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Abstract: Infrared spectroscopy has long been used to characterize chemical compounds, but the
applicability of this technique to the analysis of biological materials containing highly complex
chemical components is arguable. However, recent advances in the development of infrared
spectroscopy have significantly enhanced the capacity of this technique in analyzing various types
of biological specimens. Consequently, there is an increased number of studies investigating the
application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of
highly sensitive and specific methods for early detection of cancer has warranted the search for
novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable
for automation compared to existing screening, diagnosis, management and monitoring methods,
Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient
outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the
commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining
popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular
vesicles could be a useful technique in the future for biomedical applications. In this review, we
discuss the potential clinical applications of Fourier transform infrared spectroscopic analysis using
various types of biological materials for cancer. Additionally, the rationale and advantages of using
extracellular vesicles in the spectroscopic analysis for cancer diagnostics are discussed. Furthermore,
we highlight the challenges and future directions of clinical translation of the technique for cancer.

Keywords: cancer; Fourier transform infrared spectroscopy; non-invasive diagnosis; screening;
surgical management; treatment monitoring; clinical translation; extracellular vesicles

1. Introduction

Cancer is a major cause of death worldwide, accounting for a staggering estimated 9.6 million
deaths in 2018 [1]. Globally, approximately one in three individuals will be diagnosed with cancer
in his or her lifetime and one in six deaths is caused by cancer [1]. The poor survival rates reflect
the fact that most patients are diagnosed at a stage which is not responsive to current treatments.
Early cancer detection is crucial as the condition of a patient may be irreversible once the clinical
symptoms appear. In fact, early detection of the disease and identification of at-risk individuals may
delay or prevent further progression with suitable treatments and would greatly increase survival
rate of patients. However, current screening and diagnostic methods including imaging techniques,
normally detect cancer in late stage when tumor mass is visible and existing screening tests lack the
necessary sensitivity and specificity at early stage of the disease [2].

To date, the gold standard for most cancer diagnosis is still the microscopic evaluation of stained
tissue samples by pathologists, which is performed when cancerous or pre-cancerous lesions are
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observable and already contain significant genetic changes. Moreover, the use of the histopathological
diagnosis is invasive, time consuming and has limited sensitivity as it depends heavily on the
subjective judgement of pathologists which leads to intra- and inter-observer variations. Therefore,
misdiagnosis with high false negative and false positive rates is common in tissue assessment [3].
In fact, approximately 10% of pathologic evaluation could not result in a firm diagnosis because
either certain tumors are histologically similar or the tissue of origin could not be identified from the
poorly differentiated cells [4]. The method also involves the complex process of histochemical staining
techniques for the tissue samples, whereby the most commonly used hematoxylin and eosin (H&E)
dyes are non-specific for cancer [5].

Biomarkers, which are defined as disease-related molecular changes in body fluids and tissues [6],
are essential in facilitating screening and diagnosis to allow clinical interventions to begin as soon as
possible. Conventional clinical analysis of blood samples for cancer diagnosis examines individual
parameters which include tumor markers such as carcinoembryonic antigen (CEA), cancer antigen 15-3
(CA 15-3), prostate-specific antigen (PSA) and tissue polypeptide antigen (TPA). Nevertheless, these
markers have low sensitivity and/or specificity [7–9]. Thus, the lack of highly specific and sensitive
biomarkers for cancer as well as the limited number of non-invasive and cost-effective tests demand
the discovery of novel biomarkers and diagnostic methods. Thus, combinations of biomarkers have
been investigated to improve the current situation [10,11] and the use of multi-molecular biochemical
analysis techniques such as Fourier transform infrared (FTIR) spectroscopy could support this purpose.
As biochemical changes are preceded or accompanied with morphological alteration and symptomatic
appearance correlated with disease progression or therapeutic treatment, the use of the vibrational
spectroscopic technique can reveal these differences at molecular level and could serve as a screening
and diagnostic tool [12]. In addition, instead of evaluating morphological differences as in current
histopathology methods, the application of FTIR spectroscopy which analyses tissue samples at the
molecular level before morphological changes arise without the need for staining has been investigated.
This permits objective assessment of the samples which allows early detection and increases accuracy
as well as minimizes discrepancies in the interpretation of pathologists.

Traditionally, FTIR spectroscopy has been used by chemists for the characterization of molecular
structures. Nonetheless, the potential of the technique to analyze biological specimens as a cancer
diagnostic tool has been recognized for decades [13]. The relatively simple and reproducible technique
is reagent-free, non-destructive to samples and only require nanograms to micrograms of them with
minimal preparation. The sensitivity of FTIR spectroscopy to chemical changes during the transition
from normal to a pathological state or during treatment can lead to the identification of novel biomarkers
associated with a disease [14]. Hence, FTIR spectroscopy is a robust tool with great potential for
clinical application which extends beyond screening, diagnosis and prognosis of cancer to continuous
monitoring of treatment response and disease progression or regression in personalized medicine.

Various types of biological materials including blood [15–19], tissues [4,20–24], extracellular
vesicles (EVs) [25–27], urine [28], bladder wash [29], bile [30] and sputum [31,32] specimens have been
studied using FTIR spectroscopy to develop better alternatives for cancer diagnosis and management.
Blood and tissue samples are widely used in current clinical diagnostics for various diseases compared
to other types of specimen. Nevertheless, the immense biological variability found in these complex
biological specimens may mask specific spectral changes and hinder the identification of biomarkers.
EVs have lately gained research interests due to their association with cancer. These vesicles have a
diameter which ranges from 30–1000 nm and contain various biomolecules such as proteins, lipids
and nucleic acids [33]. They are secreted by all cell types in the body and play a major role in
intercellular communication. Intriguingly, EVs may reflect the condition of their originating cells and
provide information of disease progression [34]. Therefore, EVs can be isolated from biofluids which
are obtained non-invasively, such as urine, for FTIR spectroscopic analysis. This could remove the
abundant uninformative and uncorrelated data to effectively identify biomarkers.
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In this review, we discuss on the clinical applications of FTIR spectroscopy for cancer using
biological materials ranging from the most commonly used blood and tissue specimens to the
infrequently used urine and sputum samples. Additionally, the rationale and advantages of using
EVs for FTIR spectroscopic analysis in cancer screening and diagnosis are discussed. Furthermore, we
highlight the challenges and future directions in clinical translation of the technique for cancer.

2. Wavenumber Range and Computational Models in Fourier Transform Infrared Spectroscopic
Analysis of Biological Specimens

FTIR spectroscopy detects biochemical compositions including nucleic acids, proteins, lipids and
carbohydrates within biological samples by precisely identifying molecular conformations, bonding
types, functional groups and intermolecular interactions of which the specimen is composed. As each
molecule has a unique spectrum depending on the wavelength and quantity of infrared radiation being
absorbed, IR spectroscopy produces a signature spectral fingerprint of absorbance peaks for multiplex
parameters of genome, lipidome, proteome and metabolome in the examined sample. Essentially, the
biochemical fingerprint changes are unique to the molecular alterations in specific diseases, providing
valuable diagnostic information for each patient’s health status. As biological materials absorb energy
in the mid-IR region (4000–400 cm−1 of the electromagnetic spectrum, the spectral regions typically
measured for examining these specimens are the fingerprint region (1450–600 cm−1) as well as the
amide I and II region (1700–1500 cm−1). Higher-wavenumber region (3500–2550 cm−1) is correlated
to stretching vibrations including C–H, O–H, N–H and S–H, while lower-wavenumber regions are
usually associated with bending and carbon skeletal fingerprint vibrations [35]. Table 1 shows the
assignment of typical absorption bands identified in biological IR spectra [36–38].

By quantitatively measuring the vibrational modes [39] and analyze spectroscopic data to identify
disease patterns with artificial intelligent systems, FTIR spectroscopy allows the advancement of
next-generation clinical systems that could revolutionize disease diagnostics. Due to the molecular
complexity of biological specimens, common techniques such as chemometrics which combine statistical
and mathematical procedures are utilized to generate chemo-physical evidence from spectral data [40].
One of the chemometric techniques is principal component analysis (PCA), which is the most basic
feature extraction unsupervised method based upon the analysis of feature variance within the full
spectrum [36]. This technique has been coupled with FTIR spectroscopy in numerous studies for
various applications in cancer, including cancer identification [41] and monitoring of chemotherapy
efficacy [42]. Meanwhile, clustering unsupervised techniques including discriminant analysis (DA),
hierarchical cluster analysis (HCA), support vector machines (SVM), artificial neural networks (ANN)
and k-nearest neighbours (KNN) are applied to identify biological subtypes within a specimen.
On the other hand, partial least squares (PLS) is the most extensively used supervised multivariate
data analysis method which quantifies and estimates components in a sample [36]. Additionally,
physics-based computational models have also been applied in FTIR spectroscopic analysis for cancer
classification [43] and treatment monitoring to determine therapeutic efficacy [44,45].

Table 1. Assignment of typical absorption bands observed in biological IR spectra.

Wavenumber (cm−1) Assignment

3080–2800 Anti-symmetric and symmetric C–H stretches from proteins and lipids

1745–1725 Ester carbonyl of lipids

1700–1500 Amide I and II groups in peptide linkages of proteins

1270–1080 Anti-symmetric and symmetric C−O and P−O areas in DNA, RNA and phospholipids

1200–900 Carbohydrate vibrations of glucose, fructose and glycogen

3. Sensitivity, Specificity and Accuracy in Cancer Detection

The power of a test to differentiate patients from healthy individuals defines its accuracy and
diagnostic value [46]. The characteristics which reflects the abilities of a test include accuracy, sensitivity
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and specificity. The accuracy of a test is defined as the ability to correctly distinguish the patient and
healthy cases. The ideal diagnostic test would identify the cases with 100% accuracy. However, the
accuracy of a test varies in different situations and for different diseases. Meanwhile, the sensitivity and
specificity of a test are its ability to correctly determine the patient and healthy cases, respectively [47].
Even though these measures are usually regarded as fixed properties of a diagnostic test, they are
subjected to multiple variations such as the severity of the disease under investigation and the
population case mix [48]. In cancer diagnostic tests, current biomarkers used to detect the disease often
have low sensitivity and/or specificity. For instance, the prostate-specific antigen (PSA) test has been
used to detect prostate cancer. Although the test has a high specificity of approximately 87–95%, it has
a much lower sensitivity which ranges from 33–59% [7].

FTIR spectroscopy has been shown to be a prospective novel diagnostic method for many
different types of cancer by being able to distinguish cancer samples from normal ones at high
sensitivity, specificity and accuracy. Sheng et al. have demonstrated the use of this technique in
the diagnosis of leukemia [17] and gastric cancer [18] by analyzing serum samples. RNA/DNA and
peak height ratios demonstrated high sensitivity and specificity of approximately 80–100% for the
diagnosis of both cancers. Likewise, up to 98% of sensitivity and 100% of specificity have been
reported by Backhaus et al. [15] in the analysis of serum samples for breast cancer diagnosis using FTIR
spectroscopy as well as cluster analysis (CA) and artificial neural networks (ANN). Remarkably, these
findings showed significant improvement over conventional clinical analysis of the tumor markers
cancer antigen 15-3 (CA 15-3), carcinoembryonic antigen (CEA) and tissue polypeptide antigen (TPA)
for breast cancer monitoring, which have only at most 60–70% of sensitivity and specificity [8,9,49].
Notably, the study also revealed the ability to distinguish breast cancer from other diseases such as
Alzheimer’s disease, hepatitis C, coronary heart diseases as well as other types of cancer. On the other
hand, Khanmohammadi et al. [4] applied attenuated total reflection (ATR)-FTIR microspectroscopy
and chemometric techniques, such as CA, analysis of variance (ANOVA) and linear discriminant
analysis (LDA), to diagnose colon cancer. Reproducible and clear differences between the spectra of
cancer and normal colon tissues result in classification with high sensitivity, specificity and accuracy of
100%, 93.1% and 95.8%, respectively.

Furthermore, FTIR spectroscopy has been utilized for cancer diagnosis by analyzing other types
of biological materials besides the commonly examined blood and tissue samples, such as urine [28],
bladder wash [29], bile [30] and sputum [31,32] samples. Paraskevaidi et al. [28] have performed
ATR-FTIR spectroscopic analysis of urine samples using classification models, including partial least
squares discriminant analysis (PLS-DA), principal component analysis with support vector machines
(PCA-SVM) and genetic algorithm with linear discriminant analysis (GA-LDA), for the non-invasive
diagnostic test of ovarian and endometrial cancers. Urine samples from patients with ovarian or
endometrial cancer and healthy controls were evaluated and achieved up to 100% of sensitivity,
specificity as well as accuracy with the identified biomarkers for both types of cancers. Evidently,
these results demonstrated the potential of the technique for improved diagnosis when compared to
the most commonly used serum biomarker for ovarian cancer, cancer antigen 125 (CA-125), which
has been found to be unacceptable for early-stage detection due to its low sensitivity of 50–60% and
it is only elevated in approximately 60% of patients [50,51]. Apart from that, Lewis et al. [31] have
applied FTIR spectroscopy combined with hierarchical cluster analysis (HCA) and principal component
analysis (PCA) to examine sputum samples for the diagnosis of lung cancer. Likewise, Lewis et al. [31]
obtained prominent significant wavenumbers which separate spectra between cancer and normal
sputum samples. Interestingly, the spectral analysis showed that the wavenumbers were also able to
differentiate lung cancer patients who had been previously diagnosed with breast cancer. The findings
suggest that the techniques applied to sputum may have high sensitivity and specificity of greater
than 80% for diagnosis using the small panel of significant wavenumbers, which compares more
than favorably with current techniques of lung cancer detection. This enables the development of a
non-invasive, cost-effective and high-throughput screening method for lung cancer.
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Taken together, despite the sensitivity, specificity and accuracy of FTIR spectroscopy as a cancer
diagnostic tool in these studies may be affected by factors such as the severity of the disease (e.g., stage
and grade of cancer) in patient cases just as other diagnostic tests, the technique shows promising
results for many different types of cancer when compared to existing diagnostic tests. Moreover,
studies comparing different classification, stages and grades of cancer through FTIR analysis have been
performed and are discussed in the following section. Although some studies may be preliminary
and the sample size may be limited, these investigations demonstrated the strong potential of FTIR
spectroscopy as a highly sensitive, specific and accurate cancer diagnostic tool that is valuable for
further investigation and development.

4. Classification, Staging and Grading for Cancer Management

Effective cancer management requires accurate staging and grading of the disease to establish
suitable treatments, predict clinical behavior of malignancies and facilitate interchange of precise
information between clinicians. Cancer staging denotes the anatomic extent of the disease spread.
The internationally accepted staging criteria for cancer, the tumor-node-metastasis (TNM) system,
comprises: (1) tumor size and local growth (T); (2) extent of lymph node metastases (N); and
(3) occurrence of distant metastases (M) [52]. The TNM system is used to classify cancer into stages
from I to IV. Both clinical stage and pathologic stage can be assigned to the disease. Clinical stage is
determined before initiation of treatment and depends on physical examinations, imaging studies and
laboratory findings. Meanwhile, pathologic stage is established following histological examination
of tissue and surgical exploration of disease spread [53]. Nonetheless, each cancer type has unique
anatomical spread patterns and may require distinct TNM classification system. On the other hand,
cancer grade is a subjective scoring by pathologists according to tumor histology and cytomorphology
of tumor lesion. Generally, most grading systems categorize tumors into three or four grades based on
cellular differentiation [53], whereby high-grade cancers are more poorly differentiated and clinically
aggressive than low-grade cancers. Histopathologic grading is as crucial as anatomic staging to
predict patient prognosis and guide treatments [53]. Thus, biopsy or excision of suspicious lesions is
important for cancer diagnosis and classification of tumor cellular architecture. However, the subjective
histopathological diagnosis is invasive and often leads to misdiagnosis [3].

An essential potential application of FTIR spectroscopy is its use in accurate cancer classification,
staging and grading. Lima et al. [16] have achieved up to 100% of sensitivity and specificity
that is necessary for real-world ovarian cancer diagnosis using ATR-FTIR spectroscopy combined
with successive projection algorithm, variable selection methods or genetic algorithm with linear
discriminant analysis (GA-LDA). The study demonstrated the accurate diagnosis for different ovarian
cancer stages and histological type as well as differentiation based on age using plasma and serum
specimens, justifying that the technique is particularly useful for biomarker discovery and a potential
population-based screening tool for ovarian cancer [16]. On the other hand, Baker et al. [20] investigated
FTIR-based histopathology for prostate cancer diagnosis. FTIR microspectroscopy coupled with
principal component—discriminant function analysis (PC-DFA) was used to analyze formalin-fixed
archival prostate cancer tissues. The authors examined the spectral signatures that identify subtypes of
prostate cancer and correlate to the observer dependent criterion of Gleason grading as well as the
observer independent TNM staging system. The Gleason grade is a qualitative evaluation of the loss of
normal glandular prostate tissue architecture by observing a stained prostate tissue section [54,55], with
higher scores showing greater loss of the normal glandular morphology. The study revealed the ability
of the technique to discriminate biochemical changes of the disease and that the spectral signatures
could differentiate confined prostate cancer from the invasive ones, demonstrating sensitivity and
specificity as high as 83.6% and 86.0% respectively for the method to distinguish prostate cancer tissues
based on the Gleason criterion [20].

While the current gold standard for most cancer diagnosis remains as the invasive histopathological
diagnosis, this subjective and time-consuming method warrants novel diagnostic techniques with
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improved accuracy in classification, staging and grading for cancer management. Due to the unique
anatomical spread patterns of cancer, each cancer type may require distinct classification system.
FTIR spectroscopy may represent a better technique as it could provide specific spectral signatures
for each unique disease, including each different stage and grade of each cancer type. Moreover,
many investigations on the application of FTIR spectroscopy have demonstrated its strong potential
in this important clinical need, which may substantially enhance cancer management and improve
patient care.

5. Automated Cancer Diagnosis

In this era of technological advancement, automation has arisen in many different fields, including
the diagnosis of cancer. Following the reduced cost of electronic components, computers with enhanced
processing capabilities and memory capacity are built, leading to the rise of computer aided/assisted
diagnosis (CAD) which combines algorithms or methods from pattern recognition and digital image
processing [56]. As histopathology study is considered as the current gold standard in cancer diagnosis,
computers have been applied to interpret histopathology images to aid pathologists during the
diagnosis process. Subsequently, this allows diagnosis procedures to become reliable, reproducible and
less subjected to observer variations. Nevertheless, tissue biopsy samples of patients obtained during
surgical procedure have to be clinically processed through fixation, dehydration, clearing, infiltration,
embedding, sectioning and staining before acquiring histopathology images using hardware devices,
such as the microscope, camera or slide scanners [57].

Importantly, the application of automated FTIR spectroscopy in clinical diagnostic settings has
been investigated to improve accuracy and reproducibility of cancer diagnosis, while omitting the
need for complex and time-consuming clinical processing of tissue biopsy samples. Automated
marker-free histopathological annotation of lung tumor classes and subtypes of adenocarcinoma
without further treatment of the tissue samples have been conducted by Großerueschkamp et al. [21]
using FTIR imaging and a novel trained random forest (RF) classifier. Clinical histopathology of fresh
frozen lung tissue samples were evaluated and meta data of patients, such as smoking status and
pre-treatment, were considered in the analysis for the challenging subtyping of the highly inherent
histologically heterogeneous lung tumor [58,59]. The results showed greater reproducibility as well
as high accuracy of 97% for the annotation of lung tumor classes and 95% for the identification of
prognostic adenocarcinoma subtypes, respectively. Importantly, the automated FTIR technique reduced
intra- and inter-operator variability through its objectivity, reproducibility and improved accuracy
over current methodologies for lung tumor diagnosis.

Many of the current automated image analysis systems aim to detect certain objects of interest,
such as glands, lymphocytes, mitosis and nuclei, among the various elements found in a histopathology
image. However, challenges including out-of-focus objects, missing or broken boundaries of objects,
variations in shape and size of objects, differences of intensity levels within objects, similarity between
objects of interest and other artefacts as well as overlapping structures, may hinder this task [60].
Additionally, variations in image acquisition conditions and tissue preparation process commonly
cause differences in the acquired images. Compared with hematoxylin and eosin (H&E) stained
histological images, index color image acquired from automated FTIR imaging reflects the morphology
much more precisely [21]. Furthermore, high reproducibility is achieved as errors from manual
handling were excluded by automation of sample preparation and spectrum processing. This permits
the standardization of sample preparation as well as spectral measurement and analysis which
will be necessary for the construction of FTIR spectral databases with highly specific spectroscopic
markers for the various stages and grades of different cancer types in order to apply the technique
in clinical settings [61,62]. Hence, FTIR spectral histopathology would be crucial for the acceleration
of point-of-care decisions and improvement of therapy decisions in personalized medicine. With the
spectral database, the approach could provide the advantage of being able to screen multiple types
of cancer as a stand-alone tool in contrast with majority of existing laboratory tests that focus on the
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detection of a single cancer type [63]. Additionally, in the attempt to progress FTIR spectroscopy from
“bench top to bedside”, novel powerful algorithms for automatic data analysis of large data sets have
been developed to enable easy and objective data interpretation by non-spectroscopists.

6. Cancer Surgical Management

Chemotherapy, radiotherapy and surgery are the most common types of cancer treatments
nowadays, with surgery being the basis for solid tumor treatment. To ensure complete removal of
tumor during surgery, visible tumor is resected with a fringe of normal tissue. Adequacy of resection
margins in surgery is of utmost importance to prevent under- or over-treatment as the range of surgical
removal is directly correlated to long-term survival and post-operative recovery of patients. Overly
small resection range may cause tumor recurrence after surgery and affect the long-term survival, while
a beyond range of resection could result in longer duration of postoperative recovery or even surgical
complications [24]. However, this is mainly based on the interpretation of imaging investigations,
preoperative planning of the resection extent and clinical judgment of the surgeon [64]. Resected
tumor specimens are examined by surgical pathologist to determine whether the tumor is entirely
excised. The examination is performed intra-operatively for consultation and post-operatively for
routine pathological assessment. Nevertheless, intraoperative microscopic evaluation is performed
on frozen tissue sections, whereby only few margins nearest to the tumor can be examined due to
the limited time available [64]. Furthermore, inherent artefacts such as thawing of sections and ice
crystals formation may affect the microscopic appearance of the tissue specimens and cause difficulties
in interpretation.

Depciuch et al. demonstrated both Raman spectroscopy and IR spectroscopy could detect changes
of various biomolecules in breast cancer tissues in comparison with the normal samples [65]. Further,
FTIR spectrometry offers rapid and objective diagnosis of tumors to assist surgical decision making.
Yao et al. [24] have evaluated the surgical resection margin during surgery of colorectal cancer using
ATR-FTIR spectroscopy combined with optical fiber. Colorectal tumor as well as mucosa 1, 2 and
5 cm from the tumor were examined with the technique. Intriguingly, the spectra of colorectal tumor
and mucosa 1 cm away from it were different than those of 2 and 5 cm from the tumor, signifying
a promising intraoperative and rapid diagnostic method to judge the safety of surgical resection
margin for colorectal cancer. In future, investigations with the integration of flexible optic fiber to FTIR
spectroscopy would allow the in vivo real time pre- or intra-operative diagnosis of cancer that can
guide surgeons to avoid unnecessary dissection and minimize surgical trauma [66,67]. Furthermore,
early detection of colorectal cancer relapse and assessment of colon tissue abnormality were reported
by Salman et al. [23] using FTIR spectroscopy as well as principal component analysis (PCA) and
linear discriminant analysis (LDA) to accurately determine margins of tumor and reduce recurrences.
Colorectal tissues from control, local and distant recurrence crypts were evaluated and the spectra
measured resulted with high success rate of more than 92% for differentiation between the specimens.
This study signifies the ability of FTIR spectroscopy in aiding surgeons to determine the presence
of metastatic and recurrence potential in resection margins which would lead to better prognosis
for patients.

Approximately 40 min are needed for intraoperative pathological examination of frozen section,
which is the most common method used to assess the cutting edge [24]. Multiple such examinations
may also be required during the operation when interpretation for the diagnosis is difficult. Therefore,
this method is subjective to the surgical pathologist’s judgement and would prolong the operation time
that could cause adverse effects on the postoperative recovery of patients. Meanwhile, much lesser
time is required for each FTIR measurement, which takes only around one to three min [24]. Moreover,
FTIR spectroscopy permits the detection of early stage abnormality at the molecular level of resection
margins when the morphology is still normal, which could not be achieved in standard pathology
tests and subsequently led to high local recurrence rate [23]. Thus, the novel technique provides a
rapid and objective method to detect cancer for personalized intra- and post-operative management
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whilst reducing resource expenditure and surgery-related risks to patients. Additionally, coupling
FTIR spectroscopy with technologies such as optical fiber would enable in vivo real time, non-invasive
cancer diagnosis which could determine safety of resection margins and prevent unnecessary dissection
as well as reduce surgical trauma [66,67].

7. Monitoring of Cancer Treatment Response and Follow-Up

Besides surgery, chemotherapy and radiotherapy which have been the most widely used treatments,
immunotherapy has become an essential therapeutic alternative in recent years and is now the treatment
of choice in many cases. On the other hand, nanotechnology has lately offered nanostructures as novel
therapeutic options with functions to enhance treatment outcome, such as controlled drug delivery,
directed target therapy and treatment combination [68]. Subsequently, monitoring of treatment
response is essential for cancer management and treatment planning in personalized medicine to
increase survival chances. While the improved therapeutic options have resulted in better survival
rates for cancer patients, recurrences still occur and cancer survivors are often affected by symptoms,
side effects and psychological concerns due to the treatments [69,70]. Survival statistics are the most
common measures used to predict the prognosis of cancer patients and their likely course of disease.
Consequently, follow-up after cancer treatments are important for early detection of recurrences and
secondary tumors, treatment of side effects from therapy as well as support for mental or psychosocial
stress in patients [71]. General assessments used in treatment monitoring and follow-up include routine
blood and/or laboratory tests, imaging procedures, sonographic examinations and determination of
tumor markers, such as the prostate-specific antigen (PSA) [72], which are also the currently used
cancer diagnostic methods that can be time consuming and lack the high sensitivity and/or specificity
as mentioned in previous section (Section “Sensitivity, specificity and accuracy in cancer detection”).

An important feature of FTIR spectroscopy is its ability to detect the presence of relapse as well as
to monitor therapeutic efficacy in patients. Kaznowska et al. [22] investigated the application of FTIR
spectroscopy and principal component analysis-linear discriminant analysis (PCA-LDA) to detect
spectral differences between colon tissues from healthy colon, surgical margin of colorectal tumor
as well as cancerous pre- and post-chemotherapy colon, which could facilitate pathophysiological
interpretation of various conditions and monitoring of chemotherapy efficacy. Interestingly, spectral
analysis revealed differences between each type of tissue specimen and comparison between healthy
and post-chemotherapy colon tissues suggests the potential for assessing treatment efficacy whereby
higher degree of similarity between the two types of tissues indicates greater effectiveness. Additionally,
the study also demonstrated FTIR spectroscopy as a prospective tool to define margin of the tumor,
inclusive of even single cancer cells, before resection procedures which can increase survival chances
of patients [22].

Nevertheless, given that blood samples can be obtained less invasively, the use of these specimens
may be more favorable compared to tissue samples for the monitoring of therapeutic response and
disease progression. Zelig et al. [19] have utilized identified diagnostic markers from peripheral blood
mononuclear cells of childhood acute leukemia patients using FTIR microspectroscopy to monitor the
disease during chemotherapy treatment. Pre-screening and long term follow-up of the disease were
conducted using blood samples from leukemia patients before and during the treatment, while blood
samples from healthy subjects and patients with infection who exhibited “flu-like” clinical symptoms
similar with leukemia acted as control groups. This clinical study demonstrated the application of
FTIR microspectroscopy with cluster analysis (CA) for pre-screening independently of symptoms
common with leukemia. Thus, the study proved the significant potential of FTIR microspectroscopy as
a complementary tool for rapid leukemia pre-screening and follow-up to provide precursor indication
of patient response to chemotherapy compared with conventional methods for sooner response to
critical complications and improve treatment management [19].

From the perspectives of both cancer patients and physicians, the main purpose in follow-up is
the early detection of recurrences [73]. However, existing methods for follow-up lack the sensitivity
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and specificity for effective early detection of recurrences. It was revealed that only 40% of isolated
locoregional recurrences were detected in asymptomatic patients during routine examinations in a
meta-analysis of more than 5000 patients [74]. Therefore, the application of the highly sensitive and
specific FTIR spectroscopy could improve the follow-up of cancer patients, especially in the early
detection of recurrences. In addition, the approach could enable rapid analysis of patients’ samples for
sooner response to critical conditions during treatment when compared to the time-consuming tests
currently used in cancer management.

8. Fourier Transform Infrared Spectroscopic Analysis of Cancer-Derived Extracellular Vesicles

8.1. Diagnostic Value of Extracellular Vesicles

Extracellular vesicles (EVs) are cell-derived membrane nanovesicles that are released to the
extracellular space and circulation. They contribute to intercellular communication and reflect the
physiological as well as pathological conditions in the body [34]. EVs have recently gained the
attention of researchers in the field of clinical research. These vesicles are a heterogenous population
of particles varying between 30–1000 nm in diameter that are classified into a few subsets based on
their size, density, morphology, biogenesis, origin, lipid composition, sedimentation characteristics
and biochemical markers specifically present on their surface [75,76]. These subsets include exosomes
(30–100 nm), microvesicles and late endosomes (50–1000 nm), ectosomes (100–350 nm) as well as
microparticles (100–1000 nm). Additionally, several apoptotic bodies (0.5–5 µm) and “small-size
microparticles” (<50 nm) are also grouped as EVs.

Recent studies suggest that EVs are the transport form for various molecules such as mRNAs,
miRNAs, cytokines, hormones, autoantigens, surface receptors and tissue coagulation factors, which
might be paracrine regulators of target cell function and metabolism from their parental cells [77–79].
Furthermore, the biological molecules encompassed in EVs are involved in diverse processes including
proliferation, malignancy, vasculogenesis, inflammation, infections, tissue repair as well as growth
and differentiation of tissues [80,81]. EVs contribute to disease progression by modulating local and
systemic effects in the body. In fact, EVs have been identified in many biological tissues and fluids,
including blood and saliva, as targets of treatments and biomarkers of diseases [82,83]. Studies have
found that the characteristic morphological and molecular features of salivary exosomes of oral cancer
patients were different from that of healthy individuals [84,85]. To date, numerous evidences are present
suggesting the use of EVs in diagnosis with promising predictive value in various diseases including
cancer [86,87], diabetes [88], cardiovascular [89,90] and autoimmune [91] diseases as well as central
nervous system disorders [92]. Being released into bodily fluids, EVs could serve in nanomedicine as
an invaluable source of non-invasive diagnostic specimen that is simpler and yet representative of
the pathophysiological conditions in the body which overcome the limitations of the commonly used
blood and tissue samples [93]. Moreover, EVs can provide diagnostic information at successive time
points for early detection and monitoring of both local and systemic diseases.

8.2. Analysis of Extracellular Vesicles Using Fourier Transform Infrared Spectroscopy

Despite numerous studies demonstrating the potential use of EVs in disease diagnosis, FTIR
spectroscopic analysis of EVs for cancer diagnosis has not been widely investigated. One of such
investigation is from Krafft et al. [25] who have examined the diagnostic value of EVs in the screening
of prostate cancer by using FTIR and Raman spectroscopy to perform a comprehensive comparative
analysis between cancer and non-cancer EVs. Differential centrifugation of plasma and serum from
patients with prostate cancer or benign prostatic hyperplasia as well as a healthy donor isolated two
distinct EV fractions enriched with microvesicles and exosomes, which are the most abundant and
well-investigated EVs. Cancer spectral signature of the blood EVs was utilized in a pilot study to detect
prostate cancer from a test cohort of patients, including four with benign prostatic hyperplasia and
another four with high-grade prostate carcinoma. The study concluded that the identified EV signature
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is a useful screening tool in cancer detection. Notably, the authors demonstrated that the isolation
of EV fraction as an analyte is necessary because both the IR and Raman data resulted from direct
analysis of unprocessed serum and plasma from cancer and healthy donors were almost identical and
are insufficient to detect changes for cancer screening. Samples are usually dried before spectroscopic
analysis to avoid the strong spectral contributions from water in the specimen from masking the
spectrum differences. Hence, broad variations in the study observed between 1200 and 1400 cm−1 from
liquid but not in dry phases of the serum and plasma samples were considered irrelevant [25].

In another study, Zlotogorski-Hurvitz et al. [27] assessed the diagnostic potential of salivary
exosomes for early detection of oral cancer using ATR-FTIR spectroscopy and machine learning
techniques, including principal component analysis-linear discriminant analysis (PCA-LDA) and
support vector machine (SVM) classification. Exosomes were isolated from whole saliva samples of
oral cancer patients and healthy individuals using differential centrifugation. The findings showed that
the IR spectra were consistently different between the two groups and that specific spectral signature
for the cancer salivary exosomes was accurately distinguished from exosomes of healthy individuals.
Furthermore, classification of samples resulted with high sensitivity, specificity and accuracy of 100%,
89% and 95%, respectively. Recently, we have coupled ATR-FTIR analysis of urinary EVs with PCA-LDA
statistic model (Figure 1) in our laboratory as a novel strategy for non-invasive early detection of
prostate cancer [26]. The spectral differences between the EVs from prostate cancer patients and healthy
individuals as well as the analysis using linear discriminant analysis (LDA)-derived classifier, which
achieved sensitivity of 83.33% and specificity of 60%, signifies the potential of ATR-FTIR technique as a
point-of-care test for prostate cancer in urine.
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Figure 1. The average spectra and principal component analysis (PCA) of urinary extracellular vesicle
(EV) samples from prostate cancer patients and healthy individuals (a) The average spectra of the EV
samples from patients has a lower absorbance compared to that from healthy individuals; (b) Score
plot of second and fourth PCs, with corresponding percentage of explained variance in parentheses;
(c) Loadings of the second PC with 35% of explained variance; (d) Loadings of the fourth PC with 6%
of explained variance. Spectral peak differences between the two groups were revealed after analyzing
the spectra with PCA, suggesting possible biomarkers for prostate cancer. Linear discriminant analysis
(LDA) was used to derive a diagnostic classifier for prostate cancer from the spectra, which achieved
sensitivity of 83.33% and specificity of 60%.
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The ability of FTIR spectroscopy to provide accurate signature of biomolecular content of the
analyte with small-scale preparation and high-speed detection, allows the development of a label-free
disease-specific EV biomarker which is both time and cost-effective. However, the current most
commonly used method in EV studies, differential centrifugation, only allows isolation of enriched
fraction of the EV subtypes. Therefore, development of novel methodology for complete purification of
each EV subtype would be required to aid in cancer biomarker identification as well as for the study of
EVs and their role in cancer, which are still poorly understood. Furthermore, it is important to note that
the promising findings of FTIR spectroscopy warrants further research for validation in larger patient
cohorts with varying stages and different grades of cancer for clinical translation of the methodology.

9. Challenges and Future Directions of Fourier Transform Infrared Spectroscopy in Clinical Use

As more studies show promising results of FTIR spectroscopic analysis using biological specimens
in cancer screening, diagnosis, management and monitoring, the challenge now is to translate these
methods to routine clinical practice. Nonetheless, most of these studies have been performed on rather
small sample size. Hence, large scale clinical trials are required to prove its utility in actual clinical
environment and illuminate barriers in implementation that need to be overcome. Large patient
cohorts with varying stages and different grades of cancer will be useful in validating the technique.
Appropriate selection of patients and control subjects is of utmost importance to reduce the risk of false
positives as unmatched comparison groups in sex, age, and physical conditions including hormonal
status or pathologies besides the disease of interest, may lead to biased results and differences between
the groups could be caused by these confounding factors instead of the disease of interest [94].

Furthermore, standardization of sample collection and storage is vital to not only achieve
experimental reproducibility in an individual laboratory but among different laboratories as well [95].
To date, research in the application of FTIR spectroscopy in the study of cancer involves the analysis
of many different types of biological materials, including the most commonly analyzed specimens,
human tissues and bodily fluids. However, the spectroscopic study of each of these biological
materials has its own challenges. For instance, scattering artefacts may occur when tissue samples are
analyzed using transmission-mode FTIR spectroscopy. Meanwhile, drying of drop deposits commonly
performed to measure biofluids using the ATR mode gives rise to heterogeneous drop deposition,
which is characterized by the well-known coffee-ring effect. The effect is resulted from migration of
macromolecules towards periphery of the drop [96–98]. Thus, strict control of experimental parameters
for drop deposition is necessary to attain reproducible results [99]. This could be achieved by automated
sampling approach as depicted by Ollesch et al. [61], who have reported higher reproducibility in
spectral data compared to non-automated sampling. Hence, the necessity of automated instruments
highlights the need for a close collaboration among research scientists, industrial partners and clinical
practitioners to optimize existing products based on a specific biomedical purpose [100].

Although FTIR spectroscopic analyses of many types of biological materials have been shown to
be possible methods for clinical applications in cancer, there are limitations of using these complex
biological specimens. Firstly, the use of the current commonly analyzed blood and tissue samples are
collected invasively from patients and requires the need for trained medical personnel which would
greatly increase the cost and time required for diagnosis. Additionally, contamination during sample
preparation such as paraffin in tissue specimens may produce background and interfere with the
spectral information [101]. Although the use of paraffin in tissue sample preparation has been shown to
have no effect on FTIR spectroscopic results [101,102], the immense biological variability within these
complex specimens causes large background absorbance that may mask the small specific spectral
changes and hinder the identification of biomarkers. Likewise, the strong interfering spectroscopic
signal from the erythrocyte component in blood samples may potentially mask the underlying changes
of clinically relevant biomolecules observed in cancer versus non-cancer patients [103]. Hence,
examining extracellular vesicles (EVs) allows rapid, inexpensive and non-invasive diagnosis with
high sensitivity, specificity and accuracy, which eliminates the abundant uninformative data for more
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effective biomarker identification. In our laboratory, a methodology to study prostate cancer-derived
EVs in urine using ATR-FTIR spectroscopy has been established [26]. Nonetheless, development of
novel standardized methodology to isolate each EV subtype may be useful to aid cancer biomarker
identification and improve the diagnostic method.

Another factor to be considered for the implementation of FTIR spectroscopy for clinical use is
that instruments from different manufacturers may have distinct responses and spectral distortions.
Moreover, backgrounds have to be addressed using pre-processing algorithms in order to compare
results between different studies. Besides that, considerations on the method of sample preparation
as well as the optical substrate and acquisition mode used should be taken into account in pre- and
post-processing procedures [95]. Additionally, technical standardization of spectral acquisition may
allow reproducible results to be obtained in different laboratories and the external validation will
be important for clinical validity [95]. Several multivariate approaches have been utilized to build
classification models, yet there is no consensus on the best method to date. Notably, the classifier
outcome can be impacted by small dataset that does not correctly define the patient population and result
in under- or over-fitting [95]. Therefore, it is essential to have a large amount of class-representative
patient samples for a classifier to be robust. In contrast to classical statistics, no simple method is
available to calculate sample size for biospectroscopic studies. Nevertheless, Beleites et al. [104] have
proposed the use of learning curves to determine suitable sample size required to build good classifiers
with specified performances. Finally, the advantages of using the spectroscopic biomarker in clinical
decision-making setting and its favorable medico-economic profile should be clearly demonstrated to
accomplish routine clinical use [105].

10. Conclusions

Taken together, FTIR spectroscopy holds promise for use as a novel clinical tool for cancer.
Importantly, this is evident through the numerous investigations using the technique on multiple
cancer types (Table 2). The technique offers high sensitivity, specificity and accuracy in cancer detection
when compared to currently used diagnostic methods. Furthermore, FTIR spectroscopy enables
accurate and objective classification, staging and grading for cancer management as opposed to the
present gold standard, histopathological diagnosis, to guide treatments and predict patient prognosis.
Notably, automated marker-free FTIR spectroscopy allows higher accuracy and reproducibility in
cancer diagnosis, while eliminating the need of complex and time-consuming clinical processing of
tissue samples required in existing computer-aided histopathological diagnosis. In addition, it has been
demonstrated that FTIR spectroscopy could be used to evaluate surgical resection margins rapidly and
objectively to assist surgical decision making which will improve long-term survival and postoperative
recovery of patients when compared to the common intraoperative pathological examination. The
technique has also been utilized to monitor cancer treatment response and follow-up of patients for
treatment planning, early detection of recurrences and support for mental or psychosocial stress with
more rapid, sensitive and specific results as compared to current methods. Hence, FTIR spectroscopy
would be crucial to accelerate point-of-care decisions and potentially revolutionize cancer diagnostics
in personalized medicine.
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Table 2. Studies of various cancer types using FTIR spectroscopy discussed in this review article.

Cancer Type Title of Study References

Colorectal Cancer

Application of linear discriminant analysis and
attenuated total reflectance Fourier transform infrared

microspectroscopy for diagnosis of colon cancer
[4]

The use of FTIR-ATR spectrometry for evaluation of
surgical resection margin in colorectal cancer: a pilot

study of 56 samples
[24]

Early detection of colorectal cancer relapse by infrared
spectroscopy in “normal” anastomosis tissue [23]

Use of FTIR spectroscopy and PCA-LDC analysis to
identify cancerous lesions within the human colon [22]

Prostate Cancer

Study of prostate cancer-derived extracellular vesicles in
urine using IR spectroscopy [26]

Investigating FTIR based histopathology for the
diagnosis of prostate cancer [20]

A specific spectral signature of serum and
plasma-derived extracellular vesicles for cancer

screening
[25]

Leukemia

Distinction of leukemia patients’ and healthy persons’
serum using FTIR spectroscopy [17]

Pre-screening and follow-up of childhood acute
leukemia using biochemical infrared analysis of

peripheral blood mononuclear cells
[19]

Ovarian and/or
Endometrial Cancers

Potential of mid-infrared spectroscopy as a non-invasive
diagnostic test in urine for endometrial or ovarian cancer [28]

Segregation of ovarian cancer stage exploiting spectral
biomarkers derived from blood plasma or serum

analysis: ATR-FTIR spectroscopy coupled with variable
selection methods

[16]

Lung Cancer

Evaluation of FTIR spectroscopy as a diagnostic tool for
lung cancer using sputum [31]

Marker-free automated histopathological annotation of
lung tumor subtypes by FTIR imaging [21]

Oral, Oropharyngeal,
and/or Laryngeal

Cancer

Fourier transform infrared for noninvasive optical
diagnosis of oral, oropharyngeal, and laryngeal cancer [32]

FTIR-based spectrum of salivary exosomes coupled with
computational-aided discriminating analysis in the

diagnosis of oral cancer
[27]

Gastric Cancer Comparison of serum from gastric cancer patients and
from healthy persons using FTIR spectroscopy [18]

Breast Cancer Diagnosis of breast cancer with infrared spectroscopy
from serum samples [15]

Bladder Cancer
Bladder cancer diagnosis from bladder wash by Fourier
transform infrared spectroscopy as a novel test for tumor

recurrence
[29]

MalignantBiliary
Strictures

Bile analysis using high-throughput FTIR spectroscopy
for the diagnosis of malignant biliary strictures: a pilot

study in 57 patients
[30]

Skin Cancer FT-IR spectroscopy study in early diagnosis of skin
cancer [106]
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Even though FTIR spectroscopy may not be able to identify specific molecules when compared to
molecular tests, it allows the qualitative and quantitative analyses of different classes of molecules
simultaneously such as nucleic acids, proteins and lipids. Therefore, the technique provides the
overall status of the analyzed specimen and is ideal for complicated diseases like cancer, which
are multifactorial and examining isolated molecules alone may not give complete information [107].
Hence, this feature provides the advantage of being able to reveal the whole “omics” of the examined
specimen and identify more than one cancer biomarker. Additionally, the comprehensive information
of patients provided by FTIR spectroscopy also reveals new insights in cancer research by allowing
better understanding of mechanisms underlying carcinogenesis, such as the significant quantitative
changes in spectral regions of nucleic acids and proteins indicate metabolic dysfunction in cancer
cells and can be considered as biomarkers [22]. Interestingly, Kyriakidou et al. [106] have reported
spectroscopic data showing melanoma alters the permeability of cell membrane and changes the
native B-DNA form to Z-DNA form, suggesting possible biomarker for skin cancer while further
understanding the biochemical changes in the disease. The promising findings of FTIR spectroscopy in
cancer screening, diagnosis, management and monitoring demonstrates its value for further research
and development. Besides validating the technique in larger patient cohorts, challenges in technological
development, standardization of sample collection, storage and preparation methods, data acquisition
procedures, pre- and post-processing of spectral data as well as classification models will have to be
overcome for successful clinical translation.
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