
death but also cleaves the pro-inflammatory cytokines such as IL-1β and IL-18, and GSDMD [32,49].
In caspase-1-deficient mice, tumorigenesis was increased in the Azoxymethane–Dextran sodium sulfate
(AOM–DSS)-induced, colitis-associated colon cancer model, and the colonic epithelial cell proliferation
in the early stage of tumorigenesis, and tumor cell proliferation was found [50]. In addition,
a cytochrome P450 1B1 inhibitor could suppresses the tumorigenicity of prostate cancer via the
upregulation of caspase-1 [51]. Furthermore, some chemicals were reported to suppress the proliferation
of NSCLC cells via the activation of pyroptosis. For example, simvastatin suppresses proliferation
and migration in vitro and in vivo by inducing pyroptosis via activating NLRP3-caspase-1-IL-1β
and IL-18 pathways [31]. In addition, cisplatin was reported to induce higher levels of secondary
necrosis/pyroptosis in A549 cells via the caspase-3/GSDME activation [52]. Therefore, the activation of
caspase-1 plays an important role in inhibiting the proliferation of cancer cells, and the compounds
with an activating NLRP3 inflammasome effect have the potential to be the treatments for NSCLC.

To date, many natural products from traditional Chinese medicines (TCMs) have been identified to
have a potent anti-tumor effect [28,53]. TTM, a traditional Chinese medicine, was found to significantly
suppress the proliferation of cancer cells and growth of tumors. It has been previously reported
that PPVI, the saponin isolated from TTM, could induce cell cycle arrest and apoptosis by increasing
p-p53 expression to inhibit the expression of cyclin B1 in A549 cells. Alternatively, PPVI activated p21
Waf1/Cip1 to inhibit the expression of cyclin B1 in H1299 cells. As is known to us, there is expression
of p53 in A549 but none in H1299 cells. Therefore, the different effects of PPVI on the activation of the
apoptosis pathway may due to the difference of the expression of p53 in A549 and H1299 cells [54].
In addition, we have recently reported that PPVI could significantly suppress the proliferation of
NSCLC via the induction of apoptosis and autophagy in vitro and in vivo, which was regulated
by the increased ROS levels and its resultant downregulation of the mTOR-signaling pathway [29].
Further study in the current animal experiment found that the NLRP3 inflammasome was activated
in PPVI-administrated, A549-bearing athymic nude mice. Recent evidences suggested that multiple
signaling pathways and various types of cell death may be activated in single dying cells [55,56],
and ROS, as a trigger, can lead to various types of regulated cell death (RCD) [55,57,58]. Furthermore,
these RCD share some common mechanisms [59], and many compounds, such as simvastatin, paclitaxel,
cisplatin, etc., were reported to induce autophagy, apoptosis and pyroptosis in NSCLC [31,52,60–64].
Therefore, we suspected that PPVI might also induce pyroptotic cell death in NSCLC via increased
ROS levels. In this study, we further confirmed that the effective concentrations (3–6 µM) of PPVI
could increase ROS levels in A549 and H1299 cells. Emerging evidence indicates that the characteristic
changes in the cell morphology of various cell death types are vacuolated cytoplasm and intact cell
membrane for autophagy, cell rounding and shrinkage for apoptosis, and the appearance of membrane
bubbles in a single big one for pyroptosis [12,58,59,65]. In order to observe the pyroptotic, autophagic
and apoptotic cell deaths of NSCLC, we employed an ImageXpress Micro 4 Widefield High-Content
Imaging System to monitor the dynamic change in the cell morphology of A549 cells treated with 6 µM
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of PPVI; the highest effective concentration was found to display a potent autophagic and apoptotic
effect in NSCLC. The results shown in Figure 2C and Video S1 suggest that A549 cells became round and
shrank at 3 h, and big membrane bubbles (indicated with red arrow) appeared at 6 h, which suggested
that both a longer treatment time than cells treated with equal effective concentrations of PPVI, and a
higher effective concentration of PPVI than cells treated with the same treatment time, were required
for the induction of pyroptosis, as compared to the activation of autophagy and apoptosis in NSCLC.
As already known, VX-765 is a specific inhibitor of caspase-1 and caspase-4, but not caspase-3, and also
inhibits lipopolysaccharides (LPS)-induced IL-1β and IL-18 production in primary human peripheral
blood mononuclear cell (PBMC) cultures [66]. Among them, IL-1β and IL-18 have been commonly
considered as the markers of the induction of pyroptosis [67]. In this study, the cell death of A549 and
H1299 cells induced by PPVI was decreased by the addition of VX-765 and NSA, which suggested
that PPVI not only induces apoptosis but also induces pyroptosis via the cleavage of caspase-1.
By determining the activation of NLRP3 inflammasome through the measurement of the expression of
NLRP3, ASC, and caspase-1 using Western blot and immunofluorescence methods, we found that PPVI
could significantly activate the NLRP3 inflammasome. Meanwhile, the pro-inflammatory cytokines,
such as IL-1β and IL-18 and GSDMD, were cleaved, which ultimately induced pyroptotic cell death in
A549 and H1299 cells.

Emerging evidence indicates that the NLRP3 inflammasome is activated by a series of
endogenous materials such as adenosine triphosphate, uric acid, and number of exogenous agents,
including bacterial hemolysins, silica, asbestos, uric acid and alum [68]. Recently, the increased
cellular generation of ROS has been found in response to the above activators. For example, crystalline
silica activates the NLRP3 inflammasome through ROS and the caspase-1-dependent pathway [69].
In addition, ROS induced by silica was decreased in NLRP3-deficient macrophages [70]. Therefore,
ROS is an upstream event of NLRP3 inflammasome activation. In addition, NF-κB proteins,
a family of transcription factors, play an important role in inflammation and immunity [71].
Recent studies suggest that the NF-κB pathway was recognized to regulate the activation of the NLRP3
inflammasome [72]. Moreover, ROS could activate NF-κB through the IκB kinase (IKK)-dependent
pathway [73]. Therefore, the ROS/NF-κB signaling pathway plays an important role in the activation
of the NLRP3 inflammasome. For the NF-κB signaling pathway in the NLRP3 inflammasome,
most researchers found that Acetyl-NF-κB p65 (Lys310) was upregulated and the NF-κB signaling
pathway was activated, and ultimately activated the NLRP3 inflammasome [74–77]. Therefore,
the Acetyl-NF-κB p65 (Lys310) antibody, which recognizes the overexpressed levels of the NF-κB p65
protein acetylated at Lys310, was also used in this study. The result showed that PPVI significantly
increases ROS level and activates the NF-κB signaling pathway in A549 and H1299 cells. As expected,
NAC could decrease PPVI-induced ROS generation. Furthermore, NAC also inhibited the NF-κB
signaling pathway in PPVI-treated A549 and H1299 cells. To further validate the correlation of cell
death with the activated NLRP3 inflammasome, as well as the increased ROS level in PPVI-treated A549
and H1299 cells, we found that NAC could reverse NLRP3 expression and cell death induced by PPVI.
Moreover, BAY could increase the cell viability of PPVI-treated A549 and H1299 cells. Therefore, all
the data in this study were summarized in the diagram showed in Figure 11, which clearly clarified the
anti-proliferation effect of PPVI and its action mechanism in NSCLC. In conclusion, our study showed
for the first time that PPVI isolated from TTM induces caspase-1-mediated pyroptotic cell death via the
activation of the ROS/NF-κB/NLRP3/GSDMD signal axis in A549 and H1299 cells. These findings
provide evidence and novel insights for PPVI’s development into a novel candidate for the treatment
of NSCLC.
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Figure 11. A schematic diagram of the molecular mechanism by which PPVI induced pyroptotic cell
death via the activation of the ROS/NF-κB/NLRP3/GSDMD signal axis in A549 and H1299 cells.

4. Materials and Methods

4.1. Reagents, Antibodies and Plasmids

Polyphyllin VI (PPVI, purity > 98%) was previously isolated from TTM by us. Belnacasan (VX-765,
T6090) and necrosulfonamide (NSA, T6904) were purchased from Topscience Co., Ltd. (Shanghai,
China). N-acetyl-L-cysteine (NAC, A7250), 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium
bromide (MTT, M2128), Hoechst 33342 (B2261) and propidium iodide (PI, P4170) were bought from
Sigma (St. Louis, MO, USA). Annexin V-FITC/PI Apoptotic detection kit was purchased from Vazyme
Biotech Co., Ltd. (Nanjing, China). Caspase-1 Activity Assay Kit (Colorimetric) was purchased from
Abbkine Inc., (Wuhan, China, #KTA3020). LIVE/DEADTM Cell Imaging Kit (488/570) was obtained
from Invitrogen (Carlsbad, CA, USA). Milli-Q water was prepared by Milli-Q integral water purification
system (Millipore, Billerica, MA, USA) in our laboratory. The primary antibodies used in the current
study were as follows: Acetyl-NF-κB p65 (Lys310) (12629), IL-1β (12242) and NLRP3 (15101) from Cell
Signaling Technology Inc, (CST, Beverly, MA, USA); Caspase-1 (A1115) and IL-18 (A0964) from ABclonal
Biotechnology Co., Ltd. (Wuhan, China); β-actin (M177-3) from MBL International (Woburn, MA, USA);
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ASC (sc-514415) from Santa Cruz Biotechnology Inc., (Texas, USA); GSDMD from Proteintech Group,
Inc., (Wuhan, China). Human IL-1β ELISA Kit (CHE0001) and human IL-18 ELISA Kit (CHE0007) were
purchased from 4A Biotech Co., Ltd., (Beijing, China). The plasmids including pmCherry-C1-ASC
(PPL01752-2b), pEGFP-N1-NLRP3 (PPL00151-2a) and pEGFP-N1-caspase-1 (PPL00392-2e) were bought
from Public Protein/Plasmid Library (PPL, Nanjing, China).

4.2. Animal and Drug Administration

In this study, all the animal experiments were approved with a No. 201903-143 by the
Animal Ethics Committee (AEC) of the Southwest Medical University, and performed as described
previously [29]. Briefly, six week old female and male athymic nude mice purchased from Chengdu
Dashuo Experimental Animal Co., Ltd. (Chengdou, China) were maintained in pathogen-free
conditions. A549 cells (1 × 106/mouse in 0.1 mL culture medium) were injected subcutaneously into
the right flank of the nude mice. After 10 d, the mice were randomly divided into five groups (eight
mice per group) as follows: control group (0.9% NaCl), PPVI-treated groups (2.5, 5, and 10 mg/kg) and
gefitinib (20 mg/kg, positive group). After intraperitoneal (I.P.) administration for 10 consecutive days,
the mice were sacrificed and tumor tissue was collected for the detection of activation of the NLRP3
inflammasome by Western blotting and immunohistochemistry methods.

4.3. Immunohistochemistry

The measurement of the NLRP3 inflammasome on tumors was performed by measuring
the expression of NLRP3, IL-1β and GSDMD using immunohistochemistry method. In brief,
paraffin sections were dewaxed in xylene and washed two times, then rehydrated by 100%–60%
ethanol (100%–60%) and distilled in water three times. After adding the citric acid repair solution,
the slice was placed in a microwave oven and fixed once for 15 minutes. After that, it was cooled
in the repair solution, and then was rinsed with phosphate-buffered saline (PBS) three times for one
minute each time. After washing, 3% H2O2 was added and the slice was rinsed with PBS three
times at room temperature for 1 h. The sections were blocked with 5% blocking serum for 1 h at
room temperature, and then incubated with 50 uL of primary antibody including NLRP3, IL-1β or
GSDMD at 4 ◦C overnight. On the second day, 50 µL of anti-rabbit/mouse horseradish peroxidase
(HRP)-labeled polymer was added and followed by an incubation for 2 h at 37 ◦C. Then, the pre-formed
developer diaminobenzidine (DAB) working solution was added and continued to incubate for three
minutes at room temperature, and immediately rinsed with distilled water. After that, the slice was
hematoxylin counterstained for one minute, and then rinsed with distilled water. Finally, the slice was
dehydrated, sealed and mounted with neutral gum. The representative images were captured under
the fluorescence microscope (Nikon ECLIPSE 80i, Tokyo, Japan).

4.4. Cell Culture

The NSCLC wild-type (WT) EGFR cell lines (A549 and H1299), and EGFR-mutated cell line
(PC-9) were purchased from Conservation Genetics Chinese Academy of Sciences Kunming Cell
Bank (Chinese Academy of Medical Sciences, Kunming, China). Cells were cultured in Roswell Park
Memorial Institute 1640 (RPMI 1640) or Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (vol/vol) fetal bovine serum (FBS), 50 U/mL penicillin and 50 mg/mL streptomycin (Invitrogen,
Scotland, United Kingdom). All cells were grown at 37 ◦C in a 5% CO2 humidified incubator.

4.5. MTTAssay

The cytotoxicity of PPVI in A549 and H1299 cells was measured by MTT assay. In brief, A549 or
H1299 cells seeded onto 96-well cell plates at a density of 5 × 103 cells/well were treated with PPVI
under the indicated concentrations for 24, 48 and 72 h. After treatment, 10 µL of MTT solution
(5 mg/mL) was added to each well and continued to incubate for another 4 h. The medium was
then removed and 150 µL of DMSO was added into each well to dissolve the formed formazan in
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cells. After shaking at low speed for 10 min at room temperature, the colorimetric reading of the
solute mixture was then determined by spectrophotometer (BioTek, VT Lab, USA) at OD 570 nm.
The cytotoxicity was determined by calculating cell viability percentage using the following formula:
Cell viability (%) = Cells number treated/Cells number control × 100.

4.6. Lytic Cell Death Assay

The lytic cell death of A549 and H1299 cells was measured by PI incorporation, as described
previously [78]. In brief, cells were seeded in 24-well plates and treated with indicated concentrations
of PPVI. After treatment, cells were stained by Hoechst 33342 solution (5 µg/mL) to reveal cell
nuclei, and PI solution (2 µg/mL) to indicate necrotic cells according to the manufacturer’s instructions.
The representative images with blue or red fluorescence signal at the same field were captured using the
fluorescence microscope (Nikon ECLIPSE 80i, Tokyo, Japan) with 10 ×magnification. The percentage
of cell with PI signal were then calculated using Image J software (National Institutes of Health,
Bethesda, MD, USA).

The dynamic change in cell morphology and the cell death process of A549 cells was performed by
real-time observation using ImageXpress Micro 4 Widefield High-Content Imaging System (Molecular
Devices, San Jose, CA, USA). Briefly, A549 cells seeded on 6-well plate were stained with Hoechst
33342 solution (5 µg/mL) and PI solution (2 µg/mL), which was diluted with RPMI 1640, and treated
with 10 µM PPVI for 4 h. The real-time images of A549 cells which were treated with PPVI from 0–4 h
were captured. Finally, a 10 s video that records the cell morphology of A549 was obtained.

4.7. Flow Cytometry Analysis

As is known to us, Annexin-V recognizes phosphatidylserine exposed on the external leaflet
of the plasma membrane of the apoptotic cells, and it also can stain cells undergoing pyroptosis
due to the membrane rupture that allows for the recognition of phosphatidylserine on the inner
leaflet [79]. Therefore, the Annexin V-FITC/PI detection kit, widely used to measure cell apoptosis,
was also used to detect pyroptosis in lots of studies of non-small lung cancer [80–82]. In our study,
pyroptosis was measured by the annexin V-FITC/PI Detection Kit from BD Biosciences (San Jose, CA,
United States), and the pyroptotic (PI positive) and apoptotic (Annexin V-FITC positive) cells could be
successfully analyzed and obtained [79,80]. Briefly, A549 and H1299 cells were treated with PPVI at
indicated concentrations for 24 h. After treatment, cells were harvested, washed with PBS twice and
stained using the Annexin V-FITC/PI Apoptosis assay kit by following the manufacturer’s instructions.
After incubation at room temperature for 15 min in the dark, the stained cells were analyzed on the
FACSVerse flow cytometer (BD Biosciences, San Jose, CA, USA). Data acquisition and analysis were
performed using the Flowjo software (BD Biosciences, San Jose, CA, USA).

4.8. Caspase-1 Activity Assay

Caspase-1 activity in A549 cells and H1299 cells was measured using a commercial Caspase-1
Activity Assay Kit (Colorimetric) according to the manufacturer’s instructions. This assay is performed
on the basis of the ability of caspase-1 to change acetyl-Tyr-Val-Ala-Asp p-nitroaniline (Ac-YVAD-pNA)
into the yellow formazan product pNA. After treatment, cells were harvested and lysed. Protein
concentration was then determined by using the Bradford protein assay reagent (Bio-Rad, CA, USA)
according to the manufacture’s instructions. Absorbance was measured at 405 nm by spectrophotometer
(BioTek, VT Lab, USA). Standard curves for the assay system were obtained from dilutions of the
standards of pNA. Caspase-1 activity was then obtained by determining the amount of pNA according
to the standard curve of pNA [83].

4.9. Transfection

To observe the activation of the NLRP3 inflammasome in cells, A549 or H1299 cells seeded
on coverslips in 6-well plates were transfected with pEGFP-N1-NLRP3, pmCherry-C1-ASC or
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pEGFP-N1-caspase-1 plasmid using Exfect® Transfection Reagent (Vazyme Biotech Co., Ltd., Nanjing,
China) according to the manufacture’s instruction. After a 24 h of incubation, A549 or H1299 cells
were then treated with PPVI under the indicated concentrations for 24 h. After treatment, cells were
fixed with 4% PFA and stained with DAPI solution for 30 min. The cells were then analyzed using
the fluorescence microscope (Nikon ECLIPSE 80i, Tokyo, Japan) with 10× magnification and the
representative images were captured. The fluorescence intensity, representing the expression of NLRP3,
ASC and the cleavage of caspase-1, was quantified using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

4.10. Western Blot

After treatment, cells or tumor tissue were lysed with 1× RIPA lysis buffer (CST, MA, USA)
containing a protease inhibitor cocktail. The lysate was centrifugated and the supernatant was
transferred into a new tube. The protein concentration of the lysate was then determined by using
the Bradford protein assay reagent (Bio-Rad, CA, USA) according to the manufacture’s instructions.
An equal amount of the protein (30 µg per sample) was loaded onto SDS-PAGE for the protein
separation. After electrophoresis, the protein on the SDS-PAGE was transferred to the polyvinylidene
fluoride (PVDF) membrane, which was then blocked with 5% no-fat milk in TBST for 1 h at room
temperature. After washing with TBST, the membrane was incubated with the primary antibodies
overnight at 4 ◦C. On the second day, the membrane was washed with TBST three times and further
incubated with HRP-conjugated secondary antibodies for 1 h at 37 ◦C. Finally, the bands on the
membrane were revealed by UltraSignal Hypersensitive ECL Chemiluminescent Substrate (4A Biotech
Co., Ltd., Beijing, China) and detected by the ChemiDoc MP Imaging System (Bio-Rad, California,
USA). The band intensity of proteins was quantified by using ImageJ software (National Institutes
of Health, Bethesda, MD, USA), and the relative expression of protein to β-actin was normalized
and obtained.

4.11. ELISA

IL-1β and IL-18 levels in cell supernatant of the PPVI-treated A549 cells and H1299 cells
were detemined by using a human IL-1β ELISA kit and a human IL-18 ELISA kit according to
the manufacturer’s instructions. In brief, after treatment, the culture medium was collected for
centrifugation at a speed of 1000× g for 10 min. The supernatants were analyzed by ELISA kit to detect
the cytokines, including IL-1β and IL-18. Absorbance was measured at 450 nm by spectrophotometer
(BioTek, VT Lab, USA). Standard curves for the assay system were obtained from dilutions of the
standards of IL-1β and IL-18 ELISA kit; the concentrations of IL-1β and IL-18 were then obtained by
extrapolation from the standard curve [84].

4.12. LIVE/DEAD Cell Imaging

Cell death of A549 and H1299 cells was also analyzed and observed using the LIVE/DEAD Cell
Imaging kit according to the manufacturer’s instructions. Briefly, after treatment, the medium was
removed and the cells were stained with the mixture of green dye and red dye solution, diluted with
culture medium, for 20 min. After staining, the representative images with red or green fluorescence
signal were captured using the fluorescence microscope (Nikon ECLIPSE 80i, Japan) with 10 x
magnification. The images at the same field were merged and analyzed using ImageJ software
(National Institutes of Health, Bethesda, MD, USA). Cell death was determined through the calculation
of the ratio of cells in red to total cells, and a minimum of 1000 cells from each sample were scored by
three randomly selected fields.

4.13. ROS Level Measurement

In the current study, the intracellular ROS level was determined as previously described by flow
cytometry analysis using H2DCF-DA fluorescence probe [27,85]. Briefly, after PPVI treatment, A549 or
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H1299 cells were trypsinzed and collected in 1.5 mL tubes. The cell suspension was then centrifugated
at a speed of 2000 rpm for 5 min. After that, the supernatant was removed and the remained cell pellet
was then resuspended in 5 µM H2DCF-DA, diluted with culture medium, and continued to incubate
for 30 min in the dark. After incubation, the cell pellet was washed twice with PBS and resuspended
with 500 µL of PBS. The cell suspension was then subjected to flow cytometry analysis for measurement
of ROS level on a FACSVerse flow cytometer (BD Biosciences, San Jose, CA, USA). Data acquisition
and analysis were performed by the Flowjo software (BD Biosciences, San Jose, CA, USA).

4.14. Statistical Analysis

Statistical difference between groups was analyzed by using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple-comparison post hoc test or Dunnett. All data presented
as mean ± SD were analyzed using Graph Prism 5.0 software (San Diego, CA, USA). p < 0.05 was
considered to have statistical significance.

5. Conclusions

This study further found that PPVI could activate the NLRP3 inflammasome in A549-bearing
athymic nude mice. Moreover, we revealed that PPVI induced an apoptosis-to-pyroptosis switch,
and ultimately cell death, in A549 and H1299 cells via the activation of caspase-1, which was closely
associated with the ROS/NF-κB/NLRP3/GSDMD signal axis. Therefore, we concluded that PPVI could
also inhibit the progress of NSCLC via the pyroptosis, apart from both autophagy and apoptosis,
and therefore PPVI might be valuable for the further development of a new candidate for the future
treatment of NSCLC.
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