Supplementary Materials: Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma

Emanuela Minna, Silvia Brich, Katia Todoerti, Silvana Pilotti, Paola Collini, Elisa Bonaldi, Paola Romeo, Loris De Cecco, Matteo Dugo, Federica Perrone, Adele Busico, Andrea Vingiani, Ilaria Bersani, Andrea Anichini, Roberta Mortarini, Antonino Neri, Giancarlo Pruneri, Angela Greco and Maria Grazia Borrello

Figure S1. CAFs assessment by α -SMA IHC staining in human thyroid cancers stratified for tumor histotype. Boxplot with scatterplot showing IHC results expressed as α -SMA positive areas calculated by image digital quantification. Each dot represents the mean of 2-3 fields scored for samples; for tumor samples the results relative to invasive front are specifically showed. NT, non-neoplastic thyroid; PTC, papillary thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma; ATC, anaplastic thyroid carcinoma.

Figure S2. Unsupervised hierarchical clustering analysis of proprietary gene dataset on the TCGA derived BRAF-/RAS-like signature, using pearson's correlation metric and average linkage method. The color scale bar represents the relative gene expression level normalized by the standard deviation. Color legend for tissue type is reported. The vertical bars on the right show the direction of regulation reported by TCGA: red lines show upregulated genes and blue lines show downregulated genes. According to TCGA classification: BRAF-like tissues display signature upregulation, indicative of MAPK pathway transcriptional activation, with only 13 out of the 71 genes

downregulated; RAS-like tissues display signature downregulation, with only the same 13 genes upregulated. Two main clusters are identified with expression pattern consistent with BRAF- or RAS-type. The BRAF-/RAS-like signaling class was attributed to our tissues based on BRAF-/RAS- clustering classification.

Figure S3. α -*SMA*, *COL1A1* and *LOX* gene expression in human thyroid cancers by quantitative RT-PCR. Boxplot with scatterplot showing mRNA expression of α -SMA (*ACTA2* gene), *COL1A1* and *LOX* genes in (**A**) non- neoplastic thyroids (NT) and thyroid tumors and in (**B**) tumors stratified for histotype. qRT-PCR data are shown as relative quantity normalized to HPRT gene used as endogenous control for RNA input normalization. Each dot represents the mean of 3 technical replicates.

Figure S4. Assessment of senescence markers by IHC staining in human thyroid cancers. Representative images of a tumor serial sections immunostained for the expression of BRAFV600E (marker for BRAFV600E mutated thyroid tumor cells), TTF1 (marker for thyroid cells), p16(alias INK4a) and p21(alias CIP1) (cell cycle inhibitors; markers for cellular senescence) and Ki67 (cell proliferation marker). The area of the invasive front is highlighted by dashed lines and is specifically shown. Two different magnification are shown. Black triangles indicate representative p21 positive nuclei. Immunostaining was performed as described in Materials and Methods; anti-p21 (C-19: sc-397, Santa Cruz Biotechnology) and anti-Ki67 (MIB1 clone, Dako) were used for the additional markers.

Figure S5. Unsupervised hierarchical clustering analysis of 407 samples derived from GEO datasets on the TCGA derived BRAF-/RAS-like signature, using pearson's correlation metric and average linkage method. The color scale bar represents the relative gene expression level normalized by the standard deviation. Color legend for tissue type is reported. The vertical bars on the right show the direction of regulation reported by TCGA: red lines show upregulated genes and blue lines show downregulated genes. The BRAF-/RAS-like signaling class was attributed based on BRAF-/RAS- clustering classification.

Figure S6. Unsupervised hierarchical clustering analysis of GEO derived and proprietary gene datasets on CAF activating factors. The expression of three factors (*TGF-* β 1, *IL-*1 and *IL-*6) reported in the activation of CAFs is showed concurrently with *LOX*, *COL1A1*, CAF (*FAP* and α -*SMA* –alias *ACTA2-*) and senescent cells (*p*16 –alias *CDKN2A-*) markers in the 407 samples derived from GEO datasets (**A**) and in the proprietary gene dataset (**B**); in this latter only *IL-*1 and *IL-*6 expression data were available. The color scale bar represents the relative gene expression levels normalized by the standard deviation. Color legend is reported.

Figure S7. A. CAFs assessment by α -SMA IHC staining in human thyroid cancers stratified for tumor histotype, variant and gene drivers. Boxplot with scatterplot showing α -SMA IHC results by image digital quantification. Each dot represents the mean of 2-3 fields scored for samples; for tumor samples data about invasive front are specifically showed. Color legend indicates gene drivers or BRAF-/RAS-like signaling; tumors with unknown gene drivers or signaling are in black. **B.** α -SMA, LOX and *COL1A1* gene expression by quantitative RT-PCR in matched tumor tissues from 2 patients of our case list. Below representative H&E and α -SMA immunostained tissue sections and the corresponding magnification for the indicated patient. NT, non-neoplastic thyroid; PTC, papillary thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma; ATC, anaplastic thyroid carcinoma; FV, follicular variant; CT, classical variant; TCV, tall cell variant; NOS, not otherwise specified.

-30 -28 -27 -25 -23 -22 -20 -1.8 -1.7 -1.5 -1.3 -1.2 -1.0 -0.8 -0.7 -0.5 -0.3 -0.2 0 0.2 0.3 0.5 0.7 0.8 1.0 1.2 1.3 1.5 1.7 1.8 20 22 2.3 2.5 2.7 2.8 3.

С

LN meta number of p	stases atients(%)	
NO	N1	
34 (77%)	10 (23%)	p-value < 0.0001
9 (20%)	35 (80%)	
	LN meta number of p N0 34 (77%) 9 (20%)	LLN metasses number of better tesses NO N1 34 (77%) 10 (23%) 9 (20%) 35 (80%)

Figure S8. A. Unsupervised hierarchical clustering analysis of 486 papillary thyroid carcinomas (PTCs) and 58 non- neoplastic thyroids (NTs) from TGCA dataset on the five target genes expression. *α-SMA* and *p16* are indicated by the corresponding gene symbol, *ACTA2* and *CDKN2A*, respectively. The color scale bar represents the relative gene expression level normalized by the standard deviation. Color legend is reported for tissue type. **B**. Boxplot of the 5 gene mean expression value (log scale) calculated for 436 PTCs from TGCA for which clinical data about lymph node status (N0, N1, N1a, N1b) was available. The 1st decile and the 10th decile are specifically showed; Wilcoxon rank sum test measures the highly significant difference (*p*-value < 2.2×10^{-16}) between this two groups (44 samples in each group). **C**. Distribution of PTC patients stratified for the 5-gene mean expression class in relation to the absence (N0) or presence (N1/N1a/N1b) of lymph node (LN) metastases. The statistically significance by two-tailed Fisher's exact test is indicated.

Table S1.Human thyroid tumors clinicopathological features.

	ID	Histotype	Variant	Age	Gender	Т	Ν	М	Specimen Preservation	Driving lesion	GEP	BRAF-/RAS- signaling	Paired RNA from NT
Α	1	PTC	TCV	50	F	T2-3	N0	MX	FFPE	BRAFV600E	NA	NA	Yes
	2	PTC+PDTC	TCV	61	F	T3	N0	MX	FFPE	BRAFV600E	NA	NA	Yes
	3	PTC+PDTC	TCV	49	F	T3	N0	MX	FFPE	BRAFV600E	NA	NA	No
	4	PTC(+ATC)	TCV	85	F	NA	NA	NA	FFPE	BRAFV600E	NA	NA	No
	5	PTC	TCV	63	F	T2	N0	MX	FFPE	wt	NA	NA	No
	6	PTC	Classical	22	F	T4a	N1b	M1	FFPE	wt	NA	NA	No
	7	ATC	NOS	67	F	NA	NA	NA	FFPE	wt	NA	NA	No
	8	ATC+PTC	spindle(ATC);TCV(PTC)	70	М	NA	NA	NA	FFPE	NRASQ61K	NA	NA	No
	9	PTC	Classical + TCV	44	М	T4	N1a	MX	FFPE	BRAFV600E	NA	NA	Yes
	10	PTC	Classical	60	F	T2	N0	MX	FFPE	RET/PTC1	NA	NA	No
	11	PDTC+ATC	NOS	49	М	T4a	N1b	MX	FFPE	TRK fusion	NA	NA	No
	12	PTC	Classical+TCV	31	F	NA	NA	NA	FFPE	TRK fusion	NA	NA	Yes
	13	ATC	NOS	77	F	NA	NA	NA	FFPE	BRAFV600E	NA	NA	No
	14	ATC	NOS	73	F	NA	NA	NA	FFPE	wt	NA	NA	Yes
	15	PTC	Other	64	F	T3	N0	MX	FFPE	BRAFV600E	NA	NA	No
	16	PTC	Other	45	F	T4	N1a	MX	FFPE	BRAFV600E	NA	NA	No
	17	PTC	TCV	35	М	T3	N1b	MX	FFPE	BRAFV600E	NA	NA	No
	18	PTC	FV	42	М	T1	N0	MX	FFPE	wt	NA	NA	No
	19	PTC	FV	30	М	T1	N0	MX	FFPE	BRAFV600E	NA	NA	No
	20	PTC ¹	solid/trabecular	29	М	T4a	N1b	M1	FFPE	NA	NA	NA	No
	21	PDTC+ATC	TCV(PDTC);small cells (ATC)	67	F	T4a	N1b	M1	FFPE/Frozen	wt	Yes	BRAF-like	No
	22	PTC	Classical	26	F	T3	N1a	M0	FFPE/Frozen	RET fusion	Yes	BRAF-like	Yes
	23	PTC	Classical	46	М	T3	N1a	M0	FFPE/Frozen	wt	Yes	BRAF-like	No
	24	PDTC	Insular	73	М	T4a	N1b	M1	FFPE/Frozen	wt	Yes	RAS-like	No
	25	PTC	Classical	38	F	T3m	N1b	M0	FFPE/Frozen	wt	Yes	BRAF-like	No
	26	PTC	Classical	35	М	T3m	N1a	M0	FFPE/Frozen	wt	Yes ²	BRAF -like	No
	27	PTC	FV	36	М	T3	NX	M0	FFPE/Frozen	wt	Yes	RAS-like	Yes
	28	PDTC	Insular	41	М	T3m	NX	M0	FFPE/Frozen	HRASQ61K	Yes	BRAF-like ³	No
	29	PDTC+PTC	Insular(PDTC);TCV(PTC)	74	М	T3	NX	M1	FFPE/Frozen	KRASQ61R	Yes	RAS-like	No
	30	PTC	Solid	72	F	T3	N1b	M1	FFPE/Frozen	wt	Yes	RAS-like	No
	31	PTC	FV	51	F	T3	N0	M0	FFPE/Frozen	wt	Yes	RAS-like	Yes
	32	PTC	Classical	33	F	T3	N1b	M0	FFPE/Frozen	RET fusion	Yes	BRAF-like	No
	33	PTC	Classical	38	F	T3	NX	M0	FFPE/Frozen	BRAFV600E	Yes	BRAF -like	Yes
	34	PTC	TCV	48	F	T3	N1a	M0	FFPE/Frozen	wt	Yes	BRAF-like	Yes
	35	PDTC+PTC	Insular(PDTC);TCV(PTC)	52	F	T3m	NX	M0	FFPE/Frozen	wt	Yes	RAS -like	Yes

Cancers 2020

S10 of S13

	36	PTC	Classical	37	F	T2	N1a	M0	FFPE/Frozen	BRAFV600E	Yes	BRAF -like	Yes
	37	PTC	TCV	75	F	T3m	N1a	M1	FFPE/Frozen	wt	Yes	BRAF -like	No
	38	PTC	TCV	70	F	T3m	N1b	M0	FFPE/Frozen	BRAFV600E	Yes	BRAF -like	No
	39	PDTC	mixed Insular/TCV	74	М	T3	NX	M1	FFPE/Frozen	KRASQ61R	Yes	RAS -like	No
	40	PTC	FV	38	F	2	NX	M0	FFPE/Frozen	wt	Yes	RAS -like	No
	41	PTC	TCV	51	F	T3	N0	M0	FFPE/Frozen	BRAFV600E	Yes	BRAF -like	Yes
	42	PTC	FV	52	F	T3	NX	M0	FFPE/Frozen	RET fusion	Yes	RAS -like	No
	43	PTC	FV	39	F	T3	NX	M0	FFPE/Frozen	NRASQ61R	Yes	RAS-like	No
В		PTC ¹	Classical	44	F	NA	NA	NA	Frozen	NA	Yes	BRAF -like	NA
		PTC ¹	TCV	35	F	T3m	N1b	M0	Frozen	BRAFV600E	Yes	BRAF -like	NA
		PTC+PDTC	FV(PTC)	44	F	T3	NX	M1	Frozen	NA	Yes	RAS-like	NA
		PTC	TCV	61	F	T2m	N1a	M0	Frozen	NA	Yes	BRAF -like	NA
		PTC	Classical	58	М	T1	N1b	M1	Frozen	NA	Yes	RAS-like	NA

Abbreviation: PTC, papillary thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma; ATC, anaplastic thyroid carcinoma; TCV, tall cell variant; FV, follicular variant; NOS, not otherwise specified GEP, gene expression profile; NA, not available; wt, wild type referred to the tested driving lesions (see materials and methods). ¹LFN metastasis; ²Both Primary and a LFN metastasis were profiled by GEP; ³Possible aggressive case with RAS mutation but BRAF-like signaling as described in reference [5]. **A**. The series of 43 TC patients investigated in the present study. B. Five additional TC patients for which only frozen tissue and gene expression profiles were available. This samples are included in the gene expression analysis reported in Figure 5.

	Type	Lesion	Signaling		Type	Lesion	Signaling		Type	Lesion	Signaling
1	PTC	BRAF mut	BRAF-like	55	PTC	RET fusion	BRAF-like	109	PTC	Unknown 2	BRAF-like
2	PTC	BRAF mut	BRAF-like	56	PTC	RET fusion	BRAF-like	110	PTC	Unknown 2	BRAF-like
3	PTC	BRAF mut	BRAF-like	57	PTC	RET fusion	BRAF-like	111	PTC	Unknown 2	BRAF-like
4	PTC	BRAF mut	BRAF-like	58	PTC	RET fusion	BRAF-like	112	PTC	Unknown 2	BRAF-like
5	PTC	BRAF mut	BRAF-like	59	PTC	RET fusion	BRAF-like	113	PTC	Unknown 3	BRAF-like
6	PTC	BRAF mut	BRAF-like	60	PTC	RET fusion	BRAF-like	114	PTC	Unknown 1	RAS-like
7	PTC	BRAF mut	BRAF-like	61	PTC	RET fusion	BRAF-like	115	PTC	Unknown 1	RAS-like
8	PTC	BRAF mut	BRAF-like	62	PTC	RET fusion	BRAF-like	116	PTC	Unknown 1	RAS-like
9	PTC	BRAF mut	BRAF-like	63	PTC	RET fusion	BRAF-like	117	PTC	Unknown 1	RAS-like
10	PTC	BRAF mut	BRAF-like	64	PTC	RET fusion	BRAF-like	118	PTC	Unknown 2	RAS-like
11	PTC	BRAF mut	BRAF-like	65	PTC	RET fusion	BRAF-like	119	PTC	Unknown 2	RAS-like
12	PTC	BRAF mut	BRAF-like	66	PTC	RET fusion	BRAF-like	120	PTC	Unknown 2	RAS-like
13	PTC	BRAF mut	BRAF-like	67	PTC	RET fusion	BRAF-like	121	PTC	Unknown 3	RAS-like
14	PTC	BRAF mut	BRAF-like	68	PTC	RET fusion	BRAF-like	122	PTC	Unknown 3	RAS-like
15	PTC	BRAF mut	BRAF-like	69	PTC	RET fusion	BRAF-like	123	PTC	Unknown 3	RAS-like
16	PTC	BRAF mut	BRAF-like	70	PTC	RET fusion	BRAF-like	124	PTC	Unknown 3	RAS-like
17	PTC	BRAF mut	BRAF-like	71	PTC	RET fusion	RAS-like	125	PTC	Unknown 2	BRAF-like
18	PTC	BRAF mut	BRAF-like	72	PTC	RET fusion	RAS-like	126	PTC	Unknown 2	BRAF-like
19	PTC	BRAF mut	BRAF-like	73	PTC	RET fusion	RAS-like	127	PTC	Unknown 2	BRAF-like
20	PTC	BRAF mut	BRAF-like	74	PTC	RAS mut	RAS-like	128	PTC	Unknown 4	BRAF-like
21	PTC	BRAF mut	BRAF-like	75	PTC	RAS mut	RAS-like	129	PTC	Unknown 4	BRAF-like
22	PTC	BRAF mut	BRAF-like	76	PTC	RAS mut	RAS-like	130	PTC	Unknown 4	RAS-like
23	PTC	BRAF mut	BRAF-like	77	PTC	RAS mut	RAS-like	131	PTC	Unknown 4	BRAF-like
24	PTC	BRAF mut	BRAF-like	78	PTC	RAS mut	RAS-like	132	PTC	Unknown 4	BRAF-like
25	PTC	BRAF mut	BRAF-like	79	PTC	RAS mut	BRAF-like **	133	PTC	Unknown 4	RAS-like
26	PTC	BRAF mut	BRAF-like	80	PTC	PAX8/PPARG	RAS-like	134	PTC	Unknown 4	BRAF-like
27	PTC	BRAF mut	BRAF-like	81	PTC	Unknown 1	BRAF-like	135	PTC	Unknown 4	BRAF-like
28	PTC	BRAF mut	BRAF-like	82	PTC	Unknown 1	BRAF-like	136	PTC	Unknown 4	BRAF-like
29	PTC	BRAF mut	BRAF-like	83	PTC	Unknown 1	BRAF-like	137	PDTC	BRAF mut	BRAF-like
30	PTC	BRAF mut	BRAF-like	84	PTC	Unknown 1	BRAF-like	138	PDTC	BRAF mut	BRAF-like
31	PTC	BRAF mut	BRAF-like	85	PTC	Unknown 1	BRAF-like	139	PDTC	RET fusion	BRAF-like
32	PTC	BRAF mut	BRAF-like	86	PTC	Unknown 1	BRAF-like	140	PDTC	ALK fusion	RAS-like
33	PTC	BRAF mut	BRAF-like	87	PTC	Unknown 1	BRAF-like	141	PDTC	RAS mut	RAS-like
34	PTC	BRAF mut	BRAF-like	88	PTC	Unknown 1	BRAF-like	142	PDTC	RAS mut	RAS-like
35	PTC	BRAF mut	BRAF-like	89	PTC	Unknown 1	BRAF-like	143	PDTC	RAS mut	RAS-like
36	PTC	BRAF mut	BRAF-like	90	PTC	Unknown 1	BRAF-like	144	PDTC	RAS mut	RAS-like
37	PTC	BRAF mut	BRAF-like	91	PTC	Unknown 1	BRAF-like	145	PDTC	RAS mut	RAS-like

Table S2. Driving lesion and BRAF-/RAS-signaling in the 254 tumor samples from GEO datasets.

Cancers 2020

S2 of S13

38	PTC	BRAF mut	BRAF-like	92	PTC	Unknown 1	BRAF-like	146	PDTC	RAS mut	RAS-like
39	PTC	BRAF mut	BRAF-like	93	PTC	Unknown 1	BRAF-like	147	PDTC	RAS mut	RAS-like
40	PTC	BRAF mut	BRAF-like	94	PTC	Unknown 1	BRAF-like	148	PDTC	Unknown 5	RAS-like
41	PTC	BRAF mut	BRAF-like	95	PTC	Unknown 1	BRAF-like	149	PDTC	Unknown 5	RAS-like
42	PTC	BRAF mut	BRAF-like	96	PTC	Unknown 1	BRAF-like	150	PDTC	Unknown 5	RAS-like
43	PTC	BRAF mut	BRAF-like	97	PTC	Unknown 1	BRAF-like	151	PDTC	Unknown 5	RAS-like
44	PTC	BRAF mut	BRAF-like	98	PTC	Unknown 1	BRAF-like	152	PDTC	Unknown 5	RAS-like
45	PTC	BRAF mut	BRAF-like	99	PTC	Unknown 1	BRAF-like	153	PDTC	Unknown 5	RAS-like
46	PTC	BRAF mut	RAS-like	100	PTC	Unknown 1	BRAF-like	154	PDTC	BRAF mut	BRAF-like
47	PTC	RET fusion	BRAF-like	101	PTC	Unknown 1	BRAF-like	155	PDTC	Unknown 2	BRAF-like
48	PTC	RET fusion	BRAF-like	102	PTC	Unknown 1	BRAF-like	156	PDTC	Unknown 2	BRAF-like
49	PTC	RET fusion	BRAF-like	103	PTC	Unknown 1	BRAF-like	157	PDTC	Unknown 3	BRAF-like
50	PTC	RET fusion	BRAF-like	104	PTC	Unknown 1	BRAF-like	158	PDTC	Unknown 3	RAS-like
51	PTC	RET fusion	BRAF-like	105	PTC	Unknown 2	BRAF-like	159	FTC	RAS mut	RAS-like
52	PTC	RET fusion	BRAF-like	106	PTC	Unknown 2	BRAF-like	160	FTC	PAX8/PPARG	RAS-like
53	PTC	RET fusion	BRAF-like	107	PTC	Unknown 2	BRAF-like	161	FTC	Unknown 3	RAS-like
54	PTC	RET fusion	BRAF-like	108	PTC	Unknown 2	BRAF-like	162	FTC	Unknown 3	RAS-like

Table S2. Cont.

	Type	Lesion	Signaling		Type	Lesion	Signaling
163	ATC	BRAF mut	BRAF-like	214	ATC	NA	BRAF-like
164	ATC	BRAF mut	BRAF-like	215	PTC	NA	BRAF-like
165	ATC	BRAF mut	BRAF-like	216	PTC	NA	BRAF-like
166	ATC	BRAF mut	BRAF-like	217	PTC	NA	BRAF-like
167	ATC	BRAF mut	BRAF-like	218	PTC	NA	BRAF-like
168	ATC	BRAF mut	BRAF-like	219	PTC	NA	RAS-like
169	ATC	BRAF mut	BRAF-like	220	PTC	NA	BRAF-like
170	ATC	BRAF mut	BRAF-like	221	PTC	NA	RAS-like
171	ATC	BRAF mut	BRAF-like	222	PTC	NA	BRAF-like
172	ATC	BRAF mut	BRAF-like	223	PTC	NA	BRAF-like
173	ATC	RAS mut	BRAF-like *	224	PTC	NA	BRAF-like
174	ATC	RAS mut	BRAF-like *	225	PTC	NA	BRAF-like
175	ATC	Other	BRAF-like	226	PTC	NA	RAS-like
176	ATC	Unknown 5	BRAF-like	227	PTC	NA	BRAF-like
177	ATC	RAS mut	BRAF-like *	228	PTC	NA	RAS-like
178	ATC	RAS mut	BRAF-like *	229	PTC	NA	BRAF-like
179	ATC	RAS mut	BRAF-like *	230	PTC	NA	BRAF-like
180	ATC	Other	BRAF-like	231	PTC	NA	BRAF-like
181	ATC	BRAF mut	RAS-like	232	PTC	NA	BRAF-like
182	ATC	Other	RAS-like	233	PTC	NA	BRAF-like

Cancers 2020

S3 of S13

183	ATC	NA	BRAF-like	234	PTC	NA	BRAF-like
184	ATC	NA	BRAF-like	235	PTC	NA	BRAF-like
185	ATC	NA	BRAF-like	236	PTC	NA	RAS-like
186	ATC	NA	RAS-like	237	PTC	NA	BRAF-like
187	ATC	NA	BRAF-like	238	PTC	NA	BRAF-like
188	ATC	NA	BRAF-like	239	PTC	NA	BRAF-like
189	ATC	NA	RAS-like	240	PTC	NA	BRAF-like
190	ATC	NA	BRAF-like	241	PTC	NA	BRAF-like
191	ATC	NA	BRAF-like	242	PTC	NA	BRAF-like
192	ATC	NA	BRAF-like	243	PTC	NA	BRAF-like
193	ATC	NA	BRAF-like	244	PTC	NA	BRAF-like
194	ATC	NA	BRAF-like	245	PTC	NA	BRAF-like
195	ATC	NA	BRAF-like	246	PTC	NA	RAS-like
196	ATC	NA	BRAF-like	247	PTC	NA	BRAF-like
197	ATC	NA	BRAF-like	248	PTC	NA	BRAF-like
198	ATC	NA	BRAF-like	249	PTC	NA	BRAF-like
199	ATC	NA	BRAF-like	250	PTC	NA	BRAF-like
200	ATC	NA	BRAF-like	251	PTC	NA	BRAF-like
201	ATC	NA	BRAF-like	252	PTC	NA	BRAF-like
202	ATC	NA	BRAF-like	253	PTC	NA	BRAF-like
203	ATC	NA	BRAF-like	254	PTC	NA	BRAF-like
204	ATC	NA	BRAF-like				
205	ATC	NA	BRAF-like				
206	ATC	NA	BRAF-like				
207	ATC	NA	BRAF-like				
208	ATC	NA	BRAF-like				
209	ATC	NA	BRAF-like				
210	ATC	NA	BRAF-like				
211	ATC	NA	BRAF-like				
212	ATC	NA	BRAF-like				
213	ATC	NA	BRAF-like				

NA: Not available; ¹ BRAF mut and RET fusion wt; ² BRAF mut wt; ³ RAS mut wt; ⁴ RET fusion wt; ⁵ None of MSK-IMPACT panel; * RAS-mutant ATCs with BRAF-like signaling already described in Reference [5]. ** possible aggressive tumor resembling RAS-mutant ATCs with BRAF-like signaling *

 $\ensuremath{\mathbb{C}}$ 2020 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).